
Software Engineering for Safety: A Roadmap

Robyn R. Lutz�

Jet Propulsion Laboratory

4800 Oak Grove Drive
M/S 125-233

Pasadena, CA 91109-8099
(515) 294-3654

rlutz@cs.iastate.edu

ABSTRACT

This report describes the current state of software en-
gineering for safety and proposes some directions for
needed work that appears to be achievable in the near
future.

Keywords

Software Engineering, Software safety, Future directions

1 INTRODUCTION

Many safety-critical systems rely on software to achieve
their purposes. The number of such systems in-
creases as additional capabilities are realized in soft-
ware. Miniaturization and processing improvements
have enabled the spread of safety-critical systems from
nuclear and defense applications to domains as diverse
as implantable medical devices, tra�c control, smart
vehicles, and interactive virtual environments. Future
technological advances and consumer markets can be
expected to produce more safety-critical applications.
To meet this demand is a challenge. One of the major
�ndings in a recent report by the President's Informa-
tion Technology Advisory Committee was, \The Nation
depends on fragile software" [60].

Safety is a system problem [35, 45]. Software can con-
tribute to a system's safety or can compromise it by
putting the system into a dangerous state. Software en-
gineering of a safety-critical system thus requires a clear
understanding of the software's role in, and interactions
with, the system. This report describes the current state
of software engineering for safety and proposes some di-
rections for needed work in the area.

�The work described in this paper was carried out at the

Jet Propulsion Laboratory, California Institute of Technology,

Pasadena, CA, under a contract with the National Aeronautics

and Space Administration. Partial funding was provided under

NASA's Code Q Software Program Center Initiative UPN #323-

08. Address: Dept. of Computer Science, Iowa State University,

226 Atanaso� Hall, Ames, IA 50011-1041.

The next section of the report gives a snapshot of six key
areas in state-of-the-art software engineering for safety:
(1) hazard analysis, (2) safety requirements speci�ca-
tion and analysis, (3) designing for safety, (4) testing,
(5) certi�cation and standards, and (6) resources. The
section provides a overview of the central ideas and ac-
complishments for each of these topics.

Section 3 of the report describes six directions for future
work: (1) further integration of informal and formal
methods, (2) constraints on safe reuse and safe prod-
uct families, (3) testing and evaluation of safety-critical
systems, (4) runtime monitoring, (5) education, and (6)
collaboration with related �elds. The criteria used to
choose the problems in Section 3 are that the problems
are important to achieving safety in actual systems (i.e.,
that people will use the results to build safer systems),
that some approaches to solving the problems are in-
dicated in the literature, and that signi�cant progress
toward solutions appears feasible in the next decade.

The report concludes with a brief summary of the two
central points of the report: (1) that software engineer-
ing for safety must continue to exploit advances in other
�elds of computer science (e.g., formal methods, soft-
ware architecture) to build safer systems, and (2) that
wider use of safety techniques awaits better integration
with industrial development environments.

2 CURRENT STATE

This section provides a snapshot of the current state in
six central areas of software engineering for safety.

2.1 Hazard Analysis

Since hazard analysis is at the core of the development
of safe systems [35], we begin with a brief discussion
of its use and the techniques used to implement it in
practice. System-level hazards are states that can lead
to an accident. An accident is de�ned as an unplanned
event that results in \death, injury, illness, damage to or
loss of property, or environmental harm" [64]. Hazards
are identi�ed and analyzed in terms of their criticality
(severity of e�ects) and likelihood of occurrence. The
results of the system-level analysis are used to make de-
cisions as to which hazards to address. Some hazards
are avoidable, so can be eliminated (e.g., by changing
the system design or the environment in which the sys-

Taken From:
"The Future of Software Engineering" , Anthony Finkelstein (Ed.), ACM Press 2000
Order number is 592000-1, ISBN 1-58113-253-0. 
ACM E-Store: http://store.acm.org/acmstore 



tem operates), while other unacceptable hazards cannot
be avoided and must be handled by the system. System
safety requirements to handle the unavoidable hazards
are then speci�ed.

Further investigation determines which software com-
ponents can contribute to the existence or prevention
of each hazard. Often, techniques such as fault tree
analysis, failure modes, e�ects, and criticality anal-
ysis (FMECA), and hazards and operability analy-
sis (HAZOP) are used to help in this determination
[12, 29, 35, 62, 72, 74]. Combinations of forward anal-
ysis methods (to identify the possibly hazardous conse-
quences of failures) and backward analysis methods (to
investigate whether the hypothesized failure is credible
in the system) have proven especially e�ective for safety
analyses [43, 44, 46]. Safety requirements for the soft-
ware are derived from the resulting descriptions of the
software's behavior. These software safety requirements
act as constraints on the design of the system. Software
may be required to prevent the system from entering a
hazardous state (e.g., by mutual exclusion or timeouts),
to detect a dangerous state (e.g., an overpressure), or to
move the system from a dangerous to a safe state (e.g.,
by recon�guration).

The design speci�cation is subsequently analyzed to
con�rm that it satis�es the safety-related software re-
quirements. During implementation and testing, veri-
�cation continues to assure that the design is correctly
implemented so as to remove or mitigate hazards. The
delivered system is validated against the safety-related
requirements, with oversight continuing during opera-
tions to assure that the requirements were adequate. In
practice the hazard analysis is usually iterative with,
for example, additional safety requirements being dis-
covered during design or integration testing.

Hazard analyses are also useful for helping prioritize re-
quirements to focus resources (e.g., testing) on the com-
ponents or features that o�er the greatest vulnerability
for the system. As we will see below, hazard analyses
often guide the choice of which aspects or subsystems
merit more intense scrutiny via formal methods.

2.2 Safety requirements speci�cation and analy-

sis

Extensive investigation into the speci�cation and anal-
ysis of requirements for safety-critical systems has been
performed in the last decade. This is especially true in
the area of formal methods [7, 65]. Formal speci�ca-
tion is described by van Lamsweerde elsewhere in this
volume, so only highlights of its use for safety-critical
systems are given here.

One motivation for specifying requirements formally is
that some notations make review, design, implementa-
tion, and development of test cases easier and more ac-
curate. Formal documentation of requirements has also

been shown to improve the quality of the �nal prod-
uct [9]. Tabular notations, for example, are familiar to
engineers and supported by many tool environments.

Another motivation for speci�cation of requirements in
a formal notation is that it allows formal analysis to
investigate whether certain safety properties are pre-
served. For example, Dutertre and Stavridou specify an
avionics system and verify such safety requirements as,
\If the backup channel is in control and is in a safe state,
it will stay in a safe state" [14]. Automated checks that
the requirements are internally consistent and complete
(i.e., all data are used, all states are reachable) are of-
ten then available. Executable speci�cations allow the
user to exercise the safety requirements to make sure
that they match the intent and the reality. Interactive
theorem provers can be used to analyze the speci�ca-
tions for desired safety-critical properties. As an ex-
ample, on one recent spacecraft project there was con-
cern about whether a low-priority fault-recovery routine
could be preempted so often by higher-priority fault-
recovery routines that it would never complete. Be-
cause the requirements were formally speci�ed, it could
be demonstrated using an interactive theorem prover
that this undesirable situation could, in fact, occur, and
remedy it before implementation [41]. Model checkers
can be used to investigate whether any combination of
circumstances represented in the speci�cation can lead
the system to enter an undesirable state [28].

Signi�cant advances have been made in methods for
translating system safety requirements to software re-
quirements. Historically, the discontinuity between sys-
tem and software safety requirements has been a prob-
lem. McDermid has criticized the typical safety case for
a software-based system in this regard. He notes that
too often a safety case �rst identi�es which software
components are critical, using classical safety analyses,
and then argues that the likelihood of software con-
tributing to a hazard is acceptably low by referring to
the development process rather than whether the soft-
ware product satis�es the system safety requirements
[46].

SpecTRM, a toolset built by Leveson and colleagues to
support the development of embedded systems, was de-
signed to reduce the discontinuity between system and
software requirements. It reduces the gap by re
ecting
how people actually use speci�cations to think about a
complex system. For example, the interface between the
user and the controller (e.g., the displays) is explicitly
modeled, and startup values (a frequent source of faulty
assumptions) automatically default to the safer value of
\unknown" [25, 36].

Many of the problems involved in identifying, specify-
ing, and verifying safety requirements are shared by the
requirements engineering of non-safety-critical systems
[19, 81]. The reader is referred to Nuseibeh and Easter-



brook, \Requirements Engineering: a roadmap" in this
volume, for further information on these shared issues
in requirements engineering.

2.3 Designing for Safety

Substantial overlap exists between the design techniques
used for safety-critical systems and those used for other
critical or high-consequence systems. Rushby has pro-
vided an excellent discussion, excerpted here, of the sim-
ilarities and di�erences among the safety engineering,
dependability, secure systems, and real-time systems
approaches and assurance techniques [64]. A depend-
able system is one for which reliance may justi�ably be
placed on certain aspects of the quality of service that
it delivers. Dependability is thus concerned primarily
with fault tolerance (i.e., providing an acceptable level
of service even when faults occur). Safety engineering
focuses on the consequences to be avoided and explic-
itly considers the system context. Sometimes there is
no safe alternative to normal service, in which case, the
system must be dependable to be safe. Real-time sys-
tems typically must be fault-tolerant and often involve
timing-dependent behavior that can lead to hazards if
it is compromised. Secure systems concentrate on pre-
venting unauthorized disclosure of information, infor-
mation integrity, and denial of service, and on assuring
noninterference (e.g., via a covert channel). As will be
discussed in Section 3, some design techniques used to
develop secure or survivable systems have applications
in safety-critical systems.

In hardware systems, redundancy and diversity are the
most common ways to reduce hazards. In software, de-
signing for safety may also involve preventing hazards,
or detecting and controlling hazards when they occur.
Hazard prevention design includes mechanisms such as
hardware lockouts to protect against software errors,
lockins, interlocks, watchdog timers, isolation of safety-
critical modules, and sanity checks that the software is
behaving as expected. Often such checks are assertions
stating either preconditions on the data input (that it is
of the required type or in the required range), postcon-
ditions on the data output, or invariants stating that a
dangerous state continues to be avoided.

Hazard detection and control includes mechanisms such
as fail-safe designs, self-tests, exception-handling, warn-
ings to operators or users, and recon�gurations [35].
Fault-tolerance mechanisms for detecting and correct-
ing known faults in distributed, message-passing sys-
tems are well-developed; see, e.g., [3, 22]. Active protec-
tion (monitoring and response) often involves additional
software.

The following paragraphs describe three obstacles to the
goal of designing safe systems.

Design tradeo�s. As was mentioned previously, design
decisions usually involve tradeo�s between safety and

other desirable product attributes. Design methods for
fault-tolerance can contribute to safer systems, (e.g., by
providing predictable timing behavior), but they can
also create additional interactions between components
and levels of the system (e.g., to coordinate recovery
froma hazardous state), which is undesirable in a safety-
critical system [42]. Furthermore, as Leveson points out,
\often the resolution of con
icts between safety con-
straints and desired functionality involves moral, ethi-
cal, legal, �nancial, and societal decisions; this is usually
not a purely technical, optimization decision [34]." As
more safety-critical applications are built, commercial
and marketing issues such as time-to-market and liabil-
ity may also become larger factors in design decisions.

Vulnerability to simple design errors. We tend to think
of the problem of designing for safety as one of managing
complexity, but many accidents have simple causes. As
an example of a simple error with a large consequence,
consider the recent loss of the Mars Climate Orbiter
spacecraft [49]. The root cause of the accident was a
small error, i.e., use of an English measurement where
the software required a metric measurement. The defect
(type mismatch) was straightforward, well-understood,
easy to prevent in design, and easy to catch in testing.
However, the sensitivity of the system to this error was
very high. Parnas, van Schouwen, and Kwan point out
that in conventional engineering, every design is charac-
terized by a tolerance, such that being within the speci-
�ed tolerance is adequate [55]. The underlying assump-
tion is that \small errors have small consequences." In
software, this is not true. \No useful interpretation of
tolerance is known for software." The limits to our abil-
ity to develop safe systems are thus related to what is,
as far as we know, an innate characteristic of software.

Limited use of known design techniques A recent in-
cident provides a double illustration of the point that
known, good-practice, design techniques for safe sys-

tems are too often ignored. First, in July, 1998, the
Aegis missile cruiser, USS Yorktown, was crippled by
the entry of a zero into a data�eld, causing the database
to over
ow and crash all LAN consoles and miniature
remote terminal units. Protection against such bad data
is a known design technique that was not used. Second,
the reported, corrective maintenance was not to �x the
design, as would be expected, but to retrain the opera-
tors \to bypass a bad data �eld and change the value if
such a problem occurs again" [69]. It may be that wider
use of known, safe-design techniques can be encouraged
by quanti�cation of the cost of such failures [73].

2.4 Testing

The role of testing is critical both to the development of
safe systems and to their certi�cation. A recent book,
based on technical reports from a research project in
the UK, describes the testing of safety-related software
[21]. Safety requirements generated during system and



software hazard analysis are tracked into testing to val-
idate that the as-built system satis�es them. Since
safety requirements often describe invariant conditions
that must hold in all circumstances, testing often veri-
�es the fault-tolerant aspects of the software. Tests can
also demonstrate that the software responds appropri-
ately to some anticipated or envisioned, abnormal situ-
ations. Test cases often emphasize boundary conditions
(startup, shutdown) or anomalous conditions (failure
detection and recovery), since hazards can result from
improper handling of these vulnerable states [79].

Assumptions about environment. Unsafe systems can
result from incorrect assumptions about the environ-
ment in which the system will operate. This is a con-
stant di�culty in developing spacecraft software, for ex-
ample, since many aspects of the deep-space environ-
ment (radiation, thermal, etc.) are imperfectly known
prior to operations. Correctly identifying the point at
which a hazardous state will be entered and the set of
adjustments that will return the system to a safe state is
complicated by these environmental uncertainties. Pre-
cise environmental modeling is a great asset in devel-
oping such systems and in determining realistic, opera-
tional test cases [77].

Assumptions about users. Similarly, incorrect assump-
tions about the user or operator of a system can lead
to an unsafe system. For example, in testing a ride for
a software-generated, virtual reality amusement park,
Disney discovered that users were having problems \
y-
ing" their magic carpets [56]. Some users felt that they
were upside down when they weren't, got dizzy, or even
fainted. The software allowed so much freedom in nav-
igating the carpet that users sometimes became disori-
ented. Signi�cant human factors research tries to es-
tablish accurate assumptions and benchmarks for such
systems. However, it was in testing that the mismatch
with reality was discovered.

Assumptions about operations. While it was in the con-
text of spacecraft, not magic carpets, that the following
remark was made, it sums up the tight link between
testing and use needed for a safe system: \Test like you

y, 
y like you test" [13]. The statement means that
\deep knowledge and experience with the application
area will be needed to determine the distribution from
which the test cases should be drawn" [55]. The state-
ment also means that operations must be constrained
by the scope of the tests. The implications of this limit
on safe operation for reuse and evolutionary software is
discussed below.

It has been proven that testing is not a su�cient con-
dition for a safe system [6]. It is infeasible to test a
safety-critical system enough to quantify its dependabil-
ity. Littlewood and Wright have provided a conserva-
tive, reliability-based, Bayesian approach to calculate
the number of failure-free tests following a failed test

[38]. Measuring and modeling software reliability dur-
ing testing and operations, e.g., through error pro�ling,
is an active research area [78], although the accuracy
and use of reliability growth models continue to be con-
troversial [55].

2.5 Certi�cation and Standards

Certi�cation of software involves assessing it against cer-
tain criteria. The problem is that certi�cation criteria
for safety-critical systems are both more complicated
and less well-de�ned than for other software. This is
of particular concern in light of the growing need for
international certi�cation.

There are many standards for the development of safety-
critical systems; McDermid mentions 100 in 1996 [45].
A recent overview from the perspective of certi�ca-
tion of safety-critical systems is given by Rodr�iguez-
Dapena [63]. The author also provides a list of in-
ternational software safety initiatives with respect to
standards. Among the issues discussed is what stan-
dards are appropriate for large, safety-critical systems
composed of subsystems from di�erent domains (e.g.,
a remote telemedicine system that uses satellites and
medical software). Often such systems contain COTS
(CommercialO� The Shelf) components or subsystems,
previously certi�ed under di�erent national authorities,
that now must be integrated and certi�ed.

There is widespread criticism of current safety stan-
dards. Problems include lack of guidance in existing
standards, poor integration of software issues with sys-
tem safety, and the heavy burden of making a safety
case for certi�cation. Some of these same concerns are
echoed by Fenton and Neil, who critique the \very wide
di�erences of emphasis in speci�c safety-critical stan-
dards" [18]. Recommendations include classifying and
evaluating standards according to products, processes,
and resources, and constructing domain speci�c stan-
dards for products.

2.6 Resources

Several good books exist that describe techniques used
in software safety engineering [62, 72]. Leveson is the
standard reference for the �eld [35]. Another book, fo-
cusing on industrial practices, will be released late in
1999 [27].

There are extensive resources for software safety on the
web. Bowen's website, \Safety-Critical Systems," pro-
vides links to many of these resources, including news-
groups, mailing lists, courses, publications, conferences,
the RISKS Forum, and key groups in software safety and
related areas in academia, industry, and government [5].
A recent IEEE video on the subject is \Developing Soft-
ware for Safety Critical Systems" [31].



3 DIRECTIONS

This section describes six directions for needed work
in software engineering for safety that appear to o�er
useful results in the near term.

3.1 Further integration of informal and formal

methods

Work in the following three areas may provide readier
access to formalmethods for developers of safety-critical
systems.

Automatic translation of informal notations into formal
models. Recent research in software engineering has cor-
rectly emphasized closing the gap between the descrip-
tive notations most widely used by software developers
and the more formal methods that allow powerful au-
tomatic analyses. For example, Rockwell Avionics used
analysis and simulation of a machine-checkable formal
model of requirements for 
ight guidance mode logic to
�nd latent errors, many of them signi�cant. One of the
identi�ed directions for future work at the end of the
report was that \engineers wanted a greater emphasis
on graphical representation" [48]. Integrating graphi-
cal design analysis tools, such as fault trees, with for-
mal methods can enhance safety analyses. (Fault trees
have been formalized as temporal formulas in interval
logic [24].) More ambitiously, integration of visual pro-
gramming environments with formal methods opens up
the possibility of improved links between safety require-
ments and veri�cation of implementation.

Tabular representation is another informal notation
that has been widely linked to more formal notations
and tools (see, e.g., [25]). The push to provide a for-
mal semantics for UML notations and automated trans-
lators to formal languages will also support selective
use of formal methods by developers [47]. Continued
work to support rigorous reasoning about systems ini-
tially described with informal notations, and to help
demonstrate the consistency between informal and for-
mal models, is needed.

Lightweight formal methods. The use of lightweight for-
mal methods on safety-critical systems has obtained
good results in several experimental applications, but
more work is needed to better understand when it is
appropriate. \Lightweight formal methods" refers to
automated analysis approaches that involve rapid, low-
cost use of formal methods tailored to the immediate
needs of a project. This usually means limited model-
ing, 
exible use, building on existing products, highly
selective scope, and forgoing the extended capabilities of
theorem provers or model checkers. In three case stud-
ies involving lightweight applications of formal methods
for requirements analysis, the formal methods provided
a bene�cial addition to existing requirements engineer-
ing techniques and helped �nd important errors that
had not been previously identi�ed [15]. In another crit-
ical application Feather instead used a database as the

underlying reasoning engine for automated consistency
analysis [16]. The work is also interesting in that it ana-
lyzes test logs, whereas most applications of lightweight
formal models so far have been to requirements or de-
sign.

There is as yet no consistent methodology for using
lightweight formal methods, nor for integrating results
from multiple methods. In part this is due to the facts
that ready customization to a project's immediate need
drives the use of lightweight formal methods and that
results to date are primarily case studies. Some con-
sideration of methodological guidelines would be useful,
both to make these approaches even more lightweight
(easy to apply) and to investigate whether reuse of ap-
plication methods (perhaps within the same domain)
has merit. In addition, studies of which lightweight
approaches best provide support speci�cally for safety
analyses of evolving requirements, design revisions, and
maintenance are needed.

Integration of previously distinct formal methods. Dif-
ferent formal methods have di�erent strengths, so hav-
ing the 
exibility to choose the best-suited method for
distinct aspects or phases of a system without addi-
tional modeling is bene�cial. Work has been reported
on the integration of theorem provers and model check-
ers, formal requirements toolsets and theorem provers,
high-level languages and automatic veri�cation, and ar-
chitectural description languages and theorem provers
[26, 30, 47, 54, 71]. Clarke, et al., warn that the suc-
cessful integration of methods must both �nd a suitable
style and �nd a suitable meaning for using the di�erent
methods together [7].

The improved integration of informal and formal meth-
ods is signi�cant for software system safety because it
lets developers choose to specify or analyze critical soft-
ware components at a level of rigor they select. Formal
methods allow demonstrations prior to coding of crucial
elements of the speci�cation, e.g., that key safety prop-
erties always hold or that entry to a certain hazardous
state always leads to a safe state.

An additional advantage of this integration from the
perspective of safety is that many formal methods have
been used for both hardware and software speci�ca-
tions. Critical software anomalies often involve misun-
derstandings about the software/system interface [39].
The use of formal methods may help bridge the gap
that often is created between the software and the sys-
tem developers. Executable speci�cations, especially
those with a front-end that the user can manipulate,
allow exploration of assumptions and help elicit latent
requirements that may a�ect safety.

3.2 Constraints on safe product families and safe

reuse

Two areas in which research in this area is currently



needed are safety analysis of product families and safe
reuse of COTS software.

Safety analysis of product families. With regard to the
�rst direction, the wish-list of the user community is
quite ambitious. A recent workshop on product fami-
lies stated as one of the major goals, \to certify a set of
safety-critical systems at once." One of the stated goals
of product line architectural analysis was \any analysis
that can be performed on the generic aspects that also
applies to all derived instances" [8]. To even approach
these goals, we need a much better understanding of
the extent to which systems with similar requirements
can reuse requirements analyses. Clearly, it is the mi-
nor variations among the systems (requirements, envi-
ronment, platform) and the interactions between these
variations that will be hardest to characterize, formal-
ize, and verify in terms of safety e�ects. Some initial
work by Lutz with safety-critical product families has
identi�ed modeling decisions that can have safety con-
sequences for requirements [40].

Safe reuse of COTS software. With regard to the sec-
ond item, there are two problems. The �rst is, in Mc-
Dermid's words, \the need to better understand how to
retrospectively assess the COTS product to determine
its �tness for a particular application" [76]. He sug-
gests that suppliers may soon provide a certi�cate that
e�ectively guarantees the behavior of a software com-
ponent. In addition, the system and the environment
(both original and target) need to be understood su�-
ciently to identify when software is being used outside
the \operational envelope" for which it was originally
designed and tested [21].

The second problem is not so much how to con�rm that
the software does what it should, but how to con�rm
that it does not do other things as well. The problem
of additional, unexpected behavior is an especial con-
cern with safety-related COTS products since there is
a need for predictable, limited interactions and depen-
dencies among components [61]. Rushby suggests that
traditional methods of hierarchical veri�cation via func-
tional re�nement may be inadequate and that notions of
architectural re�nement may provide better veri�cation
[64].

3.3 Testing and evaluation of safety-critical sys-

tems

This subsection of the paper describes four challenges
to improved testing and evaluation of safety-critical sys-
tems.

Requirements-based testing. Better links are needed be-
tween safety requirements and test cases. This entails
both tighter integration of testing tools with require-
ments analysis tools (see, e.g., [32]), and improved test-
case generation for safety-related scenarios.

An additional challenge is to better support evolution-

ary development that uses exploratory programming as
its process model [70]. Finkelstein identi�ed as an open
problem how to, in an unconventional development pro-
cess, maintain a link between requirements and the over-
all system development [19]. Similarly, traditional haz-
ard analyses assume that safety requirements are iden-
ti�ed prior to implementation. However, in the actual
development of many systems, safety requirements (e.g.,
constraints, user interfaces) are often derived primarily
from testing of prototypes [4]. Knowledge of these new
safety requirements then needs to propagate in a pre-
dictable manner to later testing of the evolving product.
Mechanisms for this are currently lacking.

Evaluation from multiple sources. Parnas, van
Schouwen, and Kwan stated that \the safety and trust-
worthiness of the system will rest on a tripod made up
of testing, mathematical review, and certi�cation of per-
sonnel and process" [55]. The importance of combining
evidence from multiple sources regarding the safety of a
product is undisputed, but how to structure and com-
bine this disparate information is still an open problem
[73].

An additional source of evaluation that must be consid-
ered is �eld studies of deployed systems. Field data are
important for requirements elicitation for subsequent
members of a product family, for the maintenance re-
quired to assure safety of an evolving product, and for
identi�cation of realistic test scenarios. The following
description of a pacemaker demonstrates how integral a
�eld study can be to the safety of a system: \Observing
implanting sessions at hospitals showed us that doctors
and nurses may come up with numerous scenarios, some
of which are di�cult to foresee during system design.
Unless we carry out a detailed �eld study at hospitals,
we may not be able to identify these scenarios. Missing
use scenarios can be disastrous. A problem may go un-
detected, and the device may fail in the �eld" [77]. This
\product in a process" assessment [33] has not yet been
adequately incorporated into the testing and evaluation
of safety-critical systems.

Model consistency. Mismatches between the actual be-
havior of a system and the operator's mental model of
that behavior are common, especially in complicated
systems, and are a contributor to hazardous states (e.g.,
mode confusion in pilots). Such discrepancies between
actual (i.e., required) and expected behavior can be
hard to discover in testing. Rushby shows that by mod-
eling both the system and the operator's expectation,
a mechanized comparison of all possible behaviors of
the two systems can be performed via formal models
(here, the state exploration tool Mur�) [66]. Proposed
changes to remove the mismatches (e.g., improved dis-
plays) can also be run through the model checker to
evaluate whether they remedy the problem. Rushby
suggests that instruction manuals for operators could be



similarly modeled to check their accuracy, and that the
number of states required for the mental model might
provide a useful measure of the mental load placed on
the operator.

Virtual environments. The use of virtual environment
(VE) simulations to help design, test, and certify safety-
critical systems is on the horizon, driven by the enthu-
siasm of industrial users. Methodologies to support the
use of VE in testing, as well as standards for tool qual-
i�cation of VE, currently lag the market [10]. The cen-
trality of human factors and the widely varying response
of individuals to a particular VE (e.g., some users ex-
perience disorientation and nausea) complicate under-
standing of a VE's �delity to the actual system. For
software engineers, virtual environments o�er a power-
ful means of integration and systems testing. Their safe
use in systems needs to be further addressed.

3.4 Runtime Monitoring

The use of autonomous software to monitor and respond
to operational activity is widespread. Such software can
be used to enhance the safety of a system by detect-
ing and recovering from (or masking) hazardous states.
This subsection brie
y describes needed work to detect
faults and to return to a safe state. It also describes
work in pro�ling system usage to enhance safety analy-
ses.

Runtime monitoring is especially well suited to known,
expected hazardous conditions. Detection of known
faults through runtime monitoring can involve tradeo�s
between increased safety on the one hand and increased
complexity, decreased availability, and decreased per-
formance on the other hand. As was seen earlier, the
basis for these tradeo�s is usually informal and often
unconscious. Requirements and architectural analyses
are needed that can help designers reason about these
decisions.

Detection of unexpected, hazardous scenarios is more
di�cult. The use of remote agents to compare a sys-
tem's expected state with its sensed state and request
action if the di�erence is unacceptable o�ers promise in
this �eld. For example, the remote agent software on the
spacecraft Deep Space One searches its on-board models
to diagnosis mismatches between expected and actual
activities, and to recommend recovery actions [53].

Runtime monitoring to pro�le usage has been used
most widely to guide maintenance or ensure survivabil-
ity (e.g., against hacker attacks). However, runtime
monitoring techniques can also support safety in several
ways. Pro�ling system usage can identify evolving con-
ditions that may threaten the system, deviations from
safety requirements, and operational usage that is in-
consistent with the safety assumptions. Feather, Fickas,
van Lamsweerde, and Ponsard, for example, combine
runtime monitoring with goal-based reasoning about re-

quirements (which can include safety requirements) and
strategies for reconciling deviations of the runtime be-
havior from the requirements [17]. Such an approach
may be particularly useful for systems with reusable
components (see discussion above) or evolvable, self-
adapting architectures.

3.5 Education

Few courses are currently o�ered in universities on the
software engineering of safety. At the graduate level, the
courses are often part of the master's of software engi-
neering curriculum in programs for practitioners. The
focus of such courses thus tends to be methodological
(e.g., how to perform an FMECA) rather than scienti�c.
As discussed below, many of the advances in software
engineering for safety will come from developments in
related areas. There is a need for courses in safety that
build on prior education in fault tolerance, security, sys-
tems engineering, experimental techniques, and speci�c
application domains.

At the undergraduate level, student exposure to safety-
critical systems is minimal. Despite extensive media
coverage of software hazards (Y2K, transportation and
communication disasters, etc.), the notion that one's
own software might jeopardize a system, much less a
life, is novel to many students. Three partial remedies
are as follows: (1) There is a need for case-based learn-
ing modules to encourage a systems approach to soft-
ware safety (along the lines of P
eeger's use of Ariane
5 as a case study [59] or the Dagstuhl case study in
[1]). (2) A textbook on software engineering for safety
is needed (currently Storey's [72] is the only textbook
with problem sets). (3)Wider use of popular accounts of
accidents and their causes (e.g., [50, 51, 57, 58]) in soft-
ware engineering courses will heighten awareness that
software can contribute to hazards.

3.6 Collaboration with Related Fields

Progress in software engineering for safety can ex-
ploit advances in related �elds. This subsection brie
y
presents problems in related �elds whose solutions have
potential bene�ts for safety. The inverse topic, i.e., ad-
vances in software engineering for safety that may be
useful to other �elds, can be inferred from the discus-
sion, but is not explicitly addressed here.

Security and survivability. Ties between safety and se-
curity have begun to be explored as o�ering produc-
tive ways to reason about and design safe systems. As
Berry noted, \There is a whole repertoire of techniques
for identifying and analyzing security threats, and these
are very similar in 
avor to the techniques used for iden-
tifying and analyzing system hazards" [4].

Examples include anomaly-based intrusion detection;
noninterference and containment strategies; security
kernels; coordinated responses to attacks (faults); and
robust, open-source software [52, 64]. Sullivan, Knight,



Du, and Geist have recently demonstrated survivability
hardening of a legacy information system by a wrap-
ping technique that allows additional control (e.g., for
recon�guration) [75].

Software architecture. The relationships between archi-
tectural attributes and safety are still largely unde�ned.
Four problems of particular interest are the following:
(1) The safety consequences of 
exible and adaptable
architectures (e.g., using integrated systems for in-
ight
recon�guration) [71]; (2) Evaluation of architectures for
safety-critical product families [20]; (3) Partitioning to
control hazards enabled by shared resources [67]; and
(4) Architectural solutions to the need for \techniques
that augment the robustness of less robust components"
[52]. For example, when a safety-critical system is built
using legacy subsystems or databases, an operating sys-
tem with known failure modes, and COTS components
from multiple sources, architectural analysis o�ers an
avenue for safety analysis of the integrated system.

Theoretical computer science. The report put out by a
recent NSF-sponsored Workshop on Research in Theo-
retical Computer Science identi�es \Safe and Veri�able
Software" as one of �ve areas in which theoretical com-
puter science can help meet the technological challenge
[80]. Speci�cally, advances in model checking, logics
of programs, and program-checking techniques can im-
prove the capabilities and performance of formal speci-
�cation and veri�cation methods.

Human factors engineering. Human factors engineering
is another area in which both additional research and
additional assimilation of existing results are needed.
Better understanding of usage patterns, based on �eld
studies, and formal speci�cation of operator's mental
models can yield more accurate safety requirements and
safer maintenance. One of the ways that we can avoid
past mistakes is by cataloging them in such a way that
future developers take note. A technique that merits
extension to other domains is the list of design features
prone to causing operator mode awareness errors [37].
The items in such a list can be included in checklists
for design and code inspections, investigated in formal
models, or used in test-case generation.

Other Areas. Several important areas have been ex-
cluded from discussion here due to space limitations.
For example, domain-speci�c designs for fault tolerance
can contribute signi�cantly to safe systems. Advances in
operating systems (support for real-time safety-critical
applications), programming languages (safe subsets of
languages, techniques relating programming languages
to speci�cation languages and natural languages), and
temporal logics (reasoning about critical timing con-
straints) are other areas important to safety. The reader
is referred to [2, 11, 23, 68] for discussions of these top-
ics.

4 CONCLUSION

This report has described the current state of software
engineering for safety in several key areas and presented
directions for future work to improve these areas. In
summary, the future seems to demand (1) continued ex-
ploitation of advances in related �elds in order to build
safer systems, and (2) better integration of safety tech-
niques with industrial development environments.

REFERENCES

[1] J.-R. Abrial, E. Borger, and H. Langmaack. For-

mal Methods for Industrial Applications: Specifying and

Programming the Steam Boiler Control, volume 1165 of

LCNS. Springer-Verlag, 1996.

[2] R. Alur and T. A. Henzinger. Logics and models of

real time: a survey. In J. W. de Bakker, C. Huizing,
W. P. de Roever, and G. Rozenberg, editors, Real Time:

Theory in Practice, number 600 in LCNS, pages 74{106.

Springer-Verlag, 1991.

[3] A. Arora and S. S. Kulkarni. Detectors and correctors:
A theory of fault-tolerance components. IEEE Trans

on Software Eng, 24(1):63{78, 1998.

[4] D. M. Berry. The safety requirements engineering

dilemma. In Proc of 9th Int Workshop on Software

Speci�cation and Design, 1998.

[5] J. Bowen. Safety-critical systems. http://archi-

ve.comlab.ox.ac.uk/safety.html.

[6] R. W. Butler and G. B. Finelli. The infeasibility of

quantifying the reliability of life-critical real-time soft-
ware. IEEE Trans on Software Eng, 19:3{12, 1993.

[7] E. M. Clarke, J. M. Wing, and et al. Formal methods:

State of the art and future directions. ACM Computing

Surveys, 28(4):626{643, 1996.

[8] P. C. Clements and N. Weiderman. Report on the 2nd
international workshop on development and evolution

of software architectures for product families. Technical

Report 98-SR-003, CMU/SEI, 1998.

[9] P.-J. Courtois and D. L. Parnas. Documentation for

safety critical software. In Proc IEEE 15th Int Conf on

Software Eng, pages 315{323, 1993.

[10] C. Cruz-Neira and R. R. Lutz. Using immersive vir-
tual environments for certi�cation. IEEE Software,

16(4):26{30, 1999.

[11] W. J. Cullyer, S. J. Goodenough, and B. A. Wichmann.

The choices of computer languages for use in safety crit-
ical systems. Software Engineering Journal, 6:51{58,

1991.

[12] R. DeLemos, A. Saeed, and T. Anderson. Analyzing

safety requirements for process-control systems. IEEE
Software, pages 42{53, 1995.

[13] L. Dumas and A. Walton. Faster, better, cheaper: an

institutional view. In Proc 50th Annual Int Astronau-

tical Congress, 1999.

[14] B. Dutertre and V. Stavridou. Formal requirements

analysis of an avionics control system. IEEE Trans on

Software Eng, 23(5):267{278, 1997.



[15] S. Easterbrook, R. Lutz, R. Covington, J. Kelly,
Y. Ampo, and D. Hamilton. Experiences using

lightweight formal methods for requirements modeling.
IEEE Trans on Software Eng, 24(1):4{14, 1998.

[16] M. Feather. Rapid application of lightweight formal

methods for consistency analysis. IEEE Trans on Soft-

ware Eng, 24(11):949{959, 1998.

[17] M. S. Feather, S. Fickas, A. van Lamsweerde, and

C. Ponsard. Reconciling systems requirements and run-

time behavior. In Proc 9th IEEE Int Workshop on Soft-

ware Speci�cation and Design, 1998.

[18] N. E. Fenton and M. Neil. A strategy for improving

safety related software engineering standards. IEEE

Trans on Software Eng, 24(11):1002{1013, 1998.

[19] A. Finkelstein. Requirements engineering: a review and

research agenda. In Proc 1st Asian and Paci�c Software

Engineering Conference, pages 10{19, 1994.

[20] G. C. Gannod and R. R. Lutz. An approach to archi-
tectural analysis of product lines. submitted.

[21] S. Gardiner, editor. Testing Safety-Related Software.

Springer-Verlag, London, 1998.

[22] F. C. G�artner. Fundamentals of fault-tolerant dis-
tributed computing. ACM Computing Surveys, 31(1):1{

26, 1999.

[23] C. Gunter, J. Mitchell, and D. Notkin. Strategic di-
rections in software engineering and programming lan-

guages. ACM Computing Surveys, 28(4):727{737, 1996.

[24] K. Hansen, A. P. Ravn, and V. Stavridou. From safety
analysis to software requirements. IEEE Trans on Soft-

ware Eng, 24(7):573{584, 1998.

[25] M. P. E. Heimdahl and N. Leveson. Completeness and

consistency in hierarchical state-based requirements.
IEEE Trans on Software Eng, 22(6):363{377, 1996.

[26] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and

R. Bharadwaj. Using abstraction and model checking
to detect safety violations in requirements speci�cation.

IEEE Trans on Software Eng, 24(11):927{949, 1998.

[27] D. S. Hermann. Software Safety and Reliability. IEEE

Computer Society Press, 1999.

[28] G. J. Holzmann. The model checker Spin. IEEE Trans

on Software Eng, 23(5):279{295, 1997.

[29] L. M. Ippolito and D. R. Wallace. A study on hazard

analysis in high integrity software standards and guide-
lines. Technical Report NISTR 5589, U.S. Department

of Commerce, 1995.

[30] L. J. Jagadeesan, C. Puchol, and J. E. V. Olnhausen.
Safety Property Veri�cation of ESTEREL Programs

and Applications to Telecommunications Software, vol-

ume 939 of LNCS, pages 127{140. Springer-Verlag,

1995.

[31] S. J. Keene. Developing software for safety critical sys-

tems. IEEE, NTSC ISBN 0-7803-4573-8, 1998.

[32] J. C. Knight and L. G. Nakano. Software test techniques
for system fault-tree analysis. In Proc of 16th Int Conf

on Computer Safety, Reliability, and Security, 1997.

[33] J.-C. Laprie and B. Littlewood. Probabilistic assess-
ment of safety-critical software: Why and how? CACM,

35(2):13{21, 1992.

[34] N. Leveson. Software safety in embedded computer sys-

tems. CACM, 34(2):35{46, 1991.

[35] N. Leveson. Safeware. Addison-Wesley, Reading, MA,

1995.

[36] N. G. Leveson, M. P. E. Heimdahl, and J. D. Reese. De-

signing speci�cation languages for process control sys-

tems: Lessons learned and steps to the future. In SIG-

SOFT Foundations of Software Engineering, 1999.

[37] N. G. Leveson, L. D. Pinnel, S. D. Sandys, S. Koga,
and J. D. Reese. Analyzing software speci�cations for

mode confusion potential. In Proc Workshop on Human

Error and System Development, pages 132{146, 1997.

[38] B. Littlewood and D. Wright. Some conservative stop-

ping rules for the operational testing of safety-critical
software. IEEE Trans on Software Eng, 23(11):673{683,

1997.

[39] R. R. Lutz. Targeting safety-related errors during soft-

ware requirements analysis. Journal of Systems and

Software, 34:223{230, 1996.

[40] R. R. Lutz. Extending the product family approach to

support safe reuse. Journal of Systems and Software,
to appear, 2000.

[41] R. R. Lutz and Y. Ampo. Experience report: Using for-
mal methods for requirements analysis of critical space-

craft software. In Proc of 19th Annual Software Eng

Workshop, pages 231{248, 1994.

[42] R. R. Lutz and J. S. K. Wong. Detecting unsafe er-

ror recovery schedules. IEEE Trans on Software Eng,
18(8):749{760, 1992.

[43] R. R. Lutz and R. Woodhouse. Requirements analysis
using forward and backward search. Annals of Software

Eng, 3:459{475, 1997.

[44] T. Maier. FMEA and FTA to support safe design of
embedded software in safety-critical systems. In Proc

CSR 12th Annual Workshop on Safety and Reliability

of Software Based Systems, 1995.

[45] J. A. McDermid. Engineering safety-critical systems.

In I. Wand and R. Milner, editors, Computing Tomor-
row, Future Research Directions in Computer Science,

pages 217{245, Cambridge, 1996. Cambridge University

Press.

[46] J. A. McDermid, M. Nicholson, D. J. Pumfrey, and

P. Fenelon. Experience with the application of HAZOP
to computer-based systems. In Proc 10th Annual Conf

on Computer Assurance, pages 37{48, 1995.

[47] E. Mikk, Y. Lakhnech, M. Siegel, and G. J. Holzmann.

Implementing statecharts in Promela/Spin. In Proc 2nd

IEEE Workshop on Industrial-Strength Formal Speci�-

cation Techniques, 1998.

[48] S. P. Miller. Specifying the mode logic of a 
ight guid-
ance system in CoRe and SCR. In Proc Formal Methods

in Software Practice Workshop, pages 44{53, 1998.

[49] NASA Mars Climate Orbiter Mishap Investigation

Board. Phase I report, November 1999.



[50] P. G. Neumann. The RISKS digest.
http://www.csl.sri.com/~risko/risks.html;

http://catless.ncl.ac.uk/Risks.

[51] P. G. Neumann. Computer Related Risks. ACM Press,

1995.

[52] P. G. Neumann. Robust open-source software. CACM,
41(2):128, 1998.

[53] Northwestern University's Qualitative
Reasoning Group. Welcome to the principles of oper-

ations. http://rax.arc.nasa.gov:80/activities/pofo/do-

cs/index.htm.

[54] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Sri-
vas. PVS: Combining speci�cation, proof checking, and

model checking. In R. Alur and T. A. Henzinger, ed-

itors, Computer-Aided Veri�cation, CAV '96, number
1102 in LNCS, pages 411{414, New Brunswick, NJ,

July/August 1996. Springer-Verlag.

[55] D. L. Parnas, J. van Schouwen, and S. P. Kwan. Evalu-

ation of safety-critical software. CACM, 33(6):636{648,
1990.

[56] R. Pausch, J. Snoddy, R. Taylor, S. Watson, and
E. Haseltine. Disney's Aladdin: First steps toward sto-

rytelling in virtual reality. In Proc Siggraph, pages 193{

203, 1996.

[57] I. Peterson. Fatal Defect: Chasing Killer Computer

Bugs. Times Books, New York, 1995.

[58] H. Petrowski. To engineer is human. Vintage Books,
New York, 1992.

[59] S. L. P
eeger. Software Engineering Theory and Prac-

tice. Prentice-Hall, Upper Saddle River, NJ, 1998.

[60] President's Information Technology Advisory Commit-

tee. Information Technology Research: Investing in Our
Future. February 1999.

[61] J. A. I. Profeta, N. P. Andrianos, B. Yu, B. W. John-
son, T. A. DeLong, D. Guaspari, and D. Jamsek.

Safety-critical systems built with COTS. Computer,

29(11):54{60, 1996.

[62] D. Raheja. Assurance Technologies: principles and

practices. McGraw-Hill, 1991.

[63] P. Rodr�iguez-Dapena. Software safety certi�cation: A
multidomain problem. IEEE Software, 16(4):31{38,

1999.

[64] J. Rushby. Critical system properties: Survey and

taxonomy. Reliability Engineering and System Safety,
43(2):189{214, 1994.

[65] J. Rushby. Formal methods and their role in the certi-

�cation of critical systems. In R. Shaw, editor, Safety

and Reliability of Software Based Systems, pages 1{42.
Springer, 1995.

[66] J. Rushby. Using model checking to help discover mode
confusions and other automation surprises. In Proc 3rd

Workshop on Human Error, Safety, and System Devel-

opment, 1999.

[67] J. M. Rushby. Partitioning in avionics architectures:
Requirements, mechanisms, and assurance. Technical

report, SRI, March 1999.

[68] J. Sifakis. Research directions for formal methods.
ACM Computing Surveys, 28(4es), 1996.

[69] G. Slabodkin. Software glitches leave navy smart

ship dead in the water. http://www.gcn.com/archives-

/gcn/1998/July13/cov2.htm, July 13 1998.

[70] I. Sommerville. Software Engineering. Addison-Wesley,

Wokingham, England, �fth edition, 1996.

[71] V. Stavridou. Provably dependent software architec-

tures for adaptable avionics. In Proc 18th Digital Avion-
ics Systems Conf, 1999.

[72] N. Storey. Safety-Critical Computer Systems. Addison
Wesley Longman, Harlow, England, 1996.

[73] L. Strigini. Considerations on current research issues

in software safety. Reliability Engineering and System

Safety, 43:177{188, 1994.

[74] K. Sullivan, J. B. Dugan, and D. Coppit. The Galileo

fault tree analysis tool. In Proc 29th Annual IEEE Int

Symposium on Fault-Tolerant Computing, 1999.

[75] K. Sullivan, J. C. Knight, X. Du, and S. Geist. Infor-
mation survivability control systems. In Proc 21st Int

Conf Software Eng, pages 184{192, 1999.

[76] N. Talbert. The cost of COTS: An interview with John

McDermid. Computer, 31(6):46{52, 1998.

[77] W.-T. Tsai, R. Mojdehbakhsh, and S. Rayadurgam.

Capturing safety-critical medical requirements. Com-

puter, 31(4):40{41, 1998.

[78] J. Voas and M. Friedman. Software Assessment: Reli-
ability, Safety, Testability. John Wiley and Sons, 1995.

[79] E. J.Weyuker. Using failure cost information for testing
and reliability assessment. ACM Trans on Software Eng

and Methodology, 5(2):87{98, 1996.

[80] Workshop on Research in Theoretical Computer Sci-

ence. Challenges for theory of computing, 1999.

[81] P. Zave. Classi�cation of research e�orts in re-

quirements engineering. ACM Computing Surveys,

29(4):315{321, 1997.


