
Software Engineering for Real-Time: A Roadmap

Hermann Kopetz
Technische Universität Wien, Austria

Email: hk@vmars.tuwien.ac.at

ABSTRACT

The next ten years will see distributed real-time computer
systems replacing many mechanical and hydraulic control
systems in high-dependability applications. In these
applications a failure in the temporal domain can be as
critical as a failure in the value domain. This paper
discusses some of the technology trends that explain why
distributed embedded real-time systems for high-
dependability applications will move into the mainstream. It
then investigates the new requirements that must be
addressed by the software engineering process. Two of the
most important requirements are the design for
composability and the systematic validation of high-
dependability distributed real-time systems. In the last two
sections, these issues of composability and validation are
treated in some detail.

KEYWORDS

Real-time systems, composability, distributed systems,
validation, system architecture

1. INTRODUCTION

A hard real-time computer system is required to produce
the intended result before a specified point of physical time,
the deadline. This point of time is determined by the
application the computer system is intended to service. The
controlling real-time software must be designed to generate
the correct behavior of the computer both in the value
domain and in the temporal domain to meet this application
requirement. Since the temporal behavior of the software
depends on the performance of the computer hardware,

software engineering for real-time systems must take into
consideration the architectures and capabilities of the
available computer hardware. It follows that the software
design methods and architectures of real-time systems will
be strongly influenced by the given hardware environment.

The impressive advances in the field of computer
hardware in the recent years make it economically feasible
that the old architectural proverb "form follows function"
becomes the guiding principle for the design of distributed
real-time computer systems of the future. In nearly all but
the high volume applications it will be economically
justified to partition a system along functional
hardware/software boundaries in order to avoid the extra
software design and validation effort needed to cohabitate
unrelated functions on the same hardware units. In such an
architecture the issue of composability and reusability, how
to build systems constructively out of pre-validated
software/hardware components that provide well-defined
functions, moves to the center of interest. Already today this
issue of composability is a key concern in the development
of industrial control systems.

It is the objective of this paper to speculate about the
future of software engineering for hard real-time over the
next ten years. The paper starts by discussing the
fundamental difference between soft and hard real-time
systems and makes the assumption that the main challenge
will be in the design and validation of hard real-time
systems for ultradependable applications. Since real-time
architectures are strongly dependent on the hardware
developments, Section 3 deliberates about the visible trends
in the field of hardware and communication. Based on these
trends, Section 4 summarizes the requirements on future
real-time system design and concludes that the most
important requirement is the support of composability.
Section 5 investigates this requirement in detail and
postulates three principles of composability for distributed
real-time systems. Section 6 focuses on the validation of
high-dependability systems. The paper closes with a
conclusion in Section 7.

Taken From:"The Future of Software Engineering" , Anthony Finkelstein (Ed.), ACM Press 2000Order number is 592000-1, ISBN 1-58113-253-0. ACM E-Store: http://store.acm.org/acmstore

2. SOFT VERSUS HARD REAL-TIME SYSTEMS

From the point of view of temporal performance, two
types of real-time systems can be distinguished

(i) soft real-time systems: these are systems where a
failure to meet a specified deadline reduces the utility
of the result, but does not lead to a significant
financial loss. An example of such a system is a letter-
sorting machine: If a letter is dropped into the wrong
box because of a timing failure of the computer, no
serious consequences will result.

(ii) Hard real-time systems: these are systems where a
failure to meet a specified deadline can lead to
catastrophic consequences. An example of a hard real-
time application is a computer system controlling a
railway-shunting yard: If a wagon is released to the
wrong track because of a timing failure of the
computer, a serious accident may occur.

From these two simple examples it becomes evident,
that the distinction between a soft- or hard real-time
computer system does not depend on the computer system
per se, but on the characteristics of the application the
computer system is intended to serve.

In the not-too-distant past, the majority of the real-time
computer systems have been soft real-time systems: In
many of the safety critical real-time applications an
additional electrical, mechanical or hydraulic backup
system (without software) was included to take control (to
avoid a catastrophe) in case the computer system failed.
This situation has been changing slowly over the last ten
years and will continue to change further over the next ten
years. With the successful deployment of software
controlled flight control systems in civil aircraft (Airbus A
320, Boeing 777), many other industries, e.g., the
automotive industry, intend to replace the expensive mixed
technology approach to system control by distributed fault-
tolerant real-time computer systems without mechanical or
hydraulic backup. For example, in a "brake-by-wire" car, a
fault-tolerant computer [7] will replace the hydraulic
connection between the brake pedal and the brakes. With
the move of these safety-critical control systems without
backup into the mainstream of industrial control, the
software engineering community is up to new challenges:
the design of software systems that are guaranteed to meet
the specified deadlines of ultra-dependable systems in all
operational scenarios within the stated load- and fault-
hypothesis and the development of validation technologies
that affirm that the software is safe to deploy.

In a hard real-time system, a failure in the temporal
domain is as critical as a failure in the value domain. Many
of the present-day software engineering techniques, such as
object-oriented design methods, focus on the value domain
and consider the temporal domain a low-level
implementation issue. Temporal properties are system
properties that depend on the proper cooperation of all
levels of a design: hardware, communication, operating

system, and application software. The design of hard real-
time systems is thus fundamentally different from the
design of soft real-time systems or non real-time systems
[11], where the temporal properties of the lower levels of an
architecture are not explicitly considered during the design
process of the higher level application software. In a hard
real-time environment, it cannot be assumed that timeliness
can be tested into a system, timeliness must be the
consequence of a rational system and software design
process. Even some of the more recent software
specification and design technologies that are targeted
specifically at real-time applications, such as real-time
UML [12] or real-time CORBA [14], are not based on a
sound model of time and do not consider temporal
properties as first order quantities, but rather as an
addendum.

3. TECHNOLOGY TRENDS

The architecture of a real-time system is strongly
influenced by the capabilities and cost/performance of the
available hardware components. At present, the computer
industry in general and the semiconductor industry in
particular is going through a period of revolutionary
qualitative change that deeply affects the environment of the
system engineer designing hard real-time systems. In this
section, some of these important technological trends, as
they relate to real-time system design, are presented.

3.1 System on a Chip (SOC)
Today's level of VLSI technology makes it possible to

produce a powerful computer node of a distributed system,
including a 32 bit CPU, a megabyte of memory, I/O
circuitry and a network controller on a single silicon die.
Such a system-on-a-chip (SOC) offers many advantages
from the point of view of functionality, dependability and
cost. According to the 1997 semiconductor road map,
published by the Semiconductor Industry [18] the number
of transistors/cm2 will increase from about 6 Mio to 24 Mio
within the next 5 years, enabling the production of much
more powerful SOCs. The development costs of an SOC
component are high--they can be in the order of 10 Mio US
$, while the production costs are quite low, e.g., 10 US $.
These very cost-effective mass-produced SOCs are here to
stay and will form the core hardware elements of future
real-time control systems.

3.2 Smart MEMS Sensors
A smart device is the combination of a sensor or

actuator element and a local microcontroller that contains
the interface circuitry, a processing element, memory and a
network controller in a single unit. More and more sensor
elements are themselves microelectronic mechanical
systems (MEMS) [5] that can be integrated on the same
silicon die as the associated microcontroller. The smart
sensor technology offers a number of advantages from the

points of view of technology, cost and complexity
management:

(i) Electrically weak non-linear sensor signals that
originate from an MEMS sensor can be generated,
conditioned, transformed into digital form and
calibrated on a single silicon die without any noise
pickup from long external signal transmission lines
[3].

(ii) It is possible to locally monitor the sensor operation
and thus simplify the diagnostics. In some cases it is
possible to build smart sensors that have a single
simple external failure mode--fail-silence, i.e., the
sensor operates correctly or does not operate at all.

(iii) The interface of the smart sensor to its environment
can be a simple well-specified digital communication
interface to a sensor bus, offering "plug-and-play"
capability if the sensor contains its own
documentation on silicon.

(iv) The internal complexity of the smart-sensor hardware
and software and the internal sensor failure modes can
be hidden from the user by a well-designed fully
specified smart sensor interface that provides just
those services that the user is interested in. Thus, the
smart sensor technology can contribute to a reduction
of the complexity at the system level.

The same arguments of cost reduction in volume
applications apply to smart sensors as they apply to other
SOCs.

3.3 COTS Components
The above mentioned trends exert an enormous

economic pressure on all but the large-volume applications
to use Commercial-Off-The-Shelf (COTS) hardware and
software components when designing new computer
systems. Even large customers that traditionally have
designed their own special components, like the US DOD,
are realizing that cost-effective state-of-the-art system
development can only be achieved if COTS components are
used.

We see three different types of COTS components in the
real-time system market:

(i) Hardware components as we have them today. In
the future, the hardware components will provide
more generic system services for the design of
distributed real-time systems, e.g., distributed clock
synchronization.

(ii) Software components, such as RT operating systems,
that can be used in many different applications. One
problem with the use of COTS software components
in real-time applications is that a software component
per se does not have any temporal properties--the
temporal behavior only emerges if the software is
bound to a particular hardware component. It follows
that the user has to investigate the temporal
performance and the fault-models [4] of a COTS

software component on the selected hardware
platform. It is thus a myth that COTS software
components can be integrated in high-dependability
real-time applications with little effort.

(iii) A hardware/software component, such as a smart
sensor that includes the signal conditioning,
calibration, diagnostic, and network control software
and provides an established output signal across a
stable standardized Communication Network Interface
(CNI). The constructive integration of COTS
components into larger systems requires precise and
stable CNI specifications, both in the value domain
and in the temporal domain. Such precise CNI
specifications are a prerequisite for a thorough test of
the components and for the determination of the
preconditions for the robust operation of the
components in the new system context. The present
integration technologies, e.g., RT-CORBA [14], do
not address these issues of temporal interface
specification with the required rigor. As soon as these
interface problems are solved, we see a bright future
for the hardware/software components in the real-time
market.

3.4 INTERNET Connectivity
The connection of a control system to the INTERNET

can bring about a number of advantages, such as access to
WEB sites, remote monitoring of the controlled object,
remote diagnosis of failures, etc. However, there are two
major problems with the present INTERNET technology in
hard real-time applications: lacking security and
unpredictable temporal performance. While it can be
expected that the security problem will be solved in the near
future because of the enormous interest in electronic
commerce, the lacking temporal predictability is here to
stay for a longer time. The inherently bursty traffic pattern
that is intrinsic to most INTERNET applications makes it
difficult to guarantee dependable real-time performance
with minimal jitter over the INTERNET.

3.5 High-Dependability Systems
There is a visible trend to high-dependability

applications in the real-time control market. These high-
dependability applications require fault-tolerant computer
systems, because the application service must continue even
if parts of the control system have failed. Fault-tolerant
computer systems will play an important role in the future
market for the following reasons:

(i) The successful use of high-dependability computer
systems in critical applications, such as flight-control
systems, has opened large new markets for embedded
computer systems in vehicles that up to now have
relied on mechanical or hydraulic control systems,
e.g., braking and steering.

(ii) The loss-of-service caused by a single failure of a
control system, e.g., on an assembly line, even if not

safety critical, is often more significant than the cost
of replicating critical hardware elements of the control
system hardware in order to provide a fault-tolerant
control system that tolerates hardware failures.

(iii) The smaller geometry of the feature elements on
future VLSI circuits (below .1 micron) increases the
probability of a transient fault (e.g., a high energy
particle) to cause a bit-flip, i.e., a soft error of the
device. A fault-tolerant architecture masks these soft
errors at the system level.

(iv) In a fault-tolerant system the expensive "on-call"
maintenance can be replaced by the less expensive
regular preventive maintenance. The cost savings
associated with such a change in the maintenance
strategy can be larger than the additional cost for
providing a fault-tolerant system.

4. WHAT IS REQUIRED?

When analyzing the above mentioned technology trends
it can be concluded that the basic structure of future real-
time control systems will be that of a distributed real-time
system, consisting of a set of node computers connected by
a communication system. Such a distributed real-time
system will comprise two types of nodes, the powerful
system nodes, the SOC computers with the associated
peripheral devices, and the smart sensor nodes. The nodes
will communicate via real-time networks. All nodes that are
connected to a real-time bus form a cluster. Gateway nodes
realize the connection between clusters.

4.1 Two-Level Design Methodology
The future software engineer will clearly distinguish

between two types of activities: the design of architecture
and the development of the components [8]. On the
architecture level the interactions among the components
must be specified and the communication network
interfaces (CNIs) to the components must be defined and
frozen, both in the value domain and in the temporal
domain. At the component level, the development of the
components, i.e., hardware software units, that provide a
defined service across the CNIs must be accomplished,
taking the architecture- level CNI definitions as constraints.
To support such a development process, a two-level design
methodology is needed.

Real

Time

Stimulus from Environment Response to Environment

Processing
A

Com.
B

Processing
C

Com.
D

Processing
E

EI1 II2 II3 II4 II5 EI6

Figure 1: Real-Time Transaction

Consider the example of Figure 1, i.e., a distributed real-
time transaction between a stimulus (external interface EI1),
visit to three components (processing component A, C, and
E) and a response to the environment (external interface
EI6). This RT transaction can be decomposed into three
processing actions (at the components A, C, and E) and two
communication actions (B and D). If the temporal
properties of the intermediate interfaces (II2, II3, II4, and
II5) are frozen during the architecture design, then it is
possible to develop the components A, C, and E
independently and to compose the temporal properties of
the transaction out of the temporal properties of the
subsystems. If the temporal properties of the intermediate
interfaces are not specified during architecture design, then
composability with respect to timeliness is not supported.

 In a "top-down" design process the lay-out of the
components must take the system-level specifications of the
CNIs as constraints for the implementation. In a "bottom-
up" design process the CNI interfaces of the existing
components provide the constraints for the architecture
level design. This clean separation between architecture-
level design and component-level design, often performed
in different organizations, requires a technology for the
precise specification of the CNIs in the value domain and in
the temporal domain.

4.2 Predictable Communication
"The network is the only mechanism suitable to enforce

and manage real-time operation of distributed systems" [2].
If the temporal properties of a network are not stable, i.e., if
the points in time of the acceptance of a message by the
network at the sender's CNI and the points in time of the
delivery of the message by the network at the receiver's CNI
are not known a priori, then it is not possible to precisely
coordinate the activities of the nodes in the temporal
domain. Any unknown jitter caused by the network results
in a degradation of the quality of service of control loops
that are closed via the network.

It is much easier to reason about the correct operation of
a distributed real-time system if all nodes have access to a
global time [8] of known precision than if they have not.
The construction of such a global time is in the
responsibility of the network.

According to our view, the following two different real-
time network types are needed in distributed control
applications for economic reasons (from the technical point
of view a single system network type would be sufficient):

(i) System Network: The system network connects the
system nodes, the powerful SOCs. System networks
must have distributed communication control and
provide fault-tolerance such that the loss of any node
or a communication channel will not cause the failure
of the system network.

(ii) Sensor Network: The low-cost sensor network
connects one or more system nodes to the smart
sensors and actuators. Since the next generation of

low-cost sensor nodes will have imprecise on-chip
oscillators, which require a periodic synchronization
from a master with a good crystal oscillator, the sensor
networks of the future will be multi-master networks.
Fault tolerance will be achieved by replicating sensor
nodes and replicating the sensor network.

We assume that the complexity (and cost) of a network
controller in a smart-sensor node of the sensor network and
the network controller in a node in the system network will
differ by an order of magnitude. However, both networks
must provide deterministic communication and a global
time of known precision to all nodes.

4.3 Generic Fault Tolerance
At present, many fault-tolerant real-time systems are

application specific, requiring a significant amount of
additional application software for the implementation of
the fault-tolerance functions. In the future we see a need for
architectures that provide generic services for fault
tolerance, such as fault-tolerant clock synchronization, or a
membership service [8] at the hardware or system software
level. Ideally, the application software for a fault-tolerant
system and a non-fault-tolerant system will be the same.

5. COMPOSABILITY

In classic engineering disciplines a component is a self-
contained subsystem that can be used as a building block in
the design of a larger system. The components provide the
specified service to its environment across the well-
specified component interfaces. An example of such a
component is an engine in an automobile, or the heating
furnace in a home. The component can have a complex
internal structure that is neither visible, nor of concern, to
the user of the component.

5.1 What is an Ideal Component?
Ideally, the larger system should be constructed from

nearly autonomous components that can be integrated
without violating the principle of composability: that
properties that have been established at the component level
will also hold at the system level. Examples of such
properties in the context of distributed real-time systems are
timeliness and testability. An ideal component should be an
autonomous unit that maintains its encapsulation when
viewed from a number of different vantage points [9].

A unit of service provision: Most importantly, a
component must be unit of service provision. The service is
offered to the component environment across a real-time
service interface. In a distributed real-time system, the
service consists of the timely processing and provision of
the requested information. Since the validity of real-time
information is time dependent, the specification of the
precise point in time when the information must be present
at the component interface is of relevance. From the point
of view of the service user, the internal structure of the
component is irrelevant, as long as the specified information

is provided at the anticipated points in time at the
component interfaces.

A unit for validation: It must be possible to validate the
proper operation of a component in the value domain and in
the temporal domain in isolation. The preconditions for the
correct operation of the component, both in the domains of
time and value that must be satisfied by the component
environment at the component/environment boundary must
be precisely specified in the interface specifications. The
specification of these preconditions is the input for the
construction of an environment simulator that implements
the testbed for the component validation. The post
conditions that must be satisfied by a correctly operating
component form the basis for the acceptance test of the
component.

A unit of error containment: All errors that occur
inside a component must be detected before the
consequences of these errors propagate across a component
interface. Otherwise, a defective component can falsify the
operation of other components by the provision of corrupted
output data across the component interface. Ideally, a
component should support the fail-silence property: it either
operates correctly (in the domains of time and value), is
silent, or it produces a detectably incorrect result without
disturbing the other components in the system. If a
component has no other than such clean external failure
modes, fault-tolerance can be achieved by replicating
replica-deterministic components [15].

A unit for reuse: A component should be a unit for
reuse. This requires that the component has standardized
interfaces with some flexibility to support the integration of
the component in diverse system contexts. For example, the
component interface should support name translation to
decouple the internal name space of the component from the
external name space of the environment. This interface
flexibility should not require a revalidation of the previously
established component properties, such as correct operation
or timeliness.

A unit of design and maintenance: Finally, a
component should be a unit of design and maintenance. It is
well known that system structures evolve along
organization structures. If the work output of an
organizational group is a nearly autonomous subsystem
with well-specified interfaces, then the management of this
group is simplified. The error containment boundaries
around a component reduce the possibility of unforeseen
consequences of software maintenance actions.

Considering the proposed properties of an ideal
component, a hardware/software unit, a node as outlined in
Section 3.3, seems to be the best choice for a component in
a distributed real-time system. Such a hardware/software
unit is a self-contained SOC-computer with its own
processor, memory, communication interface, interface to
the controlled object, operating system and real-time
application programs. This hardware/software unit

performs a coherent function within the distributed
computer system.

Figure 2 shows an example of a possible future
integrated control system onboard a car [11] with seven
components. In this figure, the node replicas that are
introduced for the purpose of fault-tolerance are not
depicted, nor is the replicated system bus shown. Each
component consists of two parts, the communication
controller (CC) and the host computer that executes the
application software. Between these two parts lies the
communication network interface (CNI).

Driver
Interface

CC

Power
Train

CC

I/O

Assistant
System

CC

Steering
Manager

CC

I/O

Gateway
Body

CC

I/O

Suspen-
sion

CC

I/O

CC: Communication Controller

Communication
Network

Interface (CNI)
within a node

Brake
Manager

CC

I/O

Body Electronics
 Network

Figure 2: Example of a distributed vehicle control system

consisting of 7 nodes.

The grand challenge lies in the development of
architectures and software design methods for distributed
real-time systems that support composability, that large real-
time systems can be built constructively out of available
components. A component property is said to be
composable if the system integration will not invalidate this
property once it has been established at the component
level. Examples of such properties are timeliness or
testability.

From the point of view of the analysis of a composable
architecture, it is reasonable to distinguish between the
following two service classes of an integrated distributed
control system:

(i) Prior Services: Given a component that has been
developed independently to provide a specified
service, e.g., the control of an engine by an engine
control system. This service has been validated at the
component level and is thus available prior to the
integration of the component into an integrated control
system. We call such a service a prior service.

(ii) Emerging Services: The integration of components
into a system generates new services that are more
than the sum of the prior services. Take the example
of a car: The integration of the four wheels, the chassis
and the engine, all individual components, give rise to
a new level of service, the transport service, that was
not present at the component level. We call these
additional services that come about by the integration
the emerging services.

In a distributed real-time computer system, the emerging
services are the result of information exchanges among the
interacting nodes across the component interfaces.
Therefore, the communication system plays a central role in
determining the composability of distributed computer
architecture.

5.2 Component Interfaces
From the point of view of complexity management and

composability, it is useful to distinguish between three
different types of interfaces of a component: the real-time-
service (RS) interface, the diagnostic and management
(DM) interface, and the configuration planning (CP)
interface. For the composability, the most important
interface is the RS interface.

The Real-Time-Service (RS) Interface: The RS
interface provides the timely real-time services to the
component environment during the operation of the system.
In real-time systems it is a time-sensitive interface that must
meet the temporal specification of the architecture in all
specified load and fault scenarios. The composability of
architecture depends on the proper support of the specified
RS interface properties (in the value and in the temporal
domain) during the operation. From the point of a user, the
internals of the component are not visible, since they are
hidden behind the RS interface.

The Diagnostic and Management (DM) Interface:
The DM interface opens a communication channel to the
internals of a component. It is used for setting component
parameters and for retrieving information about the
internals of the component, e.g., for the purpose of internal
fault diagnosis. The maintenance engineer that accesses the
component internals via the DM interface must have
detailed knowledge about the internal structure and
behavior of the component. The DM interface is not
contributing to the composability. Normally, the DM
interface is not time-critical.

The Configuration Planning (CP) Interface: The CP
interface is used to connect a component to other
components of a system. It is used during the integration
phase to generate the "glue" between the nearly autonomous
components. The use of the CP interface does not require
detailed knowledge about the internal operation of a
component. The CP interface is not time critical.

5.3 The Principles of Composability
In a distributed system the components interact via a

communication system as shown in Figure 2 to provide the
emergent services. These emerging services depend on the
timely provision of the real-time information at the RS
interfaces of the components. The RS-interface is the only
interface that is relevant from the point of view of
composability. For an architecture to be composable, it must
adhere to the following three principles with respect to the
RS-interfaces:

(i) Independent development of components.

(ii) Stability of prior services.

(iii) Constructive integration of the components to
generate the emerging services.

These principles are discussed in detail in the following
sections.

Independent Development of Components: A
composable architecture must distinguish sharply between
architecture design and component design. Principle one of
a composable architecture is concerned with design at the
architecture level. Components can only be designed
independently of each other, if the architecture supports the
precise specification of all component services at the level
of architecture design. In a real-time system the RS-
interface specification of a component must comprise the
precise CNI specification in the value domain and in the
temporal domain and a proper abstract model of the
component service, as perceived by the user of the
component. Only then is the component designer in the
position to know exactly what can be expected from the
environment and what must be delivered by the component.

Many of the present event-triggered architectures [8] do
not provide the capability to define the temporal properties
of the CNIs with the required rigor. The exact points in time
when messages are expected to arrive or are supposed to be
sent by a component, and the phase relationships between
the messages are not contained in many CNI specifications.
This loose specification of the CNIs makes it difficult for
the component designer to thoroughly validate a component
behavior in isolation, i.e., outside the system context.

For example, if the peak-load scenario of service
requests to a component (rate and phase relationships
between the requests) is not precisely specified at the
architecture level, then vague assumptions about the system
context of component use may replace the missing interface
specifications. Such a component cannot be validated
independently and may not operate correctly in another
system context.

Stability of Prior Services: Principle two of a
composable architecture is concerned with the design at the
component level. A component is a nearly autonomous unit
that comprises the hardware, the operating system and the
application software. The component must provide the
intended services across the well-specified component
interfaces. The design of the component can take advantage
of any established software engineering methodology, such
as object based design methods. The stability-of-prior-
service principle ensures that the validated service of a
component--both in the value domain and in the time
domain--is not refuted by the integration of the component
into a system.

For example, the integration of a self-contained
component, e.g., an engine controller, into the integrated
vehicle control system may require additional
computational resources of the component to service the
RS-interface, both in processing time and in memory space.
Consider the case where the CNI is based on a queue of

messages: memory space for the queue must be allocated by
the component-local operating system and processing time
for the management of the queue must be made available.
In a time-critical component it may happen that these
additional resource requirements that are needed for the
timely interface service, are in conflict with the resource
requirements of the application software that implements
the prior services of the component. In such a situation,
failures in the component services may occur sporadically.

Constructive Integration: Principle three of a
composable architecture is concerned with the design of the
communication system. Normally, the integration of the
components into the system follows a step-by-step
procedure. The constructive integration principle requires
that if n components are already integrated, the integration
of the n+1 component may not disturb the correct operation
of the n already integrated components. The constructive-
integration principle ensures that this integration activity is
linear and not circular.

This constructive integration principle has severe
implications for the management of the network resources.
If network resources are managed dynamically, it must be
ascertained that even at the critical instant, i.e., when all
components request the network resources at the same point
in time, the timeliness of all communication requests can be
satisfied. Otherwise sporadic failures will occur with a
failure rate that is increasing with the number of
components integrated.

1 2 3 4 5 6

critical application
specific network
 delay

real-time
network
delay

number of nodes

Figure 3: Maximum network delay at critical instant
 as a function of the number of nodes.

For example, if a real-time service requires that the
maximum latency of the network must always remain below
a critical upper limit (because otherwise a local time-out
within the component may signal a communication failure)
then the dynamic extension of the network latency by
adding new components may be a cause of concern. In a
dynamic network the message delay at the critical instant
(when all components request service at the same instant)
increases with the number of components. The system of
Figure 3 will work correctly with up to four components.
The addition of the fifth component may lead to sporadic
failures.

Other applications, e.g., when a time-sensitive control
loop is closed by the network, may require a network of
known and constant jitter in order to support this principles
of constructive integration.

If fault-tolerance is implemented by the replication of
components, then the architecture and the components must
support replica determinism. A set of replicated components
is replica determinate [15] if all the members of this set
have the same externally visible state, and produce the same
output messages at points in time that are at most an interval
of d time units apart (as seen by the omniscient outside
observer). In a fault-tolerant system, the time interval d
determines the time it takes to replace a missing message or
an erroneous message from a node by a correct message
from redundant replicas. The implementation of replica
determinism is simplified if all components have access to a
globally synchronized sparse time base.

6. VALIDATION

At the end of the development cycle it must be decided
whether a given system is safe to deploy in the intended
application domain. If this application domain is safety
critical, i.e., a failure of the computer system can result in
high financial loss or even a catastrophe where human lives
are endangered then this decision is difficult [13]. Many
safety critical applications demand a level of dependability
that cannot be established by state of the art testing
technology [12]. In this section we discuss some trends in
the field of validation of high dependability real-time
systems.

6.1 Process versus Product
Since it is beyond the state of the art to validate by

testing that a large real-time system is free of critical design
errors, the validation emphasis has shifted from the analysis
of the product to the analysis of the development process of
the product in the last few years (see, for example, the well-
known ARINC-178/B standard [1] for software in airborne
systems). It is my opinion that this trend will change during
the next ten years. If composable architectures are widely
deployed and real-time system design is guided by the
recursive application of the two step design methodology
(see Section 4.1) then the emphasis will shift back to
product (component) validation. System design will consist
of the reuse and integration of prevalidated
hardware/software components. The temporal firewall
concept [10], developed in the context of the time-triggered
architecture (TTA), supports such a component validation
by precisely specifying the value and temporal properties of
the component interfaces at the architecture design level.
These interface specifications establish the precondition and
post condition for the component validation both in the
value domain and in the temporal domain. It is thus
possible to validate a component independently, i.e., outside
the system context. Practical experience with this concept
have demonstrated the significant benefits of this approach
[7].

6.2 Worst Case Execution Time
The temporal firewalls of a component, specified at the

architecture design level, identify the deadlines the
component must meet under all specified operational
conditions. During component design is must be
demonstrated, that these deadline will never be missed. A
necessary prerequisite for this temporal validation is
knowledge about a tight upper bound of the worst case
execution time (WCET) of all time-critical process inside a
component [19]. This WCET analysis is an important
research area in the field of real-time software the results of
this research will have implications on other software areas,
e.g., algorithm design, compiler design, and operating
system design. For example, many of today's compiler try to
optimize the average execution time, even if is this implies
extending the WCET. In hard real-time systems a small
WCET is of utmost importance, while the average
execution time is of minor concern.

6.3 Simulation
Large real-time systems require a closed loop simulation

in the laboratory to demonstrate that the system provides the
intended services. In many cases, these simulations will be
real-time simulations, where the effects of the real-time
control system will be validated with respect to a real-time
simulation model of the controlled object. In such an
environment it is possible to study and validate the fault-
tolerance properties of the control system, since it is
possible to inject faults and to generate operational
situations that will only occur rarely in the real environment
(rare events). Such a rare-event simulation is also absolutely
necessary to validate the peak-load performance of a high-
dependability system. Today the methodological support for
closed loop real-time simulation and fault injection of large
systems is already an area of utmost industrial interest and
this interest is likely to increase over the next ten years.

6.4 Formal Verification
A safety case is the accumulation of evidence from

different sources that establishes the rational basis for the
decision that a safety critical computer system is safe to
deploy. The formal analysis of critical algorithms that are
used in the system can form a convincing argument in the
safety case [16]. The present formal validation technologies
have already achieved a level of maturity that allows them
to contribute to the validation of safety critical systems. In
the future, the contributions of these formal methods are
expected to increase.

7. CONCLUSION

It is dangerous to write a predictive paper about
technology trends if the period of prediction is small enough
that it is possible to confront the author--sometime in the
future--with a comparison of prediction versus reality.
Nevertheless I have engaged in this endeavor and tried to

outline a rough road map of the software engineering issues
in real-time systems over the period of the next ten years.
To me, the technological developments in the field of the
computer hardware and the demands of new high-
dependability applications will dramatically change the
environment of the real-time software engineer. In my
opinion, the most dramatic changes will be in the fields of
composable architectures and systematic validation of
distributed fault-tolerant real-time systems.

ACKNOWLEDGMENTS

This work has been supported, in part, by the IST
project DSOS.

REFERENCES

[1] ARINC (1992). Software Considerations in Airborne

Systems and Equipment Certification. ARINC,

Annapolis, Maryland.
[2] Caro, D. (1998). What Does Real Time Mean Anyway.

I n s t r u m e n t S o c i e t y o f A m e r i c a ,

http://www.isa.org/journals/ic/octfloor/html.
[3] Deirauer, P. and B. Woolever (1998). Understanding

Smart Devices. Industrial Computing. Vol. pp. 47-50.
[4] Fabre, J. C., F. Salles, et al. (1999). Assessment of

COTS Microkernels by Fault Injection. Seventh

Internatinal Working Conference on Dependable

Computing, San Jose, Cal. IEEE Press. pp. 19-38.
[5] Frank, R. (1995). Understanding Smart Sensors.

London. Artech House.
[6] Garlan, D. (2000) Software Architecture: A Roadmap.

in this volume.
[7] Hedenetz, B. and R. Belschner (1998). "Brake by Wire"

without Mechanical Backup by Using a TTP
Communication Network. SAE World Congress,

Detroit Michigan. SAE Press, Warrendale, PA, USA.
[8] Kopetz, H. (1997). Real-Time Systems, Design

Principles for Distributed Embedded Applications;

ISBN: 0-7923-9894-7, Third printing 1999. Boston.

Kluwer Academic Publishers.

[9] Kopetz, H. (1998). Component-Based Design of Large

Distributed Real-Time Systems. Control Engineering

Practice–A Journal of IFAC, Pergamon Press. Vol. 6.
pp. 53-60.

[10] Kopetz, H. and R. Nosssal (1997). Temporal Firewalls
in Large Distributed Real-Time Systems. Proceedings

of IEEE Workshop on Future Trends in Distributed

Computing, Tunis, Tunesia. IEEE Press. pp. 310-315.
[11] Kopetz, H. and T. Thurner (1998). TTP--A new

approach to solving the interoperability problem of

independently developed ECUs. SAE Congress 1998,

Detroit, USA. SAE Press 981107. pp. 1-7.
[12] Littlewood, B. and L. Strigini (1995). Validation of

Ultradependability for Software Based Systems.

Predictably Dependable Computing Systems B.

Randell, J. L. Laprie, H. Kopetz and B. Littlewood Ed.
Heidelberg. Springer Verlag. pp. 473-493.

[13] Lutz, R.L. (2000). Software Engineering for Safety: A

Roadmap. In this volume
[14] OMG, 9. (1998). Real-Time CORBA. Object

Management Group, Framingham, Mass.
[15] Poledna, S. (1994). Replica Determinism in Fault-

Tolerant Real-Time Systems. Kluwer Academic

Publishers, Boston.
[16] Rushby, J. (1993). Formal Methods and the

Certification of Critical Systems. Computer Science
Lab, SRI.

[17] Selic, B. (1999). Turning Clockwise: Using UML in

the Real-Time Domain. Comm. ACM. Vol.42, No. 10,

Oct. 1999. pp.46-54
[18] SIA (1997). National Roadmap for Semiconductors.

S e m i c o n d u c t o r I n d u s t r y A s s o c i a t i o n ,

http://notes.sematech.org/ntrs/Rdmpmen.
[19] Wilhelm, R. (1999). Special Issue on Timing Analysis

and Validation for Real-Time Systems. Real-Time

Systems, Kluwer Academic Publishers. Vol. 17. pp.
127-287.

