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ABSTRACT
Software metrics as a subject area is over 30 years old, but
it has barely penetrated into mainstream software
engineering. A key reason for this is that most software
metrics activities have not addressed their most important
requirement: to provide information to support quantitative
managerial decision-making during the software lifecycle.
Good support for decision-making implies support for risk
assessment and reduction. Yet traditional metrics
approaches, often driven by regression-based models for
cost estimation and defects prediction, provide little support
for managers wishing to use measurement to analyse and
minimise risk. The future for software metrics lies in using
relatively simple existing metrics to build management
decision-support tools that combine different aspects of
software development and testing and enable managers to
make many kinds of predictions, assessments and trade-offs
during the software life-cycle. Our recommended approach
is to handle the key factors largely missing from the usual
metrics approaches, namely: causality, uncertainty, and
combining different (often subjective) evidence. Thus the
way forward for software metrics research lies in causal
modelling (we propose using Bayesian nets), empirical
software engineering, and multi-criteria decision aids.

Keywords
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1 INTRODUCTION
Since this paper is intended to be a roadmap for software
metrics it seems reasonable to motivate the core message
with a motoring analogy. Data on car accidents in both the
US and the UK reveal that January and February are the

months when the fewest fatalities occur.

Thus, if you collect a database of fatalities organised by
months and use this to build a regression model, your model
would predict that it is safest to drive when the weather is
coldest and roads are at their most treacherous. Such a
conclusion is perfectly sensible given the data available,
but intuitively we know it is wrong. The problem is that you
do not have all the relevant data to make a sensible decision
about the safest time to drive. Regression models often lead
to misunderstanding about cause and effect. A correlation,
such as that between month of year and number of
fatalities, does not provide evidence of a causal
relationship.
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Figure 1: Predicting road fatalities

Of course the weather is more likely to be bad during the
winter months and bad weather can cause treacherous road
conditions. In these circumstances fewer people drive their
cars and when they do they tend to drive more slowly. The
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combination of fewer car journeys and slower speed is what
leads to fewer fatalities.

Figure 1 summarises the above argument and shows the
distinction between the original naïve regression-based
approach and the latter causal-modelling approach. The
causal model is telling the story that is missing from the
naïve approach you can use it to help you make intelligent
decisions for risk reduction, and identify factors that you
can control or influence. If you decide to make as many car
journeys in February as in July, and if you decide to drive
as fast irrespective of the road conditions then you are more
likely to experience a fatal accident in February. The naïve
regression model would not be able to provide you with this
important information. The causal model would.

So what has this got to do with software metrics? Well,
software metrics has been dominated by statistical models,
such as regression models, when what is really needed are
causal models.
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Figure 2 Software resource estimation

For example, much of software metrics has been driven by
the need for resource prediction models. Usually this work
has involved regression-based models of the form

effort=f(size)

Ignoring the fact that solution size cannot possibly cause
effort to be expended, such models cannot be used
effectively to provide decision support for risk assessment.
This is because they do not have an explanatory framework.
Without this managers do not know how to act upon the
model’s outputs to improve things. Causal modelling can
provide an explanatory structure to explain events that can
then be quantified.

For example, software managers would like to be able to
use a cost model to answer the following kind of questions:

“For a specification of this complexity, and given these
limited resources, how likely am I to achieve a product of
suitable quality?”

“How much can I scale down the resources if I am
prepared to put up with a product of specified lesser
quality?”

“The model predicts that I need 4 people over 2 years to
build a system of this kind of size. But I only have
funding for 3 people over one year. If I cannot sacrifice
quality, how good do the staff have to be to build the
systems with the limited resources?”

The causal model in Figure 2 could potentially be used to
answer these questions. The regression model cannot.

There are the many generic claimed benefits of software
metrics (see for example the books [16, 23, 27, 36]).
However, the most significant is that they are supposed to
provide information to support quantitative managerial
decision-making during the software lifecycle [Stark]. Good
support for decision-making implies support for risk
assessment and reduction. The thesis of this paper is that
the future of software metrics must be driven by this
objective. Unfortunately, metrics research has failed largely
to address it. It is for this reason above all others, we
believe, that software metrics has failed to achieve a pivotal
role within software engineering.

The aim of the paper is to explain how we can build on the
existing body of knowledge to tackle the real objectives for
software metrics. In section 2 we review the key metrics
activities and explain how two activities (namely resource
prediction and quality prediction) have driven the entire
software metrics subject area since its inception. In Section
3 we explain the limitations of the usual regression-based
approaches. Although the empirical data from regression-
type models provide a valuable empirical basis, the models
lack any causal structure, which is necessary if they are to
be used for quantitative risk management. Thus, in Section
4 we explain how causal models, based on classical metrics
and empirical results, provide a way forward. In Section 5
we map out a strategy for incorporating causal models,
multi-criteria decision aids, and empirical software
engineering

2 SIZE, RESOURCES, AND QUALITY: THE
HISTORY OF SOFTWARE METRICS

Although the first dedicated book on software metrics was
not published until 1976 [25], the history of active software
metrics dates back to the mid-1960’s when the Lines of
Code metric was used as the basis for measuring
programming productivity and effort. Despite a history that
therefore officially predates “software engineering”
(recognised as late as 1968), there is still little awareness of
what software metrics actually is.

In fact software metrics is a collective term used to describe
the very wide range of activities concerned with
measurement in software engineering. These activities
range from producing numbers that characterise properties
of software code (these are the classic software ‘metrics’)



through to models that help predict software resource
requirements and software quality. The subject also
includes the quantitative aspects of quality control and
assurance - and this covers activities like recording and
monitoring defects during development and testing.

Since software engineering is ultimately an empirical subject,
software metrics (as defined above) should by now have achieved
a pivotal role within it. Yet, metrics continue to lie at the margins
of software engineering. Moreover, they are often misunderstood,
misused and even reviled. Theory and practice in software metrics
have been especially out of step:

“What theory is doing with respect to measurement of
software work and what practice is doing are on two different
planes, planes that are shifting in different directions” [26]

The recent increased industrial software metrics activity has
not necessarily been the result of companies being
convinced of their true efficacy. In fact, because the true
objectives (and hence benefits) of software metrics have
never been fully realised the decision by a company to put
in place some kind of a metrics program is more often than
not a ‘grudge purchase’. It is something done when things
are bad or when there is a need to satisfy some external

assessment body. For example, in the US the single biggest
trigger for industrial metrics activity has been the CMM
[33], since evidence of use of metrics is intrinsic for
achieving higher levels of CMM.

Building on the definition of software metrics given above,
we can divide the subject area into two components:

1. The component concerned with defining the actual
measures (in other words the numerical ‘metrics’)

2. The component concerned with how we collect,
manage and use the measures.

Table 1, which is an adapated version of a table that
appeared in [18], provides a classification of software
metrics as far as the first component is concerned. This
classification has now been reasonably widely adopted.
Essentially any software metric is an attempt to measure or
predict some attribute (internal or external) of some
product, process, or resource.  The table provides a feel for
the broad scope of software metrics, and clarifies the
distinction between the attributes we are most interested in
knowing or predicting (normally the external ones) and
those which ultimately are the only things we can control
and measure directly (the internal ones).

Although there are literally thousands of metrics that have been
proposed since the mid 1960’s (all of which fit into the framework
of Table 1) the rationale for almost all individual metrics has been

motivated by one of two activities:

1. The desire to assess or predict effort/cost of
development processes;

2. The desire to assess or predict quality of software

ENTITIES ATTRIBUTES
Internal External

Products

Specifications size, reuse, modularity, redundancy,
functionality, syntactic correctness, ...

comprehensibility, maintainability, ...

Designs size, reuse, modularity, coupling,
cohesiveness, inheritance, functionality, ...

quality, complexity, maintainability, ...

Code
size, reuse, modularity, coupling,
functionality, algorithmic complexity,
control-flow structuredness, ...

reliability, usability, maintainability,
reusability

Test data size, coverage level, ... quality, reusability, …
... ... ...

Processes
Constructing
specification

time, effort, number of requirements changes,
... quality, cost, stability, ...

Detailed design time, effort, number of specification faults
found, ...

cost, cost-effectiveness, ...

Testing time, effort, number of coding faults found, ... cost, cost-effectiveness, stability, ...
... ... ...

Resources
Personnel age, price, ... productivity, experience, intelligence, ...
Teams size, communication level, structuredness, ... productivity, quality, ...
Organisations size, ISO Certification, CMM level Maturity, profitability, …
Software price, size, ... usability, reliability, ...
Hardware price, speed, memory size, ... reliability, ...
Offices size, temperature, light, ... comfort, quality, ...
... ... ...

Table 1: Classification of software measurement activities (measurement can be either assessment or prediction)



products.

The key in both cases has been the assumption that product
‘size’ measures should drive any predictive models.

The first key metric used to do this was the Lines of Code
(LOC or KLOC for thousands of lines of code) metric. It
was, and still is, used routinely as the basis for measuring
programmer productivity (LOC per programmer month)
and as such LOC was assumed to be a key driver for the
effort and cost of developing software. Indeed, the early
resource prediction models (such as those of Putnam [43]
and Boehm [11]) used LOC or related metrics like
delivered source instructions as the key size variable in
predictive (regression-based) models of the form

Effort=f(LOC)

In the late 1960’s LOC was also used as the basis for
measuring program quality (normally measured indirectly
as defects per KLOC). In 1971 Akiyama [4] published what
we believe was the first attempt to use metrics for software
quality prediction when he proposed a regression-based
model for module defect density (number of defects per
KLOC) in terms of the module size measured in KLOC.

Product Size

Effort/cost

Quality

Figure 3: The historical driving factors for software
metrics

In both of the key applications, therefore, LOC was being
used as a surrogate measure of different notions of product
size (including effort, functionality, or complexity) - the
critical assumption was of size as the driver for both quality
and effort, as shown in Figure 3.

The obvious drawbacks of using such a crude measure as
LOC as a surrogate measure for such different notions of
program size were recognised in the mid-1970’s. The need
for more discriminating measures became especially urgent
with the increasing diversity of programming languages.
After all, a LOC in an assembly language is not comparable
in effort, functionality, or complexity to a LOC in a high-
level language. Thus, the decade starting from the mid-
1970’s saw an explosion of interest in measures of software
complexity (pioneered by the likes of Halstead [30] and
[40]) and measures of functional size (such as function
points pioneered by Albrecht [5] and later by [48]) which
were intended to be independent of programming language.
However, the rationale for all such metrics was to use them
for either of the two key applications.

Work on extending, validating and refining complexity metrics
and functional metrics has been a dominant feature of academic

metrics research up to the present day. This works includes
defining metrics that are relevant to new paradigms such as object
oriented languages [14, 31]. The subject area has also benefited
from work that has established some theoretical underpinnings for
software metrics.  This work (exemplified by [12,18,52]) is
concerned with improving the level of rigour in the discipline as a
whole. For example, there has been considerable work in
establishing a measurement theory basis for software metrics
activities.

While software metrics as a subject has been dominated by
component 1 (defining specific measures and models) much
recent work has been concerned with component 2
(collecting, managing, and using metrics in practice). The
most notable advances in this area have been:

•  Work on the mechanics of implementing metrics
programs. Two pieces of work stand out in this respect:

1. The work of Grady and Caswell [27] (later extended
in [28]) which was the first and most extensive
experience report of a company-wide software
metrics program. This work contains key guidelines
(and lessons learned) which influenced (and
inspired) many subsequent metrics programs.

2. The work of Basili, Rombach and colleagues on
GQM(Goal-Question Metric) [6]. By borrowing
some simple ideas from the Total Quality
Management field, Basili and his colleagues
proposed a simple scheme for ensuring that metrics
activities were always goal-driven. A metrics
program established without clear and specific goals
and objectives is almost certainly doomed to fail
[29]).

•  The use of metrics in empirical software engineering:
specifically we refer to empirical work concerned with
benchmarking [36] and for evaluating the effectiveness
of specific software engineering methods, tools and
technologies. This is a great challenge for the
academic/research software metrics community. There
is now widespread awareness that we can no longer rely
purely on the anecdotal claims of self-appointed experts
about which new methods really work and how.
Increasingly we are seeing measurement studies that
quantify the effectiveness of methods and tools. Basili
and his colleagues have again pioneered this work (see,
for example [8,9]). Recent work [34] suggests that some
momentum is growing.

3 THE TRADITIONAL APPROACHES:
WEAKNESSES AND NEED FOR EXTENSION

Despite the advances described in Section 2, the approaches
to both quality prediction and resource prediction have
remained fundamentally unchanged since the early 1980’s.
Figure 2 provides a schematic view of the approach which
is still widely adopted The assumption is that some measure



of size/complexity is the key driver and that variations,
which are determined by regression approaches, are
explained by other measurable variables. For example, in
the original COCOMO model 15 additional process,
product and resource attributes are considered as explaining
variation in the basic regression model.

Size/complexity

Effort/quality

Other
explanatory

 factors

Figure 4: The basic approach to both effort prediction
and quality prediction

These approaches have provided some extremely valuable
empirical results. However, as discussed in Section 1, they
cannot be used effectively for quantitative management and
risk analysis, and hence do not yet address the primary
objective of metrics.

In the case of quality prediction (see for example,
[7,24,39,46]) the emphasis has been on determining
regression-based models of the form

f(complexity metric) = defect density

where defect density is defects per KLOC.

In [20] we provided an extensive critique of this approach.
We concluded that the existing models are incapable of
predicting defects accurately using size and complexity
metrics alone. Furthermore, these models offer no coherent
explanation of how defect introduction and detection
variables affect defect counts. A further major empirical
study [22] sheds considerable light on why the above
approach is fundamentally insufficient. For example, we
showed:

•  Size based metrics, while correlated to gross number
of defects, are inherently poor predictors of defects.

•  Static complexity metrics, such as cyclomatic
complexity, are not significantly better as predictors

(and in any case are very strongly correlated to size
metrics).

•  There is a fundamental problem in the way defect
counts are used as a surrogate measure of quality.
Specifically, counts of defects pre-release (the most
common approach) is a very bad indicator of quality.

The latter problem is the most devastating of all for the
classical approach to defect modelling. To explain and
motivate this result it is useful to think of the following
analogy:

Suppose you know that a person has eaten a very large lunch
at 1.00pm. Is it likely that this person will also eat a very large
dinner at 6.00pm?

On the one hand you might reason that a person who eats a
very large lunch is inherently a ‘big eater’ or ‘greedy’ and
hence that such a person is predisposed to eating a large
dinner. On the other hand it seems more sensible to assume
that the person will be so full up from the very large lunch
that the last thing they will want to do is eat a very large
dinner.

So now consider the following:

Suppose you know that a large number of defects are found in
a software module prior to release. Is it likely that this module
will reveal many defects post-release?

A ‘yes’ answer here is no more reasonable than a ‘yes’
answer for a person likely to eat a large dinner after a large
lunch. Yet, it is popularly believed that modules with higher
incidence of faults in pre-release testing are likely to have
higher incidence of faults in post-release operation. In fact,
empirical evidence shows this to be an invalid hypothesis.
Figure 5 shows the results of plotting pre-release faults
against post-release faults for a randomly selected set of
modules in the systems described in [23]. There is strong
evidence that modules that are very fault-prone pre-release
are likely to reveal very few faults post-release. Conversely,
the truly ‘fault-prone’ modules post-release are the ones
that revealed no faults pre-release.  Why are these results
devastating for classical fault prediction models?  Because
many of those models were ‘validated’ on the basis of using
pre-release fault counts as a surrogate measure for
operational quality.



The result is also devastating for much software complexity
metrics work. The rationale behind much of this work has
been the assumption of the inevitability of ‘rogue
modules’ a relatively small proportion of modules in a
system that account for most of the faults and which are
likely to be fault-prone both pre- and post-release. It is
often assumed that such modules are somehow intrinsically
complex, or generally poorly built. For example, Munson
and Khosghoftaar, [41] asserted:

‘There is a clear intuitive basis for believing that
complex programs have more faults in them than simple
programs’

One of the key aims of complexity metrics is to predict
modules that are fault-prone post-release. Yet, most
previous ‘validation’ studies of complexity metrics have
deemed a metric ‘valid’ if it correlates with the (pre-
release) fault density. Our results suggest that ‘valid’
metrics may therefore be inherently poor at predicting
software quality.

These remarkable results are also closely related to the
empirical phenomenon observed by Adams [2] that most
operational system failures are caused by a small proportion
of the latent faults. The results have major ramifications for
the commonly used fault density metric as a de-facto
measure of user perceived software quality. If fault density
is measured in terms of pre-release faults (as is common),
then at the module level this measure tells us worse than
nothing about the quality of the module; a high value is
more likely to be an indicator of extensive testing than of
poor quality. Modules with high fault density pre-release

are likely to have low fault-density post-release, and vice
versa.

There are, of course, very simple explanations for the
phenomenon observed in Figure 5. Most of the modules
that had high number of pre-release, low number of post-
release faults just happened to be very well tested. The
amount of testing is therefore a very simple explanatory
factor that must be incorporated into any predictive model
of defects. Similarly, a module that is simply never
executed in operation, will reveal no faults no matter how
many are latent. Hence, operational usage is another
obvious explanatory factor that must be incorporated.

The absence of any causal factors to explain variation is a
feature also of the classic regression-based approach to
resource prediction. Such models fail to incorporate any
true causal relationships, relying often on the fundamentally
flawed assumption that somehow the solution size can
influence the amount of resources required. This contradicts
the economic definition of a production model where output
= f(input) rather input = f(output). Additional problems
with these kind of models are:

•  They are based on limited historical data of projects that
just happened to have been completed. Based on typical
software projects these are likely to have produced
products of poor quality. It is therefore difficult to
interpret what a figure for effort prediction based on
such a model actually means.

•  Projects normally have prior resourcing constraints.
These cannot be accommodated in the models. Hence
the ‘prediction’ is premised on impossible assumptions
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Figure 5 Scatter plot of pre-release faults against post-release faults for a major system (each
dot represents a module)



and provides little more than a negotiating tool.

•  They are essentially black box models that hide crucial
assumptions from potential users.

•  They cannot handle uncertainty either in the model
inputs or the outputs. This is crucial if you want to use
such models for risk assessment. We know the models
are inaccurate so it is not clear what a prediction means
if you have no feel for the uncertainty in the result. And
there is no reason why a highly uncertain input should
be treated as if it were certain. This has been recognised
by pioneers of cost modelling such as Boehm and
Puttnam who have both recently been attempting to
incorporate uncertainty into their models [15,44].

So the classical models provide little support for risk
assessment and reduction

For all the good work done in software metrics, it provides
only a starting point when it comes to assessing real
systems, especially the critical systems that were important
to many of our industrial collaborators. The classic
assessment problem we were confronted with was “Is this
system sufficiently reliable to ship?”

The kind of information you might have available or would
want to use in arriving at a decision is:

•  measurement data from testing, such as information
about defects found in various testing phases, and
possibly even failure data from simulated operational
testing.

•  empirical data about the process and resources used, e.g.
the reliability of previous products by this team

•  subjective information about the process/resources - the
quality and experience of the staff etc

•  very specific and important pieces of evidence such as
the existence of a trustable proof of correctness of a
critical component.

The problem is that even when you do have this kind of
information it is almost certainly the case that none alone is
going to be sufficient for most systems. This is especially
true for systems with high reliability targets like 10-9

probability of failure on demand. So in practice the
situation is that you may have fragments of very diverse
information.

The question is how to combine such diverse information
and then how to use it to help solve a decision problem that
involves risk. One way or another decisions are made and
they inevitably involve expert judgement. If that expert
judgement is good we should be incorporating it into our
assessment models. If it is not then our models should be
able to expose its weaknesses.

In the next section we will show that causal models, using

Bayesian nets can provide relevant predictions, as well as
incorporating the inevitable uncertainty, reliance on expert
judgement, and incomplete information that are pervasive
in software engineering.

4 CAUSAL MODELS
The great challenge for the software metrics community is
to produce models of the software development and testing
process which take account of the crucial concepts missing
from classical regression-based approaches. Specifically we
need models that can handle:

•  diverse process and product variables;

•  empirical evidence and expert judgement;

•  genuine cause and effect relationships;

•  uncertainty;

•  incomplete information.

At the same time the models must not introduce any
additional metrics overheads, either in terms of the amount
of data-collection or the sophistication of the metrics. After
extensive investigations during the DATUM project 1993-
1996 into the range of suitable formalisms [19] we
concluded that Bayesian belief nets (BBNs) were by far the
best solution for our problem. The only remotely relevant
approach we found in the software engineering literature
was the process simulation method of [Abdel-Hamid [1],
but this did not attempt to model the crucial notion of
uncertainty.

Residual DefectsTesting Effort

Design Effort

Defects Detected

Defects IntroducedProblem Complexity

Operational defectsOperational usage

Figure 6 Defects BBN (simplified)

A BBN is a graphical network (such as that shown in Figure
6) together with an associated set of probability tables. The
nodes represent uncertain variables and the arcs represent
the causal/relevance relationships between the variables.
The probability tables for each node provide the
probabilities of each state of the variable for that node. For
nodes without parents these are just the marginal
probabilities while for nodes with parents these are



conditional probabilities for each combination of parent
state values.

Although the underlying theory (Bayesian probability) has
been around for a long time, building and executing
realistic BBN models has only been made possible because
of recent algorithms (see [35]) and software tools that
implement them [32]. To date BBNs have proven useful in
practical applications such as medical diagnosis and
diagnosis of mechanical failures. Their most celebrated
recent use has been by Microsoft where BBNs underlie the
help wizards in Microsoft Office.

CSR, in a number of research and development projects
since 1992, has pioneered the use of BBNs in the broad
area of assessing dependability of systems. For example, in
recent collaborative projects we have used BBNs to:

•  provide safety or reliability arguments for critical
computer systems (the DATUM, SHIP, DeVa and
SERENE projects have all addressed this problem from
different industrial perspectives;

•  provide improved reliability predictions of prototype
military vehicles (the TRACS project, [3]);

•  predict general software quality attributes such as
defect-density and cost (the IMPRESS project [21]).

In consultancy projects [3] we have used BBNs to:

•  assess safety of PES components in the railway industry;

•  provide predictions of insurance risk and operational
risk;

•  predict defect counts for software modules in consumer
electronics products.

 The BBN in Figure 6 is a very simplified version of the last
example. Like all BBNs the probability tables were built
using a mixture of empirical data and expert judgements.
We have also developed (in collaboration with Hugin A/S)
tools for a) generating quickly very large probability tables
(including continuous variable nodes) and b) building large
BBN topologies [42]. Thus, we feel we have to a certain
extent cracked the problem (of tractability) that inhibited
more widespread use of BBNs. In recent applications we
have built BBNs with several hundred nodes and many
millions of combinations of probability values. It is beyond
the scope of this paper to describe either BBNs or the
particular example in detail (see [21] for a fuller account).
However, we can give a feel for their power and relevance.

Like any BBN, the model in Figure 6 contains a mixture of
variables we might have evidence about and variables we
are interested in predicting. At different times during
development and testing different information will be
available, although some variables such as ‘number of
defects introduced’ will never be known with certainty.

Figure 7 State of BBN probabilities showing a scenario of many post-release faults and few pre-release faults



With BBNs, it is possible to propagate consistently the
impact of evidence on the probabilities of uncertain
outcomes. For example, suppose we have evidence about
the number of defects discovered in testing. When we enter
this evidence all the probabilities in the entire net are
updated

Thus, Figure 7 explores the common empirical scenario
(highlighted in Section 2) of a module with few pre-release
defects (less than 10) and many post-release (between 30
and 40). Having entered this evidence, the remaining
probability distributions are updated. The result explains
this scenario by showing that it was very likely that a ‘very
low’ amount of testing was done, while the operational
usage is likely to be ‘very high’. The problem complexity is
also more likely to be high than low.

 At any point in time there will always be some missing data.
The beauty of a BBN is that it will compute the probability
of every state of every variable irrespective of the amount
of evidence. Lack of substantial hard evidence will be
reflected in greater uncertainty in the values.

The BBN approach directly addresses the weaknesses
described in Section 3 of the traditional approach to defect
modelling and prediction. In [21] (which also contains more
extensive examples of the above BBN) we have described
in detail a BBN approach that directly addresses the
weaknesses of the traditional approach to resource
modelling and prediction. Again, it is beyond the scope of
this paper to present the approach in any detail. However,
conceptually the model is quite simple and is shown in
Figure 8.
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Required
resources

Appropriateness
of actual

resources

Solution
quality

Problem size

Required duration
Required effort
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Proportion
  implemented

Complexity
Functionality

Quality of staff,
 tools

Solution
 reliability

Figure 8 Causal model for software resources

 Each of the boxes in Figure 8 represent subnets. For
example, there is a subnet concerned with problem size,
which contains variables such as functionality and
complexity. Problem size influences both solution size and
required resources. The subnets that make this kind of
model so different from the classical approach are the
subnets appropriateness of actual resources and solution
quality. The basic idea is that the required resources for a

given problem are always some kind of an ideal based on
best practice. What matters are how well these ideal
resources match the actual resources available. This match
(which is calculated in the appropriateness of actual
resources subnet) determines the solution quality.

 The crucial thing about the resulting BBN [21] is that is can
be used to answer all of the types of problems listed in
Section 1 the very types of problem that cannot be
handled by traditional approaches.

5 A WAY FORWARD FOR SOFTWARE
METRICS

 We have argued that traditional approaches to software
metrics fail to address the key objective of providing
quantitative support for management decision making. In
the previous section we showed that when simple metrics
are used in the context of a causal model such as a BBN,
you do get real support for decision-making and risk
assessment. However, for comprehensive decision analysis
in many contexts BBNs must be supplemented with other
approaches. For example, suppose you have to assess
whether a new software protection system should be
deployed in a nuclear plant. A BBN might help you come
up with a more accurate and justifiable prediction of
reliability than otherwise, because it will be able to combine
many different strands of evidence (such as test results and
process information). Such a BBN could even enable you to
examine various trade-offs and impact of different risk
factors on reliability. However, such a BBN will not be
sufficient to make your decision about whether or not to
deploy the system. For that you have to consider political,
financial, environmental and technical criteria with
preferences that are not easily modelled in a BBN. There is,
in fact a large body of work on Multi-Criteria Decision Aid
(MCDA) [50,51] which deals with this problem. This work
has been largely ignored by the software engineering
community. We feel that there is great potential in
combining causal models such as BBNs with preference
models such as those found in MCDA to provide a more
complete solution to the quantitative decision analysis
problem in software engineering.

 Progress in building good decision support systems along
the lines proposed above, is intrinsically dependent on one
other great challenge for the software metrics community in
the next 10 years. This is to extend the emerging discipline
of empirical software engineering. All the BBN models that
we have produced in the context of software risk
assessment, have been ultimately dependent on results from
empirical studies, including some of the important emerging
benchmarking studies. We would like to see an increase in
empirical studies that test specific cause and effect
hypotheses and establish ranges of empirical values.

 For software managers seeking decision-support for
quantitative risk management, tools based on industry-wide
empirical studies and benchmarking data can certainly



provide a vast improvement than on using gut instinct and
heuristics. However, the history of software metrics teaches
us conclusively that, for greater accuracy and relevance,
there is a need for company-specific data input. Hence there
will continue to be a need for company specific metrics
programs that address specific objectives. The research
challenge is not to produce new metrics in this respect, but
to build on the work of Basili, Grady and the likes on the
managerial challenges that must be overcome in setting up
such programs. The required metrics are, in fact, now
reasonably well understood and accepted. Most objectives
can be met with a very simple set of metrics, many of which
should in any case be available as part of a good
configuration management system. This includes notably:
information about faults, failures and changes discovered at
different life-cycle phases; traceability of these to specific
system ‘modules’ at an appropriate level of granularity; and
‘census’ information about such modules (size, effort to
code/test). It is also very useful if the hard metrics data can
be supplemented by subjective judgements, such as
resource quality, that would be available from project
managers.

 The final challenge is that of technology transfer. If metrics
is ultimately a tool for quantitative managerial decision-
making, then it must be made available to software
managers in a form that is easily understood by them.
Managers are no more likely to want to experiment with
BBNs as they would with regression models or code
complexity metrics. The challenge for all metrics research
is to bring the results of the research to the stage whereby it
is usable by managers without them having to understand
any of the underlying theory. In the case of BBNs, for
example, managers need only understand the basic causal
model for their application domain. To achieve truly
widescale adoption of the technology in software
management it will be necessary to provide simple,
configurable questionnaire-based front-ends that produce
simple reports and recommendations as outputs.

6 CONCLUSIONS
Software metrics research and practice has helped to build
up an empirical basis for software engineering. This is an
important achievement. But the classical statistical-based
approaches do not provide managers with decision support
for risk assessment and hence do not satisfy one of the most
important objectives of software metrics. The great
challenge for the next ten years is to use software metrics in
such a way that they address this key objective.

We feel that the way forward is to build and use causal
models based on existing simple metrics. We have
highlighted one such approach, namely BBNs, which have
many advantages over the classical approaches.
Specifically, the benefits of using BBNs include:

•  explicit modelling of ‘ignorance’ and uncertainty in
estimates, as well as cause-effect relationships

•  enables us to combine diverse types of information

•  makes explicit those assumptions that were previously
hidden - hence adds visibility and auditability  to the
decision making process

•  intuitive graphical format makes it easier to understand
chains of complex and seemingly contradictory
reasoning

•  ability to forecast with missing data.

•  use of ‘what-if?’ analysis and forecasting of effects of
process changes;

•  use of subjectively or objectively derived probability
distributions;

•  rigorous, mathematical semantics for the model

•  no need to do any of the complex Bayesian calculations,
since tools like Hugin do this

The BBN models can be thought of as risk management
decision-support tools that build on the relatively simple
metrics that are already being collected. These tools
combine different aspects of software development and
testing and enable managers to make many kinds of
predictions, assessments and trade-offs during the software
life-cycle, without any major new metrics overheads. The
BBN approach is actually being used on real projects and is
receiving highly favourable reviews. We believe it is an
important way forward for metrics research.

Of course BBNs alone cannot solve all the quantitative
managerial decision problems that should be addressed by
software metrics. Hence we have proposed an approach that
involves combining BBNs with MCDA and empirical
software engineering.

Clearly the ability to use these methods for accurate
prediction and risk assessment still depends on some
stability and maturity of the development processes.
Organisations that do not collect the basic metrics data, or
do not follow defined life-cycles, will not be able to apply
such models effectively.
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