
Testing: A Roadmap

Mary Jean Harrold

College of Computing

Georgia Institute of Technology

801 Atlantic Drive

Atlanta, GA 30332-0280

harrold@cc.gatech.edu

ABSTRACT

Testing is an important process that is performed to

support quality assurance. Testing activities support

quality assurance by gathering information about the

nature of the software being studied. These activities

consist of designing test cases, executing the software

with those test cases, and examining the results pro-

duced by those executions. Studies indicate that more

than �fty percent of the cost of software development is

devoted to testing, with the percentage for testing crit-

ical software being even higher. As software becomes

more pervasive and is used more often to perform criti-

cal tasks, it will be required to be of higher quality. Un-

less we can �nd ways to perform more e�ective testing

for less cost, the percentage of development costs de-

voted to testing will increase signi�cantly. This report

briey assesses the state of the art in software testing,

outlines some future directions in software testing, and

gives some pointers to software testing resources.

1 INTRODUCTION

A report by the Workshop on Strategic Directions in

Software Quality posits that software quality will be-

come the dominate success criterion in the software in-

dustry [30]. If this occurs, the practitioner's use of pro-

cesses that support software quality assurance will be-

come increasingly important. One process that is per-

formed to support quality assurance is testing. Test-

ing activities support quality assurance by executing the

software being studied to gather information about the

nature of that software. The software is executed with

input data, or test cases, and the output data is ob-

served. The output data produced by the execution of

the program with a particular test case provides a spec-

i�cation of the actual program behavior [30]. Studies

indicate that testing consumes more than 50% of the

cost of software development. This percentage is even

higher for critical software, such as that used for avion-

ics systems. As software becomes more pervasive and

is used more often to perform critical tasks, it will be

required to be of higher quality. Unless we can �nd

ways to perform more e�ective testing for less cost, the

percentage of development costs devoted to testing will

increase signi�cantly.

Because testing requires the execution of the software,

it is often referred to as dynamic analysis. Forms of ver-

i�cation that do not require execution of the software

are referred to as static analyses. As a form of veri�-

cation, testing has several advantages over static tech-

niques. One advantage of testing is the relative ease

with which many of the testing activities can be per-

formed. Test-case requirements can be generated from

various forms of the software, such as its implementa-

tion. Often, these test-requirements can be generated

automatically. Software can be instrumented so that

when it is executed, it reports information about the

executions with the test cases. This information can be

used to measure how well the test cases satisfy the test-

case requirements. Output from the executions can be

compared with expected results to identify those test

cases on which the software failed. A second advantage

of testing is that the software being developed can be

executed in its expected environment. The results of

these executions with the test cases provide con�dence

that the software will perform as intended. A third ad-

vantage of testing is that much of the process can be

automated. With this automation, the test cases can

be used for retesting as the software evolves.

Although, as a form of veri�cation, testing has a num-

ber of advantages, it also has a number of limitations.

Testing cannot show the absence of faults | it can show

only their presence. Additionally, testing cannot show

that the software has certain qualities. Moreover, test

execution results for speci�c test cases cannot usually be

generalized. Despite these limitations, testing is widely

used in practice to provide con�dence in the quality of

software. However, the emergence of new technologies,

such as component-based systems and product families,

and the increased emphasis on software quality, high-

light the need for improved testing methodologies.



Empirical
Studies

and Tools
Methods

Fundamental Research

other testing

testing component-

based systems

testing based on

creating effective 
testing processes

of testing techniques

demonstrating effectiveness

testing evolving
software

artifacts
using testing

precode artifacts

approaches

Methods, Tools,

and Processes

Development of

 High-Quality

Software

for

Practical
Testing

Status of

Testing

Methods, Tools,

and Processes

in 2000

Figure 1: Software Testing Roadmap.

This report focuses on testing techniques. Reasoning

and Analysis: A Roadmap by Jackson, another report in

this series, provides additional information about static-

analysis techniques. Instead of presenting a comprehen-

sive overview of the state of the art or state of the prac-

tice in software testing, the report presents information

about the current state only for those approaches that

are encountered on the road to our destination of pro-

viding practical testing methods, tools, and processes

that will help software engineers develop high-quality

software. The next section outlines some of future direc-

tions in testing. The report closes by giving summary

remarks and providing pointers to resources for more

information.

2 ROADMAP FOR THE FUTURE

Testing is one of the oldest forms of veri�cation. Thus,

there are numerous testing techniques that have been

developed and used by developers to help them increase

their con�dence that the software has various qualities.

The ultimate goal of software testing is to help engi-

neers construct systems with high quality. Testing is

thus used by developers of all types of systems. As tech-

nology improves, it has become possible to apply test-

ing techniques to larger systems. However, widespread

use of systematic testing techniques is not common in

industry. For example, although a number of code-

based testing techniques have been developed for unit

testing, studies show that even the weakest forms of

these techniques are not being employed by many prac-

titioners. For another example, although retesting after

software modi�cations (regression testing) can be auto-

mated, studies show that many practitioners still per-

form this task manually.

Figure 1 shows a roadmap for testing that leads to the

destination: providing practical testing methods, tools,

and processes that can help software engineers develop

high-quality software. Progress toward this destination

requires fundamental research, creation of new methods

and tools, and performance of empirical studies to fa-

cilitate transfer of the technology to industry. As the

arrows in the �gure show, areas may be revisited on

the way to the destination. For example, after perform-

ing empirical studies using a prototype tool that imple-

ments algorithms for testing component-based software,

both the research and the method and tool development

may be revisited.

Fundamental Research

Research in many areas of testing has provided advances

that hold promise for helping us reach the goal of pro-

viding practical tools that can help software engineers

develop high-quality software. Additional work, how-

ever, needs to be done in a number of related areas, as

illustrated in Figure 1. For example, in providing tech-

niques for testing evolving software, we may incorporate

techniques for architecture-based testing or techniques

2



that combine static analysis with testing.

Testing Component-Based Systems

The increased size and complexity of software systems

has led to the current focus on developing distributed

applications that are constructed from component-

based systems. A component-based system is com-

posed primarily of components: modules that encap-

sulate both data and functionality and are con�gurable

through parameters at run-time [25]. Given the increas-

ing incidence of component-based systems, we require

eÆcient, e�ective ways to test these systems.

The issues that arise in the testing of component-based

systems can be viewed from two perspectives: the

component-provider perspective and the component-

user perspective. The component-provider perspec-

tive addresses testing issues that are of interest to

the provider of software components. The component

provider views the components independently of the

context in which the components are used. The provider

must therefore, e�ectively test all con�gurations of the

components in a context-independent manner. The

component-user perspective, in contrast, addresses test-

ing issues that concern the user of software components.

The component user (or application developer) views

the components as context-dependent units because the

component user's application provides the context in

which the components are used. The component user is

thus concerned with only those con�gurations or aspects

of the behavior of the components that are relevant to

the component user's application.

An important issue for the component user concerns the

problems resulting from using commercial o�-the-shelf

software (COTS). Although there are no regulations im-

posed on developers of COTS, many critical applica-

tions are requiring the use of these systems to standard-

ize development and reduce costs [26]. Another factor

that distinguishes the issues that are pertinent in the

two perspectives is the availability of the source code

of the components: the component providers have ac-

cess to the source code, whereas the component users

typically do not.

Researchers have extended existing testing techniques

for use by component providers. For example, Doong

and Frankl describe techniques based on algebraic spec-

i�cations [13], Murphy et al. describe their experiences

with cluster and class testing [28], and Kung et al.

present techniques based on object states [22]. Other re-

searchers have extended code-based approaches for use

by component providers for testing individual compo-

nents. For example, Harrold and Rothermel present

a method for using data-ow testing that computes

de�nition-use pairs for use in class testing [20]. Buy

et al. present a similar approach that uses symbolic

evaluation to generate sequences of method calls that

will execute the de�nition-use pairs [6].

Researchers have considered ways that component users

can test systems that are constructed from compo-

nents. Rosenblum proposed a theory for test-adequacy

of component-based software [38]. His work extends

Weyuker's set of axioms that formalize the notion of test

adequacy [45], and provides a way to test the compo-

nent from each subdomain in the program that uses it.

Devanbu and Stubblebine present an approach that uses

cryptographic techniques to help component users ver-

ify coverage of components without requiring the com-

ponent developer to disclose intellectual property [12].

With additional research in these areas, we can expect

techniques and tools that will help component users test

their applications more eÆciently and e�ectively. We

need to understand and develop e�ective techniques for

testing various aspects of the components, including se-

curity, dependability, and safety; these qualities are es-

pecially important given the explosion of web-based sys-

tems. These techniques can provide information about

the results of the testing that will increase the con�-

dence of developers who use the components in their

applications.

We need to identify the types of testing information

about a component that a developer needs for testing

applications that use the component. For example, a

developer may want to measure coverage of the parts

of the component that that her application uses. To do

this, the component would need to be able to react to

inputs provided by the application, and record the cov-

erage provided by those inputs. For another example,

a component user may want to test only the integra-

tion of the component with her application. To do this,

the component user would need to be able to identify

couplings between her application and the component.

We need to develop techniques for representing and

computing the types of testing information that a com-

ponent user needs. Existing component standards, such

as COM and JavaBeans, supply information about a

component that is packaged with the component. Like-

wise, standards for representing testing information

about a component, along with eÆcient techniques for

computing and storing this information, could be de-

veloped. For example, coverage information for use in

code-based testing or coupling information for use in in-

tegration testing could be stored with the component or

techniques for generating the information could be de-

veloped by the component provider and made accessible

through the component interface.

Finally, we need to develop techniques that use the in-

formation provided with the component for testing the

application. These techniques will enable the compo-

3



nent user to e�ectively and eÆciently test her applica-

tion with the component.

Testing Based On Precode Artifacts

Testing techniques can be based on precode artifacts,

such as design, requirements, and architecture speci�-

cations. In the past, many of these techniques have

been based on informal speci�cations. However, more

formal approaches are being used for these speci�ca-

tions. Techniques that use these precode speci�cations

for tasks such as test-case planning and development can

help improve the overall testing process. This section

discusses the use of software architectures for testing.

The increased size and complexity of software systems

has also led to the emergence of the discipline of soft-

ware architecture. Software architecture involves the

description of elements from which systems are built,

interactions among those elements, patterns that guide

their composition, and constraints on these patterns

[43]. Software architecture styles de�ne families of sys-

tems in terms of patterns of structural organization.

Given the increasing size and complexity of software

systems, techniques are needed to evaluate the quali-

ties of systems early in their development. Through its

abstractions, software architecture provides a promising

way to manage large systems.

The emerging formal notations for software architecture

speci�cation can provide a basis on which e�ective tech-

niques for testing and analysis can be developed. Re-

cently, researchers have begun to investigate ways to use

these formal architectural speci�cations as a basis on

which to develop architectural-based analysis and test-

ing techniques. For example, Eickelmann and Richard-

son consider the ways in which architectural speci�ca-

tion can be used to assess the testability of a software

system [14]; Bertolino et al. consider the ways in which

the architectural speci�cation can be used in integration

and unit testing [5]; Harrold presents some approaches

for using software architecture speci�cation for e�ective

regression testing [17]; and Richardson, Sta�ord, and

Wolf present a comprehensive architecture-based ap-

proach to testing that includes architecture-based cov-

erage criteria, architectural testability, and architecture

slicing [35]. These architecture-based testing techniques

and tools can facilitate dynamic analysis, and thus, de-

tection of errors, much earlier in the development pro-

cess than is currently possible

To expedite research in this area, in 1998, the Italian

National Research Council (CNR) and the U. S. Na-

tional Science Foundation (NSF) sponsored the Work-

shop on the Role of Software Architecture in Test-

ing and Analysis [36]. This workshop brought to-

gether researchers in software architecture, testing,

and analysis to discuss research directions. A re-

port on the results of this workshop can be found at

http://www.ics.uci.edu�djr/rosatea.

Additional research in this area promises to provide sig-

ni�cant savings in software testing. We need to develop

techniques that can be used with the architectural speci-

�cation for test-case development. These techniques can

provide test-cases requirements for testing various as-

pects of the architecture. This approach will let various

aspects of the system be tested early in development.

These techniques can also provide functional test-case

requirements that can be used to develop test cases for

use in testing the implementation. These techniques

will facilitate the systematic development of test cases

early in the development process. Finally, these tech-

niques can provide ways for test cases to be generated

automatically. These techniques would enable eÆcient

generation of test cases at an early stage of the software

development.

We also need to develop techniques that can be used

to evaluate software architectures for their testability.

With this information, developers can consider alterna-

tive designs and select the one that suits their testability

requirements. We can also apply this architecture-based

testability information for identi�cation of designs that

will facilitate more eÆcient testing of modi�ed versions

of the software or various members of product families.

Most of the testing e�ort is aimed at veri�cation of soft-

ware that has been modi�ed or of derivative versions of

the software. Thus, improved management of retesting

will reduce the cost of maintaining the software.

Testing Evolving Software

Regression testing, which attempts to validate modi-

�ed software and ensure that no new errors are intro-

duced into previously tested code, is used extensively

during software development and maintenance. Regres-

sion testing is used to test safety-critical software that

must be retested often, to test software that is being de-

veloped under constant evolution as the market or tech-

nology changes, to test new or modi�ed components of

a system, and to test new members in a family of sim-

ilar products. Despite e�orts to reduce its cost, regres-

sion testing remain one of the most expensive activities

performed during a software system's lifetime: studies

indicate that regression testing can account for as much

as one-third of the total cost of a software systems [24].

Because regression testing is expensive, but important,

researchers have focused on ways to make it more eÆ-

cient and e�ective. Research on regression testing spans

a wide variety of topics. Chen et al. [7], Ostrand and

Weyuker [31], and Rothermel and Harrold [40] devel-

oped techniques that, given an existing test suite and

information about a previous testing, select a subset of

4



the test suite for use in testing the modi�ed software.1

Harrold, Gupta, and So�a [18] and Wong et al. [46]

present techniques to help manage the growth in size of

a test suite. Leung and White [24] and Rosenblum and

Weyuker [37] presented techniques to assess regression

testability. These techniques permit estimation, prior

to regression test selection, of the number of tests that

will be selected by a method. Other techniques, such

as that developed by Sta�ord, Richardson, and Wolf

evaluate the diÆculty of regression testing on precode

artifacts [44].

Because most software development involves applying

modi�cations to existing software, additional research

that provides e�ective techniques for testing the modi-

�ed software can signi�cantly reduce software develop-

ment costs. We need to develop techniques that can be

applied to various representations of the software, such

as its requirements or architecture, to assist in selec-

tive retest of the software. These techniques will let us

identify existing test cases that can be used to retest

the software. These techniques will also let us identify

those parts of the modi�ed software for which new test

cases are required.

We also need to develop techniques to assist in man-

aging the test suites that we use to test the software.

E�ective techniques that can reduce the size of a test

suite while still maintaining the desired level of cover-

age of the code or requirements will help reduce testing

costs. Techniques that let us identify test cases that,

because of modi�cations, are no longer needed will also

help to reduce the cost of testing. Because the testing

may be performed often, there may not be time to run

the entire test suite. Thus, we need techniques that will

let us prioritize test cases to maximize (or minimize)

some aspect of the test cases such as coverage, cost, or

running time. These techniques can help testers �nd

faults early in the testing process.

Finally, we need to develop techniques that will let us

assess the testability of both software and test suites.

Techniques that will let us assess the testability of the

software using pre-code artifacts promise to provide the

most signi�cant savings. For example, using the soft-

ware architecture may let us evaluate alternative designs

and select those that facilitate eÆcient retesting of the

software. These techniques can be applied to evolving

software and product families to help identify the most

eÆcient designs. Techniques that will let us assess the

testability of a test suite will also provide savings. For

example, a test suite that contains test cases that vali-

date individual requirements may be more eÆcient for

use in regression testing than one in which a single test

cases validates many requirements.

1Rothermel and Harrold present comprehensive comparison of

regression-test selection techniques [39].

Demonstrating E�ectiveness Of Testing Techniques

Because testing is one of the oldest forms of veri�cation,

numerous testing techniques that have been developed

and used to help developers increase their con�dence

that the software has various qualities. Most of these

techniques focus on selection of the test cases. Good-

enough and Gerhart suggested how to evaluate criteria

for determining adequacy of test suites, and they fo-

cused on how to select test cases that inspire con�dence.

[16]

Since then, many techniques for selection of test cases

have been developed. Some testing techniques select

test cases that are based on the software's intended be-

havior without regard to the software's implementation

and others guide the selection of test cases that are

based on the code.

There have been some studies that demonstrate the ef-

fectiveness of certain test-selection criteria in revealing

faults. However, there are many areas for additional re-

search. We need to identify classes of faults for which

particular criteria are e�ective. To date, a number of

test-selection criteria been developed that target par-

ticular types of faults. Several researchers, including

Rapps and Weyuker [34] and Laski and Korel [23], de-

veloped testing criteria that focus test selection on the

data-ow in a program. For critical safety applica-

tions, it is estimated that over half of the executable

statements involve complex boolean expressions. To

test these expressions, Chilenski and Miller developed

a criterion, modi�ed condition/decision coverage, that

speci�cally concentrates the testing on these types of

statements [8].

Rothermel et al. developed testing techniques based on

existing code-based techniques to test form-based based

visual programming languages, which include commer-

cial spreadsheets [42]. The method is validation-driven

and incremental. Recent studies indicate that, given

the interface, users untrained in testing techniques can

e�ectively test their programs.

We need to perform additional research that provides

analytical, statistical, or empirical evidence of the e�ec-

tiveness of the test-selection criteria in revealing faults.

We also need to understand the classes of faults for

which the criteria are useful. Finally, we need to de-

termine the interaction among the various test-selection

criteria and �nd ways to combine them to perform more

e�ective testing.

Even for test-selection criteria that have been shown to

be e�ective, there may be no eÆcient technique for pro-

viding coverage according to the criteria. For example,

although mutation analysis [10] has been shown to be

e�ective adequacy criterion, researchers have yet to �nd

an eÆcient way to perform the analysis. Given e�ective

5



testing criteria, we need to develop ways to perform

the testing eÆciently. We also need to investigate tech-

niques that approximate complete satisfaction of the ad-

equacy criterion but are still suÆciently e�ective. For

example, consider performing data-ow testing on pro-

grams that contain pointer variables. Testing that con-

siders all data-ow relationships involving pointer vari-

ables may be too expensive to perform. However, some

preliminary results suggest that the test suite obtained

without considering these pointer relationships may pro-

vide suÆcient coverage. Additional research can deter-

mine if such approximations of complete coverage suf-

�ces for data-ow and other testing criteria.

Establishing E�ective Processes For Testing

An important aspect of testing is the process that we

use for planning and implementing it. Beizer (and many

other authors) describes a process for testing [4]. These

techniques typically consist of construction of a test plan

during the requirements gathering phase and implemen-

tation of the test plan after the implementation phase.

To develop its software, Microsoft Inc uses a di�erent

model, which (1) frequently synchronizes what people

are doing and (2) periodically stabilizes the product in

increments as a project proceeds. These activities are

done continually throughout the project. An important

part of the model builds and tests a version of the soft-

ware each night [9]. Richardson et al. advocate the idea

of a perpetual testing process.2 Their perpetual testing

project is building the foundation for treating analysis

and testing as on-going activities to improve quality.

Perpetual testing is necessarily incremental and is per-

formed in response to, or in anticipation of, changes in

software artifacts or associated information.

A process for regression testing is implicit in selective

regression testing techniques [7, 31, 40, 46]. For these

techniques to be employed, testing must be performed

on one version of the software, and testing artifacts, such

as input-output pairs and coverage information, must be

gathered. These artifacts are used by the techniques to

select test cases for use in testing the next version of

the software. Onoma et al. [29] present an explicit pro-

cess for regression testing that integrates many key test-

ing techniques into the development and maintenance of

evolving software. This process considers all aspects of

development and maintenance.

Additional research can validate these existing models.

For example, does a nightly build and test, such as that

performed by Microsoft, reduce the amount of testing

that is required later? For another example, how of-

ten do testing artifacts need to be compute for e�ec-

tive regression-test selection? Additional research can

also develop new process models for testing and vali-

2More information can be found at the Perpetual Testing home

page: http://www.ics.uci.edu/�djr/edcs/PerpTest.html.

date these models.

Although testing is important for assessing software

qualities, is has several limitations: it can show only the

presence of faults, not their absence; it cannot show that

the software possesses certain qualities; and the results

obtained from the testing often cannot be generalized.

A process for developing high-quality software, however,

could combine testing with other quality tools. Oster-

weil et al. [30] suggested that various quality techniques

and tools could be integrated to provide value consider-

ably beyond what the separate technologies can provide.

We need to understand the way in which these various

testing and analysis techniques are related, and develop

process models that incorporate them. A process that

combines static analysis techniques with testing has the

potential to improve quality and reduce costs.

Using Testing Artifacts

The process of testing produces many artifacts. Arti-

facts from the testing include the execution traces of

the software's execution with test cases. These execu-

tion traces may include information about which state-

ments were executed, which paths in the program was

executed, or which values particular variables got during

the execution. Artifacts from the testing also include re-

sults of the test-case execution, such as whether a test

passed or failed. These artifacts can be stored for use

in retesting the software after it is modi�ed.

Given the magnitude and complexity of these artifacts,

they can also be useful for other testing and software

engineering tasks. Researchers have begun to investi-

gate new ways to use these artifacts. Many techniques

have been developed that use execution traces. Pan,

DeMillo, and Spa�ord present a technique that uses dy-

namic program slices,3 which are derived from execution

traces, along with the pass/fail results for the execu-

tions, to localize faulty code [32]. They apply a num-

ber of heuristics, which consider various combinations

of the intersections and unions of the dynamic slices for

the subset of the test suite that passed and the subset of

the test suite that failed. In empirical studies on small

subjects, the results of applying the heuristics helped to

localize the faulty code.

Ernst et al. present another technique that uses the ex-

ecution traces [15]. Their approach uses the execution

traces that contain values, at each program point, for

each variable under consideration. The goal of their ap-

proach is to identify program invariants. After repeated

execution of the program with many test cases, the ap-

proach provides a list of likely invariants in the program.

3A dynamic program slice for a program point, a variable, and

a test case is the set of all statements in the program that af-

fected (either directly or indirectly) the value of the variable at

the program point when the program is run with the test case.

6



Their empirical results show that this approach can be

quite successful in identifying these invariants.

Other researchers have developed techniques that use

coverage information for software engineering tasks.

Rosenblum and Weyuker [37] present a technique that

uses coverage information to predict the magnitude of

regression testing. Their technique predicts, on average,

the percentage of the test suite that must be retested

after changes are made to a program. Later work by

Harrold et al. provided additional evaluation of the

work, and presented an improved model of prediction

[19]. Rothermel and Harrold present techniques based

coverage information to select test cases from a test suite

for use in regression testing [40]. Several researchers

have used testing artifacts for test-suite minimization

and prioritization [18, 41, 46]. Ball presented a tech-

nique that performs concept analysis on coverage infor-

mation to compute relationships among executed enti-

ties in the program. Comparing these dynamic rela-

tionships with their static counterparts can help testers

uncover properties of their test suite [2].

Other researchers have provided visualization tech-

niques for testing artifacts. For example, Ball and Eick

present a system for visualizing information, including

testing information such as coverage, for large programs

[3], and Telcordia Technologies has several tools that

combing analysis and visualization of testing artifacts

to help software maintainers [21].

Although there have been some successes in using test-

ing artifacts for software engineering tasks, this research

is in its infancy. Additional research can verify that ex-

isting techniques provide useful information for software

engineers. For example, we need to determine whether

the heuristics developed by Pan et al. help to localize

faulty code when there are many faults or interacting

faults faults in a program. These results can provide a

starting point for additional research.

Additional research in this area can also provide new

techniques that use testing artifacts for software engi-

neering tasks. We need to identify the types of infor-

mation that software engineers and managers require

at various phases of the software's development. We

also need techniques that will �nd important relation-

ships that exist in the software. Techniques such as data

mining may help with this task. Given these types of

information, we need to develop techniques to present

the information in a useful way. Techniques for e�ec-

tive visualization of the testing information can provide

e�ective tools for software engineers.

Other Testing Techniques

In addition to the areas for fundamental research dis-

cussed in the preceding sections, there are many other

areas in which techniques could help us reach our des-

tination. This section briey presents a few of them.

Generating test data (inputs for test cases) is often a

labor-intensive process. To date, a number of techniques

have been presented that generate test data automati-

cally. Most of these techniques, however, are applicable

for unit testing, and may not scale to large systems.

We need to develop automatic or semi-automatic test-

data generation techniques that testers can use for large

systems. These data could be generated using precode

representations or using the code itself.

Many testing techniques require some type of static

analysis information. For example, data-ow analysis is

useful for data-ow testing of software units and for in-

tegration testing when these units are combined. How-

ever, existing techniques for computing precise data-

ow information are prohibitively expensive. We need

to develop scalable data-ow analysis techniques that

can be used to compute the required information.

Current techniques for measuring adequacy for rigorous

testing criteria, such as data-ow, require expensive in-

strumentation. If we expect to use these more rigorous

criteria, we need eÆcient instrumenting and recording

techniques. We need to develop eÆcient techniques for

instrumenting and recording coverage

Methods and Tools

Ultimately, we want to develop eÆcient methods and

tools that can be used by practitioners to test their

software. Peeger presented reasons why software en-

gineering technology requires, on average 18 years to

be transfered into practice [33]. Researchers must work

with industry to reduce this time for technology trans-

fer. She also presented a comprehensive approach to

e�ecting that transfer. One important aspect of this

approach for technology transfer is the development of

methods and tools that can be used in industrial set-

tings to demonstrate the e�ectiveness of the techniques

we create. We must develop methods and tools that im-

plement the techniques and that can be used to demon-

strate their e�ectiveness.

To accomplish this, an important criterion is that these

these methods and tools be scalable to large systems.

Industrial systems are large and complex and the meth-

ods and tools must function on these systems. Scalable

tools will provide useful information in an eÆcient way.

Researchers often demonstrate the e�ectiveness of their

techniques using tools that function on contrived or toy

systems. Thus, the results of their experimentation with

these tools may not scale to large industrial systems. We

need to develop robust prototypes, identify the context

in which they can function, and use them to perform

experiments to demonstrate the techniques.

In developing these tools, we need to consider compu-

7



tational tradeo�s. For example, we need to consider

precision versus eÆciency of the computation, and we

need to consider storing information versus computing

it on demand as needed. Murphy and Notkin [27] and

Atkinson and Griswold [1] provide further discussion of

some of these tradeo�s.

An eÆcient approach for development of methods and

tools is to provide ways to automatically create them; a

similar approach is used to automatically generate com-

pilers. One example of such an approach is the Genoa

framework for generating source code analysis tools [11].

Genoa is retargetable to di�erent parsers; parse tree

data structures built by such parsers are used in the

analysis. This approach could be used to automatically

generate specialized testing analysis or tools.

After demonstrating, with the prototype methods and

tools, that the techniques can be e�ective in practice,

we must work to develop methods and tools that are at-

tractive to practitioners. The methods and tools should

be easy to use and their output should be presented

in a clear and understandable way. The methods and

tools should also be easy to learn. Finally, as much as

possible, testing tools should be automated and require

minimal involvement by the software engineers.

Empirical Studies

Closely associated with the development of methods and

tools is the performance of empirical studies. Using the

methods and tools, these studies will help to demon-

strate the scalability and usefulness of the techniques

in practice. These studies will also provide feedback

that will help guide fundamental research and tool de-

velopment. Both the transfer of scalable techniques into

practice, and the creation of such techniques, require

signi�cant empirical studies.

There is much evidence of the growing emphasis on ex-

perimentation. In addition to analytical evaluation of

scalability and usefulness of software engineering tech-

niques, more and more papers in proceedings and jour-

nals reporting these techniques also report the results

of empirical studies that attempt to demonstrate these

qualities. Moreover, a new international journal, Em-

pirical Software Engineering,4 provides a forum for re-

porting on the methods and results of various types

of empirical studies along with descriptions of infras-

tructures for supporting such experimentation. Finally,

funding agencies, such as National Science Foundation,

are supporting a number of large projects for work in

experimental systems.

E�orts to empirically evaluate testing techniques faces a

number of obstacles. One obstacle, which was discussed

in the preceding section, is the diÆculty of acquiring

4More information can be found at the journal home page:

http://kapis.www.wkap.nl/aims scope.htm/1382-3256.

suÆciently robust implementations of those techniques.

A second obstacle to signi�cant experimentation with

is the diÆculty of obtaining suÆcient experimental sub-

jects. The subjects for testing experimentation include

both software and test suites. Practitioners are reluc-

tant, however, to release this types of experimental sub-

ject.

We need to design controlled experiments to demon-

strate our techniques. We also need to collect sets of

experimental subjects, and, if possible, make them avail-

able to researchers. We also need to perform experimen-

tation with industrial partners. Testing techniques can

be implemented in the industry environment, and indus-

trial subjects can be used for experimentation. If these

subjects cannot be make available publicly, we may be

able to create sanitized information that would reveal

no proprietary information but would still be useful for

experimentation.

3 CONCLUDING REMARKS

Historically, testing has been widely used as a way to

help engineers develop high-quality systems. However,

pressure to produce higher-quality software at lower

cost is increasing. Existing techniques are not suÆcient

for this purpose. To make progress in providing eÆ-

cient testing techniques that can help engineers produce

higher-quality software, there are a number of challeng-

ing areas for research, including fundamental research,

development of e�ective methods and tools, and per-

formance of empirical studies that will help to transfer

the technology to industry. This paper has presented

an overview of some of those areas.

Other reports in this series, such as Metrics: A

Roadmap by Fenton, Reliability and Dependability: A

Roadmap by Littlewood and Strigini, Software Engi-

neering for Safety: A Roadmap by Lutz, Software En-

gineering for Security: A Roadmap by Devanbu, and

Reasoning and Analysis: A Roadmap by Jackson pro-

vide additional information about veri�cation. Several

recent workshops, including the Workshop on Strate-

gic Directions (June 1996) sponsored by Association of

Computing Machinery (ACM), National Science Foun-

dation (NSF), and Computing Research Association

(CRA), International Workshop on the Role of Software

Architecture in Testing and Analysis (July 1998), spon-

sored by the Italian National Research Council (CRA)

and the U.S. National Science Foundation (NSF), and

the International Conference on Software Engineering

Workshop on Testing Distributed Component-Based

Systems (May 1999), have addressed speci�c testing is-

sues.

A number of web sites contain links to a wealth of infor-

mation about testing, including papers, reports, books,

conferences, journals, projects, tools, educational re-

8



sources, and people. Some examples of these sites

are Middle Tennessee State's STORM Software Testing

Online Resources at http://www.mtsu.edu/�storm/,

Reliable Software Technology's Software Assurance

Hotlist at http://www.rstcorp.com/hotlist/, and Soft-

ware Research Institute's Software Quality Hotlist

at http://www.soft.com/Institute/HotList/index.html.

Online forums include the net newsgroup

comp.software.testing.

4 Acknowledgments

The author is supported by NSF under NYI Award

CCR-9696157 and ESS Award CCR-9707792 to Ohio

State University and by a grant from Boeing Commer-

cial Airplanes.

REFERENCES

[1] D. C. Atkinson and W. G. Griswold. The design of

whole-program analysis tools. In Proceedings of the

18th International Conference on Software Engine

ering, pages 16{27, March 1996.

[2] T. Ball. The concept of dynamic analysis. In Pro-

ceedings of the Joint Seventh European Software

Engineering Conference (ESEC) and Seventh ACM

SIGSOFT International Symposium on the Foun-

dations of Software Engineering, September 1999.

[3] T. Ball and S. G. Eick. Software visualization in

the large. Computer, 29(4):33{43, April 1996.

[4] B. Beizer. Black-Box Testing. John Wiley and

Sons, New York, NY, 1995.

[5] A. Bertolino, P. Inverardi, H. Muccini, and

A. Rosetti. An approach to integration testing

based on architectural descriptions. In Proceedings

of the IEEE ICECCS-97.

[6] U. Buy, A. Orso, and Pezz�e. Issues in testing

distributed component-based systems. In Proceed-

ings of the First International Workshop on Test-

ing Distribu ted Component-Based Systems, May

1999.

[7] Y. F. Chen, D. S. Rosenblum, and K. P. Vo. Test-

Tube: A system for selective regression testing.

In Proceedings of the 16th International Confer-

ence on Software Engin eering, pages 211{222, May

1994.

[8] J. J. Chilenski and S. P. Miller. Applicability of

modi�ed condition/decision coverage to software

testing. Software Engineering Journal, 9(5):191{

200.

[9] M. A. Cusamano and R. Selby. How microsoft

builds software. Communications of the ACM,

40(6):53{61, June 1997.

[10] R. A. DeMillo. Test Adequacy and Program Muta-

tion. In Eleventh, pages 355{356, Pittsburgh, PA,

May 16{18 1989. IEEE Computer Society Press.

[11] P. Devanbu. GENOA - A customizable, front-end

retargetablesource code analysis framework. ACM

Transactions on Software Engineering and Method-

ology, 9(2), April 1999.

[12] P. Devanbu and S. Stubblebine. Cryptographic ver-

i�cation of test coverage claims. IEEE Transactions

on Software Engineering, to appear.

[13] R.-K. Doong and P. G. Frankl. The ASTOOT ap-

proach to testing object-oriented programs. ACM

Transactions on Software Engineering and Method-

ology, 3(2):101{130, April 1994.

[14] N. S. Eickelmann and D. J. Richardson. What

makes one software architecture more testable than

another? In Proceedings of the International Soft-

ware Architecture Symposium, October 1996.

[15] M. D. Ernst, J. Cockrell, W. Griswold, and

D. Notkin. Dynamically discovering likely program

invariants to support program evolution. In Pro-

ceedings of the 21st International Conference on

Software Engineering, pages 213{224, May 1999.

[16] J. B. Goodenough and S. L. Gerhart. Toward a

theory of test data selection. IEEE Transactions of

Software Engineering, pages 156{173, June 1975.

[17] M. J. Harrold. Architecture-based regression test-

ing of evolving systems. In International Workshop

on the Role of Software Architecture in Testing and

Analysis, July 1998.

[18] M. J. Harrold, R. Gupta, and M. L. So�a. A

methodology for controlling the size of a test suite.

ACM Trans. on Softw. Eng. and Methodology,

2(3):270{285, July 1993.

[19] M. J. Harrold, G. Rosenblum, D. Rothermel, and

E. J. Weyuker. Empirical Studies of a Prediction

Model for Regression Test Selection. IEEE Trans-

actions on Software Engineering, to appear.

[20] M. J. Harrold and G. Rothermel. Performing

dataow testing on classes. In Proceedings of the

Second ACM SIGSOFT Symposium on Founda-

tions of S oftware Engineering, pages 154{163, De-

cember 1994.

[21] J. R. Horgan. Mining system tests to aid software

maintenance. The Telcordia Software Visualization

and Analysis Research Team, Telcordia Technolo-

gies.

9



[22] D. Kung, N. Suchak, J. Gao,

P. Hsia, Y. Toyoshima, and C. Chen. On object

state testing. In Proc. of COMPSAC'94, 1994.

[23] J. W. Laski and B. Korel. A data ow oriented

program testing strategy. IEEE Transactions on

Software Engineering, 9(3):347{54, May 1983.

[24] H. K. N. Leung and L. White. Insights Into Regres-

sion Testing. In Proceedings of the Conference on

Software Maintenance, pages 60{69, October 1989.

[25] T. Lewis. The next 10; 0002 years, part II. IEEE

Computer, pages 78{86, May 1996.

[26] G. McGraw and J. Viega. Why COTS software in-

creases security risks. In Proceedings of the First

International Workshop on Testing Distribu ted

Component-Based Systems, May 1999.

[27] G. Murphy and D. Notkin. Lightweight source

model extraction. In Proceedings of the Third ACM

SIGSOFT Symposium on the Foundations o f Soft-

ware Engineering, pages 116{127, October 1995.

[28] G. Murphy, P Townsend, and P. Wong. Experi-

ences with cluster and class testing. Communica-

tions of the ACM, 37(9):39{47, 1994.

[29] K. Onoma, W-T. Tsai, M. Poonawala, and H. Sug-

anuma. Regression testing in an industrial envi-

ronment. Comm. of the ACM, 41(5):81{86, May

1988.

[30] L. J. Osterweil ET AL. Strategic directions in soft-

ware quality. ACM Computing Surveys, (4):738{

750, December 1996.

[31] T.J. Ostrand and E.J. Weyuker. Using dataow

analysis for regression testing. In Sixth Annual Pa-

ci�c Northwest Software Quality Conference, pages

233{247. Lawrence and Craig, September 1988.

[32] H. Pan, R. DeMillo, and E. H. Spa�ord. Failure

and fault analysis for software debugging. In Pro-

ceedings of COMPSAC '97, August 1997.

[33] S. L. Peeger. Understanding and improving tech-

nology transfer in software engineering. Journal of

Systems and Software, 47(2{3):111{124, July 1999.

[34] S. Rapps and E.J. Weyuker. Selecting software test

data using data ow information. IEEE Transac-

tions on Software Engineering, SE-11(4):367{375,

April 1985.

[35] D. Richardson, J. Sta�ord, and A. Wolf. A formal

approach to architecture-based testing. Technical

report, University of California, Irvine, 1998.

[36] D. J. Richardson, P. Inverardi, and A. Bertolino. In

Proceedings of the CNR-NSF International Work-

shop on the Role of Software Architecture in Test-

ing and Analysis, July 1998.

[37] D. Rosenblum and E. J. Weyuker. Using coverage

information to predict the cost-e�ectiveness of re-

gression testing strategies. IEEE Transactions on

Software Engineering, 23(3):146{156, March 1997.

[38] D. S. Rosenblum. Adequate testing of component-

based software. Technical Report Technical Report

UCI-ICS-97-34, August 1997.

[39] G. Rothermel and M.J. Harrold. Analyzing regres-

sion test selection techniques. IEEE Transactions

on Software Engineering, 22(8), August 1996.

[40] G. Rothermel and M.J. Harrold. A safe, eÆcient

regression test selection technique. ACM Trans-

actions on Software Engineering and Methodology,

6(2):173{210, April 1997.

[41] G. Rothermel, M.J. Harrold, J. Ostrin, and

C. Hong. An empirical study of the e�ects of mini-

mization on the fault-detectio n capabilities of test

suites. In Proceedings of the International Confer-

ence on Software Maintenance, November 1998.

[42] G. Rothermel, L. Li, C. DuPuis, and M. Burnett.

What you see is what you test: A methodology for

testing form-based visual programs. In Proceedings

of the 20th International Conference on Software

Engineering, pages 198{207, April 1998.

[43] M. Shaw and D. Garlan. Software Architecture Per-

spectives on an Emerging Discipline. Prentice Hall,

New Jersey, 1996.

[44] J. Sta�ord, D. J. Richardson, and A. L. Wolf.

Chaining: A dependence analysis technique for

software architecture. September 1997.

[45] E. J. Weyuker. Axiomatizing software test data

adequacy. IEEE Transactions on Software Engi-

neering, 12(12):1128{1138, December 1986.

[46] W. E. Wong, J. R. Horgan, S. London, and

H. Agrawal. A study of e�ective regression test-

ing in practice. In Proceedings of the Eighth Inter-

national Symposium on Software Reliability Engi-

neering, pages 230{238, November 1997.

10


