
Software Engineering and Middleware: A Roadmap
Wolfgang Emmerich

Dept. of Computer Science
University College London

London WC1E 6BT,UK
w.emmerich@cs.ucl.ac.uk

ABSTRACT
The construction of a large class of distributed systems can
be simplified by leveragingmiddleware, which is layered
between network operating systems and application com-
ponents. Middleware resolves heterogeneity, and facilitates
communication and coordination of distributed components.
State of-the-practice middleware products enable software
engineers to build systems that are distributed across a local-
area network. State-of-the-art middleware research aims to
push this boundary towards Internet-scale distribution, adap-
tive systems, middleware for dependable and wireless sys-
tems. The challenge for software engineering research is
to devise notations, techniques, methods and tools for dis-
tributed system construction that systematically build and
exploit the capabilities that middleware products deliver,
now and in the future.

1 INTRODUCTION
Various commercial trends have lead to an increasing de-
mand for distributed systems. Firstly, the number of merg-
ers between companies was higher last year than ever be-
fore and this trend is bound to continue. The different di-
visions of a newly merged company have to deliver unified
services to their customers and this usually demands an in-
tegration of their IT systems. The time frame is often so
short that building a new system is not an option and there-
fore existing system components have to be integrated into
a distributed system that appears as an integrating comput-
ing facility. Secondly, the time pressures on providing new
services or existing services to new customers are increas-
ing. Often this can only be achieved if components are pro-
cured off-the-shelf and then integrated into a system rather
than built from scratch. Components to be integrated often
have incompatible requirements on the hardware and oper-
ating system platforms they run on and they then have to be
deployed on different hosts; the systems end up being dis-
tributed. Finally, the Internet provides new opportunities to

offer products and services to a vast number of potential cus-
tomers. In this setting, it is difficult to estimate the scalability
requirements. An e-commerce site that was designed to cope
with a given number of transactions per day may find itself
suddenly exposed to demand that is by orders of magnitude
larger. The required scalability cannot usually be achieved
by centralized or client-server architectures and these sys-
tems often have to be distributed.

The construction of distributed systems is appealing because
it can possibly solve all these problems. Distributed sys-
tems can integrate legacy components, thus preserving in-
vestment, they can decrease the time to market, they can
be scalable and tolerant against failures. The caveat, how-
ever, is that the construction of a truly distributed systems
is considerably more difficult than building a centralized
or client/server system. This is because there are multiple
points of failure in a distributed system, system components
need to communication with each other through a network,
which complicates communication and opens the door for
security attacks. Middleware has been devised in order to
conceal these difficulties from application engineers as much
as possible; and it is increasingly used in this capacity [6].

Host 2

Hardware

Network Operating System

Component 1 Component n…

Middleware

Host 1

Hardware

Network Operating System

Component 1 Component n…

Middleware

Host n-1

Hardware

Network Operating System

Component 1 Component n…

Middleware

Host n

Hardware

Network Operating System

Component 1 Component n…

Middleware

Net-
work

Figure 1: Middleware in Distributed System Construc-
tion [13]

As shown in Figure 1, middleware is layered between net-
work operating systems and application components and fa-
cilitates the communication and coordination of components
that are distributed across several networked hosts. The aim
of all middleware is to provide canned solutions that appli-
cation engineers can use to solve the problems of distributed
system construction that we mentioned above. The idea of
using middleware to build a distributed system is compara-
ble to using a database management system when building
an information sytem. It enables application engineers to ab-



stract from low-level details, such as concurrency control,
transaction management and network communication, and
lets them focus on application requirements.

In order to build distributed systems that meet the require-
ments, a software engineer has to know what middleware is
available, which one is best suited to the problem at hand,
and how that particular middleware can be used in the archi-
tecture, design and implementation of the system. Software
engineering research therefore has to devise the notations,
techniques, methods and tools that systematically build on
and exploit the capabilities that middleware offers.

The principal contribution of this paper is an assessment of
both, the state-of-practice that current middleware products
offer and the state-of-the-art in middleware research. Soft-
ware engineers increasingly use middleware to build dis-
tributed systems. Any research into distributed software en-
gineering that ignores this trend will only have limited im-
pact. We, therefore, analyze the influence that the increasing
use of middleware should have on the software engineering
research agenda.

This paper is further structured as follows. In Section 2,
we discuss some of the difficulties involved in building dis-
tributed systems and delineate requirements for middleware.
In Section 3, we use these requirements to attempt an assess-
ment of the support that current middleware products pro-
vide for distributed system construction. We then present an
overview of ongoing middleware research in Section 4 in or-
der to provide a preview of what future middleware products
might be capable of. We delineate in Section 5 a research
agenda for software engineering that builds on the capabili-
ties of current and future middleware and conclude the paper
in Section 6.

2 MIDDLEWARE REQUIREMENTS
In this section, we review in more detail why it is rather dif-
ficult to build a distributed system. These difficulties can-
not be solved by application designers alone; they need pre-
canned solutions from the middleware that they use. Thus,
solving these challenges provides the main requirements for
middleware.

Network Communication
As shown in Figure 1, the different components of a dis-
tributed system may reside on different hosts. In order for the
distributed system to appear as an integrated computing fa-
cility, the components have to communicate with each other.
This communication can only be achieved by using network
protocols, which are often classified by the ISO/OSI refer-
ence model [24]. Distributed systems are usually built on
top of the transport layer, of which TCP or UDP are good
examples. The layers underneath are provided by the net-
work operating system.

Different transport protocols have in common that they can
transmit messages between different hosts. Unfortunately,

message transmission is too low a level of abstraction for
software engineers who build distributed systems. They
need, for example, to be able to request parameterized ser-
vices from more than one remote components and may wish
to execute them as atomic and isolated transactions.

The parameters that a component requesting a service needs
to pass to a component that provides a service are often com-
plex data structures. These data structures need to be trans-
formed into a form that can be transmitted using a network
protocol, i.e. a sequence of bytes. This transformation is
referred to asmarshallingand the reverse is calledunmar-
shalling. If they need to be done manually, marshalling and
unmarshalling are notoriously tedious and error-prone activ-
ities; it is usually the middleware that performs marshalling
and unmarshalling.

Coordination
By virtue of the fact that components reside on different
hosts, distributed systems have multiple points of control.
Components on the same host execute concurrently with
each other. True parallelism can be achieved between com-
ponents that reside on different hosts. The concurrent and
possibly parallel execution of components, however, leads to
a need for synchronization when components communicate
with each other.

This synchronization can be achieved in different ways. A
component can be blocked while it waits for another compo-
nent to complete execution of a requested service. This form
of communication is often referred to assynchronous. Af-
ter issuing a request, a component can also continue to per-
form its operation and synchronize with the service provid-
ing component at a later point. This synchronization can then
be initiated by either the client component (using, for exam-
ple polling), in which case the interaction is often calledde-
ferred synchronous. Synchronization that is initiated by the
server is referred to asasynchronouscommunication. Thus
application engineers need some basic mechanisms that sup-
port various forms synchronization between communicating
components.

Sometimes more than two components are involved in a ser-
vice request. These forms of communications are also re-
ferred to asgroup requests. This is often the case when
more than one component is interested in events that occur
in some other component. An example is a distributed stock
ticker application where an event, such as a share price up-
date, needs to be communicated to multiple distributed dis-
play components, so that they can inform traders about the
update in a timely manner. Although the basic mechanisms
for this push-style communication are available in multi-
cast networking protocols [] additional support is needed to
achieve reliable delivery.

The modules or libraries that are part of a centralized appli-
cation reside in main memory while the application is exe-
cuting. This is inappropriate for distributed components for



the following reasons:

� Hosts sometimes have to be shut down and then compo-
nents hosted on these machines have to be stopped and
re-started when the host resumes operation;

� The resources required by all components on a host may
be greater than the resources the host can provide; and

� Depending on the nature of the application, components
may be idle for long periods and it would be a waste of
resources if they were kept in virtual memory all the
time.

For these reasons, we distributed components need to beac-
tivatedanddeactivatedindependently from the applications
that they execute. The middleware should therefore enable
component programmers to determine theactivation policies
that define when components are activated and de-activated,
whether requests are executed in new threads or whether re-
quests are queued.

Reliability
Network protocols have varying degrees of reliability. Pro-
tocols that are used in practice do not necessarily guarantee
that every packet that a sender transmits is actually received
by the receiver and that the order in which they are sent is
preserved. Thus, distributed system implementations have
to put error detection and correction mechanisms in place to
cope with these unreliabilities.

Unfortunately, reliable delivery of service requests and ser-
vice results does not come for free. Reliability has to be
paid for with decreases in performance. To allow engineers
to trade-off reliability and performance in a flexible manner,
different degrees of service request reliability are needed in
practice.

For communication about service requests between two
components, the reliabilities that have been suggested in the
distributed system literature arebest effort, at-most-once, at-
least-onceand exactly-once. Best effort service requests
do not give any assurance about the execution of the re-
quest. At-most-once requests are guaranteed to execute only
once. It may happen that they are not executed, but then
the requester is notified about the failure. At-least-once ser-
vice requests are guaranteed to be executed, possibly more
than once. The highest degree of reliability is provided by
exactly-once requests, which are guaranteed to be executed
once and only once.

Additional reliabilities can be defined for group requests. In
particular, the literature mentionsk-reliability, time-outs, and
totally-orderedrequests. K-reliability denotes that at least
K components receive the communication. Time-outs allow
the specification of periods after which no delivery of the
request should be attempted to any of the addressed compo-
nents. Finallytotally-orderedgroup communication denotes
that a request never overtakes a request of a previous group
communication.

The above reliability discussion applies to individual re-
quests. We can extend that and consider more than one re-
quest. Transaction [18] are an important primitive that is
used for building reliable distributed systems. Transactions
enable more than one request to be executed in anatomic,
consistency-preserving, isolatedanddurablemanner. This
means that the sequence of requests is either performed com-
pletely, or not at all. It enforces that every completed trans-
action is consistent. It demands that a transaction is isolated
from concurrent transaction and, finally that once the trans-
action is completed its effect cannot be undone. Every mid-
dleware that is used in critical applications needs to support
these distributed transactions.

Reliability may also be increased byreplicating compo-
nents [4], which means that components reside in more than
one copy on different hosts of the system. If one component
is unavailable, for example because its host needs to be re-
booted, a replica on a different host can take over and provide
the requested service. Sometimes component have an inter-
nal state and then the replication needs to keep these states
in sync. Again it is rather involved to engineer replication
manually, but application engineers expect the middleware
to support replication.

Scalability
Scalability denotes the ability to accommodate a growing fu-
ture load. In centralized systems or client/server systems,
scalability is limited by the load that the host of the cen-
tralized or server system can bear. This limitation can be
overcome by distributing the load across several hosts. The
challenge of building a scalable distributed system is to sup-
port changes in the allocation of components to hosts with-
out changing the architecture of the system or the design and
code of any component. This can only be achieved, if the dif-
ferent dimensions oftransparencyidentified in the ISO/ODP
reference model have to be respected in the design and ar-
chitecture of the system.Access transparency, for example
demands that the way a component accesses the services of
another component is independent of whether it is local or
remote. Another example islocation transparency, which
demands that in a component should not have to know the
physical location of another component from which it wants
to request a service. A detailed discussion of the different
transparency dimension is beyond the scope of this paper and
the reader is referred to [13].

If components can access services without knowing the
physical location and without changing the way they request
the service,load balancingmechanisms can migrate com-
ponents from one machine to another one in order to reduce
the load on one host and increase the load on another host.
It should again be transparent to users whether or not such
a migration occurred; this is referred to asmigration trans-
parency.

Also replication can be used for load balancing. Compo-



nents whose services are in high demand may have to exist
in multiple copies.Replication transparencydenotes that it
is transparent for the requesting components, whether they
obtain a service from the master component itself or from a
replica.

The different transparency criteria are very difficult if dis-
tributed systems are built entirely based on network proto-
cols. Middleware therefore have to support access, location,
migration and replication transparency. They have to provide
the basic mechanisms that administrators use to move com-
ponents to other hosts and to administer replication policies
that then make systems scale.

Heterogeneity
The components of distributed systems may be procured off-
the-shelf, may include legacy and new components. As a re-
sult they are often rather heterogeneous. This heterogeneity
presents itself in different dimensions: hardware and oper-
ating system platforms, programming languages and indeed
the middleware itself.

Hardware platforms use different encodings for atomic data
types, such as numbers and characters. Mainframes use the
EBCDIC character set, Unix servers may use 7-bit ASCII
characters, while Windows-based PCs use 16-bit Unicode
character encodings. Thus the character encoding of al-
phanumeric data that is sent across different types of plat-
forms has to be adjusted. Likewise, Mainframes and RISC
servers, for example, use big-endian representations for
numbers, which means that the most significant byte encod-
ing an integer, long or floating point number comes last. PCs,
however, use a little-endian representation where the signif-
icance of bytes decreases. Thus, whenever a number is sent
from a little-endian host to a big-endian host or vice versa,
the order of bytes with which this number is encoded needs
to be swapped.

When integrating legacy components with newly-built com-
ponents, it often occurs that different programming lan-
guages need to be used. These programming languages
may follow different paradigms. While legacy components
tend to be written in imperative languages, such as COBOL,
PL/I or C, newer components are often implemented using
an object-oriented programming language. Even different
object-oriented languages have considerable differences in
their object model, type system, approach to inheritance and
late binding. These differences need to be resolved when
components are integrated into a coherent computing facili-
ties.

As we shall see in the next section, there is not just one, but
many approaches to middleware. The availability of differ-
ent middleware solutions may present a selection problem,
but sometimes there is no optimal single middleware, and
multiple middleware systems have to be combined. This may
be for a variety of reasons. Different middleware may be
required due to availability of programming language bind-

ings, particular forms of middleware may be more appropri-
ate for particular hardware platforms (e.g. COM on Win-
dows and CORBA on Mainframes). Finally, the different
middleware systems will have different performance charac-
teristics and depending on the deployment a different mid-
dleware may have to be used as a backbone than the middle-
ware that is used for more local components. Thus middle-
ware will have to beinteroperablewith other implementa-
tions of the same middleware or even different types of mid-
dleware in order to facilitate distributed system construction.

3 MIDDLEWARE SOLUTIONS
We now discuss classify middleware products into different
categories. This classification allows us to abstract from par-
ticular products and provides a conceptual framework for
comparing the different approaches. When discussing each
of the classes, we see how it addresses the requirements that
we delineated in the previous section.

Transactional Middleware
Transaction-oriented middleware supports transactions
involving components that run on distributed hosts.
Transaction-oriented middleware uses the two-phase com-
mit protocol [3] to implement distributed transactions. The
products in this category include IBM’s CICS [22], BEA’s
Tuxedo [19] and Transarc’s Encina.

Network Communication: Transactional middleware en-
ables application engineers to define the services that server
components offer, implement those server components and
then client components can define transactions that request
those services. Client and server components can reside on
different hosts and therefore requests are transported via the
network in a way that is transparent to client and server com-
ponents.

Coordination: The client components can request services
using synchronous or asynchronous communication. Trans-
actional middleware supports various activation policies and
allows services to be activated on demand and deactivated
when they have been idle for some time. Activation can also
be permanent and then the server component resides in mem-
ory at any time.

Reliability: A client component can cluster more than one
service request into a transaction, even if the server compo-
nents reside on different machines. In order to implement
these transactions, transactional middleware has to assume
that the participating servers implement the two-phase com-
mit protocol. If server components are built using database
management systems, they can delegate implementation of
the two-phase commit to these database management sys-
tems. For this implementation to be portable, a standard has
been defined. This Open Distributed Transaction Processing
(DTP) Protocol, which has been adopted by the Open Group,
defines a programmatic interface for two-phase commit in its
XA-protocol [40]. DTP is widely supported by relational and
object-oriented database management systems. This means



that distributed components that have been built using any of
these database management systems can easily participate in
distributed transactions. This makes them fault-tolerant, as
they automatically recover to the end of all completed trans-
actions.

Scalability: Most transaction monitors support load bal-
ancing, and replication of server components. Replication
of servers is often based on replication capabilities that
the database management systems provide upon which the
server components rely.

Heterogeneity: Transactional middleware supports hetero-
geneity because the components can reside on different hard-
ware and operating system platforms. Data heterogeneity is
resolved when clients marshal actual service parameters and
servers return the result. This marshalling, however, needs
to be done manually by the component programmer and is
therefore tedious and error-prone. Also different database
management systems can participate transactions, due to the
standardized DTP protocol.

The above discussion has shown that transactional mid-
dleware simplifies the construction of distributed systems.
Transactional middleware, however, has several weaknesses.
Firstly, it creates too big an overhead if there is no need to
use transactions, or transactions with ACID semantics are in-
appropriate. This is the case, for example, when the client
performs long-lived activities. Secondly, marshalling and
unmarshalling between the data structures that a client uses
and the parameters that services require needs to be done
manually in many products, which is both time-consuming
and error-prone. Thirdly, although the API for the two-phase
commit is standardized, there is no standardized approach
for defining the services that server components offer. This
complicates porting a distributed system between different
transaction monitors.

Message-Oriented Middleware
Message-oriented middleware (MOM) supports the commu-
nication between distributed system components by facili-
tating message exchange. Products in this category include
IBM’s MQSeries [16] and Sun’s Java Message Queue [20].

Network Communication: Client components use MOM
to send a message to a server component across the network.
The message can be a notification about an event, but it can
also request execution of a service from the server compo-
nent. The content of such a message includes the service
parameters. The server responds to a request with a reply-
message to the client that contains result of the service exe-
cution.

Coordination: A strength of MOM is that this paradigm
supports asynchronous message delivery very naturally. The
client continues processing as soon as the middleware has
taken the message. Eventually the server will send a message
including the result and the client can collect that message at

an appropriate time. This achieves de-coupling of client and
server and leads to more scalable systems. The weakness,
at the same time, is that the implementation of synchronous
requests is cumbersome as the synchronization needs to be
implemented manually in the client. A further strength of
MOM is that it supports multi-casting; it can distribute the
same message to multiple receivers in a way that is transpar-
ent to clients.

Reliability: MOM achieves fault-tolerance by implement-
ing message queues that store messages temporarily on per-
sistent storage. The sender writes the message into the mes-
sage queue and if the receiver is unavailable due to a failure,
the message queue retains the message until the receiver is
available again.

In assessing the strengths and weaknesses of MOM, we can
note that it this class of middleware is particularly well-
suited for implementing distributed event notification and
publish/subscribe-based architectures. The persistence of
message queues means that this event notification can be
achieved in fault tolerant ways so that components receive
events when they restart after a failure. However, message-
oriented middleware also has some weaknesses. It only sup-
ports at-least once reliability; thus the same message could
be delivered more than once. Moreover, MOM does not sup-
port transaction properties, such as atomic delivery of mes-
sages to all or none receivers. There is only limited sup-
port for scalability and heterogeneity. Moreover, the support
for scalability and the resolution of heterogeneity is limited
as application builders have to resolve heterogeneous data
structures themselves. Finally, like with transaction moni-
tors, the marshalling of application data structures into mes-
sages has to be programmed by the application designer,
which makes the use of message-oriented middleware cum-
bersome.

Procedural Middleware
Remote Procedure Calls (RPCs) were invented by Sun Mi-
crosystems in the early 1980s as part of the Open Network
Computing (ONC) platform. Sun provided remote proce-
dure calls as part of all their operating systems and submit-
ted RPCs as a standard to the X/Open consortium, which
adopted it as part of the Distributed Computing Environment
(DCE) [34] and now RPCs are available on most Unix im-
plementations and also on Microsoft’s Windows operating
systems.

Network Communication: RPCs support the definition of
server components as RPC programs. An RPC program ex-
ports a number of parameterized procedures and associated
parameter types. Clients that reside on other hosts can invoke
those procedures across the network. Procedural middleware
implements these procedure calls by marshalling the param-
eters into a message that is sent to the host where the server
component is located. The server component unmarshalls
the message and executes the procedure and transmits mar-



shalled results back to the client, if required. Marshalling and
unmarshalling are implemented in client and server stubs,
that are automatically created by a compiler from an RPC
program definition.

Coordination: RPCs are synchronous interactions between
exactly one client and one server component. Asynchronous
and multi-cast communication is not supported directly by
procedural middleware. Procedural middleware supports
different forms of activating server components. Activation
policies define whether a remote procedure program is al-
ways available or has to be started on demand. For startup
on demand, the RPC server is started by aninetd daemon as
soon as a request arrives. Theinetd requires an additional
configuration table that provides for a mapping between re-
mote procedure program names and the location of programs
in the file system.

Reliability: RPCs are executed with at-most once seman-
tics. The procedural middleware returns an exception if an
RPC fails. Exactly-once semantics or transactions are not
supported by RPC programs.

Heterogeneity: Procedural middleware can be used with
different programming languages. Moreover, it can be used
across different hardware and operating system platforms.
Procedural middleware standards define standardized data
representations that are used as the transport representation
of requests and results. DCE, for example standardizes the
Network Data Representation (NDR) for this purpose. When
marshalling RPC parameters, the stubs translate hardware-
specific data representations into the standardized form and
the reverse mapping is performed during unmarshalling.

Procedural middleware is weaker than transactional middle-
ware and MOM as it is not as fault tolerant and scalable.
Moreover, the coordination primitives that are available in
Procedural middleware are more restricted as they only sup-
port synchronous invocation directly. Procedural middle-
ware improve transactional middleware and MOM with re-
spect to interface definitions from which implementations
that automatically marshal and unmarshal service parame-
ters and results. A disadvantage of procedural middleware
is that this interface definition is not reflexive. This means
that procedures exported by one RPC program cannot return
another RPC program. Object-oriented middleware resolve
this problem.

Object and Component Middleware
Object-oriented middleware evolved from RPCs. The de-
velopment of object-oriented middleware mirrored similar
evolutions in programming languages where object-oriented
programming languages, such as C++ evolved from proce-
dural programming languages such as C. The idea here is
to make object-oriented principles, such as object identifi-
cation through references and inheritance, available for the
development of distributed systems. Systems in this class of
middleware include the Common Object Request Broker Ar-

chitecture (CORBA) of the OMG [33, 35], the latest versions
of Microsoft’s Component Object (COM) [5] and the Re-
mote Method Invocation (RMI) capabilities that have been
available since Java 1.1 [27]. More recent products in this
category include middleware that supports distributed com-
ponents, such as Enterprise Java Beans [29]. Unfortunately,
we can only discuss and compare this important class of mid-
dleware briefly and refer to [8, 13] for more details.

Network Communication: Object middleware support dis-
tributed object requests, which mean that a client object re-
quests the execution of an operation from a server object that
may reside on another machine. The client object has to have
an object reference of the server object. Marshalling opera-
tion parameters and results is again achieved by stubs that
are generated from an interface definition.

Coordination: The default synchronization primitives in
object middleware are synchronous requests, which block
the client object until the server object has returned the
response. However, any other synchronization primitives
are supported, too. CORBA 3.0, for example, supports
both deferred synchronous and asynchronous object re-
quests. Object middleware supports different activation poli-
cies. These include whether server objects are active all the
time or started on-demand, but also whether new threads are
started if more than one operation is requested by concur-
rent clients, or whether they are queued and executed se-
quentially. CORBA also supports multi-casting of requests
through its event service. This service can be used to imple-
ment push-style architectures.

Reliability: The default reliability for object requests is at-
most once. Object middleware support exceptions, which
clients catch in order to detect that a failure occurred during
execution of the request. CORBA messaging, or the Notifi-
cation service [32] can be used to achieve exactly-once relia-
bility. Object middleware also supports the concept of trans-
actions. CORBA has an Object Transaction service [31] that
can be used to cluster requests from several distributed ob-
jects into transactions. COM is integrated with Microsoft’s
Transaction Server [21], and the Java Transaction Service [7]
provides the same capability for RMI.

Scalability: The support of object middleware for build-
ing scalable applications is still somewhat limited. Some
CORBA implementations support load-balancing, for exam-
ple by employing using name servers that return an object
reference for a server on the least loaded host, or using fac-
tories that create server objects on the least loaded host. Sup-
port for replication is still rather limited.

Heterogeneity: Object middleware supports heterogeneity
in many different ways. CORBA and COM both have multi-
ple programming language bindings so that client and server
objects do not need to be written in the same programming
language. They both have a standardized data representation
that they use to resolve heterogeneity of data across plat-



forms. Java/RMI takes a different approach as heterogene-
ity is already resolved by the Java Virtual Machine in which
both client and server objects reside. The different forms of
object middleware inter-operate. CORBA defines the IIOP
standard, which governs how different CORBA implementa-
tion exchange request data. Java/RMI leverages this protocol
and uses it as a transport protocol for remote method invoca-
tions, which means that a Java client can do a remote method
invocation of a CORBA server and vice versa. CORBA also
specifies an inter-working specification to Microsoft’s COM.

Object middleware provides very powerful component mod-
els. They integrate most of the capabilities of transactional,
message-oriented or procedural middleware. However, the
scalability of object middleware is still rather limited and this
prevents deploying the distributed object paradigm.

4 MIDDLEWARE STATE-OF-THE-ART
While middleware products are already successfully em-
ployed in industrial practice, they still have numerous short-
comings, which prevent their use in many application do-
mains. Their shortcomings lead to relatively inflexible sys-
tems that do not respond well to changing requirements; they
do not really scale beyond local area networks; they are not
yet dependable and are not suited to use in wireless networks.
These issues are being addressed by the state of the art mid-
dleware research that we now discuss.

Flexible Middleware
Trading: Most middleware products use naming for com-
ponent identification. MOMs use named message queues,
DCE has a Directory service, CORBA has a Naming service,
COM uses monikers and Java/RMI uses the RMIRegistry to
bind names to components. Before a client component can
make a request, it has to resolve a name binding in order
to obtain a reference to the server component. This means
that clients need to uniquely identify their servers, albeit in
a location-transparent way. In many application domains, it
is unreasonable to assume that client components can iden-
tify the component from which they can obtain a service.
Even if they can, this leads to inflexible architectures where
client components cannot dynamically adapt to better service
providers becoming available.

Tradinghas been suggested as an alternative to naming and
it offers more flexibility. The ISO ODP standard defines the
principal characteristics of trading [2]. The idea is similar to
the yellow pages of the telephone directory. Instead of using
names, location is based on service types. The trader regis-
ters the type of service that a server component offers and
the particularqualities of service(QoS) that it guarantees.
Clients can then query the trader for server components that
provide a particular service type and demand the QoS guar-
antees from them. The trader matches such a service query
with the service offers that it knows about and returns a com-
ponent reference to the client. From then on the client and
the server communicate without involvement of the trader.

The idea of trading has matured and is starting to be adopted
in middleware products. The OMG has defined a Trading
service [31] that adapts the ODP trader ideas to the dis-
tributed object paradigm and first implementations of this
service are becoming available. Thus trading enables the dy-
namic connection of clients with server components based
on the service characteristics rather than the server’s name.

Reflection: Another approach to more flexible execution en-
vironments for components isreflection. Reflection is well-
known from programming languages [17], where programs
use reflection mechanisms to discover the types or classes
that are known at run-time. Reflection is already supported
to some extend by current middleware products. The inter-
face repository and dynamic invocation interface of CORBA
enable client programmers to discover the types of server
components that are currently known and then dynamically
create requests from these components.

Current research into reflective middleware [9] goes beyond
reflective object and component models. It aims to support
meta object protocols [28]. These meta-object protocols are
used forinspectionand adaptationof the middleware ex-
ecution environment itself. [12] suggests, for example, to
use anenvironment meta-model. Inspection of the environ-
ment meta-model supports queries of the middleware’s be-
haviour upon events, such as message arrival, enqueing of
requests, unmarshalling, thread creation, scheduling of re-
quests. Adaptation of the environment meta-model enables
components to adjust the behaviour the middleware for any
of those events.

Application-level Transport Protocols: While marshalling
and unmarshalling is mostly best done by the middleware,
there are applications, where the middleware creates an un-
due overhead. This is particularly the case when there is an
application-specific data representation that is amenable for
transmission through a network that solves heterogeneity in
different data representations.

In [14] we investigate the combined use of middleware and
markup-languages, such as XML [14]. We suggest to trans-
mit XML documents as uninterpreted byte strings using mid-
dleware. This combination is motivated by the fact that XML
supports semantic translations between data structures and
by the fact that existing markup language definitions, such
as FpML [15] or FIXML [23] can be leveraged. On the
other had, the HTTP protocol with which XML was origi-
nally used is clearly inappropriate to meet reliability require-
ments.

Scalable Middleware
Although middleware is successfully used in scalable ap-
plications on local-area networks, current middleware stan-
dards and products impose limitations that prevent their use
in globally distributed systems. In particular, current middle-
ware platforms do not support replication to the extent that
is necessary for global distribution [30]. State of the art re-



search addresses this problem throughreplication.

Replication: Tanenbaum is addressing this problem for dis-
tributed object middleware in the Globe project [39]. The
aim of Globe is to provide an object-based middleware that
scales to a billion users. To achieve this aim, Globe makes
extensive use of replication. Unlike other replication mecha-
nisms, such as Isis [4], Globe does not assume existence of a
universally applicable replication strategy. It rather suggests
that replication has to be object-type specific, and therefore
not transparent to designers of server objects. Thus, Globe
assumes that each type of object provides its own replication
strategy. These replication strategies produce replicas of ob-
jects in a proactive way.

Real-time Middleware
A good summary of the state of the art in real-time middle-
ware has been produced in the EU funded CaberNet network
of excellence by [1].

Most current middleware products are only of limited use in
real-time and embedded systems because all requests have
the same priority. Moreover the memory requirements of
current middleware products prevent deployment in embed-
ded systems. These problems have been addressed by vari-
ous research groups. TAO [37] is a real-time CORBA pro-
totype developed that supports request prioritization and the
definition of scheduling policies. The CORBA 3.0 specifica-
tion [38] builds on this research and standardizes real-time
and minimal middleware. Products implementing this spec-
ification can be expected to be widely available within two
years.

Middleware for Mobile Computing
Current middleware products assume continuous availabil-
ity of high-bandwidth network connections. These cannot
be achieved with physically mobile hosts for various rea-
sons. Wireless local area network protocols, such as Wave-
LAN, do achieve reasonable bandwidth. However, they only
operate if hosts are within reach of a few hundred metres
from their base station. Network outages occur if mobile
hosts roam across areas covered by different base stations or
if they enter ‘radio shadows’. Wide-area wireless network
protocols, such as GSM have similar problems during cell
handovers. In addition, their bandwidth is by orders of mag-
nitude smaller; GSM achieves at most 9,600 baud. State of
the art wide area network, such as GSRM and UTMS will
improve this situation. However, they will not be available
for another two years.

Several problems occur when current middleware products
are used with these wireless network protocols. Firstly, they
all treat unreachability of server or client components as
exceptional situation and raise errors that client or server
component programmers have to deal with. Secondly, the
transport representation that is chosen for wired networks
with bandwidth beyond 100Mbit does not need to be size-
efficient. Middleware products therefore choose representa-

tions that simplify the translation between different hetero-
geneous data representations and the routing of messages to
their intended receivers. Such representation is inappropriate
when packets are sent through a 9,600 baud wireless connec-
tion.

Research into middleware for mobile computing aims to
overcome these issues by providing coordination primitives,
such as tuple spaces, that treat unreachability as normal
rather than exceptional situations. Moreover, they use com-
pressed transport representation to save bandwidth. A good
overview into the state of the art for mobile middleware is
given by [36] and we therefore avoid to delve into detail in
this paper.

5 SOFTWARE ENGINEERING & MIDDLEWARE
Two trends are important for the discussion of the impact of
middleware on software engineering research. Firstly, mid-
dleware products are conceived to deliver immediate benefits
in the construction of distributed systems. They are there-
fore rapidly adopted in industry. Secondly, middleware ven-
dors have a proven track record to incorporate middleware
research results into their products. An example is the ODP
Trader, which was defined in 1993, adopted as a CORBA
standard in 1997 and last year became available in the first
CORBA products. There is therefore a good chance that
some of the state-of-the-art research in the areas of flexible,
scalable, real-time and mobile middleware will become state
of the practice in 3-5 years.

Unless research into software engineering for distributed
systems delivers principles, notations, methods and tools that
are compatible with the capabilities that current middleware
products provide and that middleware research will gener-
ate in the future, software engineering research results will
only be of limited industrial significance. Industry will adopt
the middleware that is known to deliver the benefits and ig-
nore incompatible software engineering research. Middle-
ware products and research, however, only support program-
ming and largely ignore all other activities that are needed
in software processes for distributed systems. We therefore
have a chance to achieve a symbiosis between software engi-
neering and middleware. The aim of this section is to identify
the software engineering research themes that will lead to
the principles, notations, methods and tools that are needed
to support all life cycle activities when building distributed
systems using middleware.

Requirements Engineering
The challenges of co-ordination, reliability, scalability and
heterogeneity in distributed system construction that we dis-
cussed in Section 2 and that engineers are faced with are of
anon-functionalnature. Software engineers thus have to de-
fine software architectures that meet these non-functional re-
quirements. However, the relationship between these non-
functional requirements and software architectures is only
very poorly understood. We first discuss the requirements



engineering perspective of this relationship.

Existing requirements engineering methods tend to have a
very strong focus on functional requirements. In particu-
lar the object-oriented and use-case driven approaches of Ja-
cobsen [26] and more recently Rational [25] more or less
completely ignore non-functional concerns. A goal-oriented
approach, such as [10] seems to provide a much better ba-
sis, but needs to be augmented to specifically address non-
functional concerns.

For non-functional characteristics to be a useful input to
middleware-oriented architecting, these non-functional con-
cerns need to bequantified. For example, in order to engi-
neer scalable architectures, engineers need to have quanti-
tative requirements models for the required response time,
peak loads and overall transaction or data volume that an
architecture is expected to scale up to. Thus requirements
engineering research needs to devise methods and tools that
can be used to elicit and model non-functional requirements
from a quantitative point of view.

Once a particular middleware system has been chosen for a
software architecture, it is extremely expensive to revert that
choice and adopt a different middleware or a different ar-
chitecture. The choice is influenced by the non-functional
requirements. Unfortunately, requirements tend to be un-
stable and change over time. Non-functional requirements
often change when the setting in which the system is em-
bedded changes, for example when new hardware or oper-
ating system platforms are added as a result of a merger, or
when scalability requirements increase as a result of having
to built web-based interfaces that customers use directly. Re-
quirements engineering methods, therefore, not only have to
identify the current requirements, but also elicit and estimate
the ranges in which they can evolve during the planned life
time of the distributed system.

Software Architecture
There is only very little work on the influence of middleware
on software architectures, with [11] being a notable excep-
tion. Indeed, we believe that research on software architec-
ture description languages has over-emphasized functional-
ity and more or less completely ignored the specification of
how global properties and non-functional requirements are
achieved in an architecture. These cannot be attributed to in-
dividual components or connectors and can therefore not be
specified by architectural description languages.

Distributed software engineering research needs to identify
notations, methods and tools that supportarchitecting, rather
than only define architectures or architectural styles. We
need to help software engineers to systematically derive soft-
ware architectures that will meet a set of non-functional re-
quirements and overcome the guesswork that is currently be-
ing done. This includes support for identifying the appropri-
ate middleware or combinations of middlewares for the prob-
lem at hand. Moreover, software engineering research needs

to define architecting processes that are capable of mitigating
the risks of choosing the wrong middleware or architectures.
These processes will need to rely on methods that quantita-
tive model the performance and scalability that a particular
middleware-based architecture will achieve and use model
checking techniques to validate that the models actually do
meet the requirements. The models need to be calibrated
using metrics that have been collected by observing middle-
ware performance in practice.

Many architecture description languages support the explicit
modeling of connectors by means of which components
communicate. A main contribution of [11] is the observation
that connectors are most often implemented using middle-
ware primitives. We would like to add the observation that
each middleware only supports a very limited set of connec-
tors. Specifying the behaviour of connectors explicitly in an
ADL is therefore modelling overkill that is only needed if ar-
chitects opt out of using middleware at all. For most applica-
tions, it is completely unnecessary to specify each connector
separately. Instead middleware-oriented ADLs should be de-
veloped that have built-in support for all connectors provided
by the middleware that practitioners actually use.

Design
In [13], we have argued that the use of middleware in a de-
sign is not, and never will be, entirely transparent to de-
signers. There are a number of factors that, despite of the
ISO/OSI transparency dimensions, necessitate designers to
be aware of the fact that middleware is involved when one
component communicates with another component. These
factors are

� Network latency implies that the communication be-
tween two distributed components is by orders of mag-
nitude slower than a local communication.

� Component activation and de-activation of state-
ful components lead to a need for implementing
persistence of these components.

� Components need to be designed in such a way that they
can actually cope with the parallel interactions that are
bound to happen in a distributed environment.

� The components have a choice of the different synchro-
nization primitives a particular middleware offers and
need to exploit those properly. In particular, they have
to avoid deadlocks or liveness problems that can occur
as a result of different synchronization primitives.

The software engineering community needs to develop
middleware-oriented design notations, methods and tools
that take the above concerns into account.

When we discussed the state of the art middleware research
above, we have highlighted a trend to give the programmer
more influence on how the system behaves. Globe’s repli-
cation strategies, TAO’s scheduling policies and reflection
capabilities that influence the middleware execution engine
all have to be used by the designer. This means effectively



that the programmer gets to see more of the middleware and
that distribution and heterogeneity become less transparent.
If this is really necessary, and the middleware research com-
munity puts forward good reasons, programmers will have to
be aided even more in the design of distributed components.
Thus appropriate principles, notations, methods and tools for
the design of replication strategies, scheduling policies and
the use reflection capabilities are needed from software en-
gineering research.

6 SUMMARY
We have discussed why the construction of distributed sys-
tems is difficult and indicated the support that software engi-
neers can expect from current middleware products to sim-
plify the task. We have then reviewed the current state of the
art in middleware research. We have used this knowledge
to derive a software engineering research agenda that will
produce the principles, notations, methods and tools that are
needed to support all activities during the life cycle of a soft-
ware engineering process.

REFERENCES

[1] J. Bates. The State of the Art in Distributed and De-
pendable Computing. Technical report, Laboratory for
Communications Engineering, Cambridge University,
http://www.newcastle.research.ec.org/cabernet/sota/report,
Oct. 1998.

[2] M. Bearman. ODP-Trader. InProc. of the IFIP TC6/WG6.1
Int. Conf. on Open Distributed Processing, Berlin, Germany,
pages 341–352. North-Holland, 1993.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concur-
rency Control and Recovery in Database Systems. Addison
Wesley, 1987.

[4] K. P. Birman. Building Secure and Reliable Network Appli-
cations. Manning Publishing, 1997.

[5] D. Box. Essential COM. Addison Wesley Longman, 1998.

[6] J. Charles. Middleware Moves to the Forefront.IEEE Com-
puter, pages 17–19, May 1999.

[7] S. Cheung.Java Transaction Service (JTS). Sun Microsys-
tems, 901 San Antonio Road, Palo Alto, CA 94303, Mar.
1999.

[8] P. Chung, Y. Huang, S. Yajnik, D. Liang, J. Shin, C.-Y. Wang,
and Y.-M. Wang. DCOM and CORBA: Side by Side, Step by
Step, and Layer by Layer.C++ Report, pages 18–29, January
1998.

[9] P. Cointe, editor. Meta-Level Architectures and Reflec-
tion: 2nd International Conference, Reflection ’99, St. Malo,
France, volume 1616 ofLecture Notes in Computer Science.
Springer, 1999.

[10] A. Dardenne, A. van Lamswerde, and S. Fickas. Goal-
directed Requirements Acquisition.Science of Computer Pro-
gramming, 20:3–50, 1993.

[11] E. di Nitto and D. Rosenblum. Exploiting ADLs to Specify
Architectural Styles Induced by Middleware Infrastructures.
In Proc. of the21st Int. Conf. on Software Engineering, Los
Angeles, California, pages 13–22. ACM Press, 1999.

[12] F. Eliassen, A. Andersen, G. S. Blair, F. Costa, G. Coulson,
V. Goebel, O. Hansen, T. Kristensen, T. Plagemann, H. O.
Rafaelsen, K. B. Saikoski, and W. Yu. Next Generation Mid-
dleware: Requirements, Architecture and Prototypes. InPro-
ceedings of the7th IEEE Workshop on Future Trends in Dis-
tributed Computing Systems, pages 60–65. IEEE Computer
Society Press, Dec. 1999.

[13] W. Emmerich.Engineering Distributed Objects. John Wiley
& Sons, Apr. 2000.

[14] W. Emmerich, A. Finkelstein, and W. Schwarz. Markup
Meets Middleware. In7th Int. Workshop on Future Trends
in Distributed Systems, Capetown, South Africa, pages 261–
266. IEEE Computer Society Press, 1999.

[15] FpML. Introducing FpML: A New Standard for e-commerce.
http://www.fpml.org, 1999.

[16] L. Gilman and R. Schreiber.Distributed Computing with IBM
MQSeries. Wiley, 1996.

[17] A. Goldberg.Smalltalk-80: The Language and its Implemen-
tation. Addison Wesley, 1985.

[18] J. N. Gray. Notes on Database Operating Systems. In
R. Bayer, R. Graham, and G. Seegm¨uller, editors,Operating
systems: An advanced course, volume 60 ofLecture Notes
in Computer Science, chapter 3.F., pages 393–481. Springer,
1978.

[19] C. L. Hall. Building Client/Server Applications Using
TUXEDO. Wiley, 1996.

[20] M. Hapner, R. Burridge, and R. Sharma. Java Message
Service Specification. Technical report, Sun Microsystems,
http://java.sun.com/products/jms, Nov. 1999.

[21] S. Hillier. Microsoft Transaction Server Programming. Mi-
crosoft Press, 1998.

[22] E. S. Hudders.CICS: A Guide to Internal Structure. Wiley,
1994.

[23] Infinity. Infinity Network Trade Model Overview.
http://www.infinity.com/ntm/pdf/ntmOverview.pdf, 1999.

[24] ISO 7498-1. Information processing systems – Open Systems
Interconnection – Basic Reference Model: The Basic Model.
Technical report, International Standards Organisation, 1994.

[25] I. Jacobson, G. Booch, and J. Rumbaugh.The Unified Soft-
ware Development Process. Addison Wesley, 1999.

[26] I. Jacobson, M. Christerson, P. Jonsson, and G.Övergaard.
Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison Wesley, 1992.

[27] JavaSoft.Java Remote Method Invocation Specification, revi-
sion 1.50, jdk 1.2 edition, Oct. 1998.

[28] G. Kiczales, J. d. Rivi`eres, and D. G. Bobrow.The Art of the
Metaobject Protocol. MIT Press, 1991.

[29] R. Monson-Haefel. Enterprise Javabeans. O’Reilly UK,
1999.

[30] B. C. Neuman. Scale in Distributed Systems. In T. Casavant
and M. Singhal, editors,Readings in Distributed Computing
Systems. IEEE Computer Society press, 1994.

[31] Object Management Group.CORBAservices: Common Ob-
ject Services Specification, Revised Edition. 492 Old Con-
necticut Path, Framingham, MA 01701, USA, December
1998.



[32] Object Management Group.Notification Service. 492 Old
Connecticut Path, Framingham, MA 01701, USA, Jan. 1998.

[33] Object Management Group.The Common Object Request
Broker: Architecture and Specification Revision 2.2. 492 Old
Connecticut Path, Framingham, MA 01701, USA, February
1998.

[34] Open Group, editor.DCE 1.1: Remote Procedure Calls. The
Open Group, 1997.

[35] R. Orfali, D. Harkey, and J. Edwards.Instant CORBA. Wiley,
1997.

[36] G.-C. Roman, A. L. Murphy, and G. P. Picco. A Software
Engineering Perspective on Mobility. In A. C. W. Finkelstein,
editor,Future of Software Engineering. ACM Press, 2000.

[37] D. Schmidt, C. Gill, and D. Levine. Evaluating Strategies for
Real-Time CORBA Dynamic Scheduling. In19th Interna-
tional IEEE Real-Time Symposium. IEEE Computer Society
Press, 1998.

[38] J. Siegel. Component and Object Technology: A Preview of
CORBA 3. IEEE Computer, pages 114–116, May 1999.

[39] M. v. Steen, P. Homburg, and A. S. Tanenbaum. Globe: A
Wide-Area Distributed System.IEEE Concurrency, pages
70–78, January-March 1999.

[40] X/Open Group. Distributed Transaction Processing: The
XA+ Specification, Version 2. X/Open Company, ISBN 1-
85912-046-6, Reading, UK, 1994.


