Unit 5: Object-Oriented Software Engineering:
Requirements Model

Objectives:

This Unit will introduce the Object-Oriented Software
Engineering (OOSE) method from Jacobson et al. It will
describe the basics of ‘a use case driven approach’. The focus
of the Unit is the development of its Requirements Model. |t
will discuss actors, use cases, interface descriptions and
problem domain objecte. Relevant notations are drawn from
the UML (Unified Modelling Language)

OOSE Background

e Originated in Sweden

e " Object-Oriented Software Engineering A Use Case Driven
Approach "by lvar Jacobson, Magnus Christerson, Patrik
Jonsson & Gunnar Overgaard, Addison-Wesley , 1992

— Pragmatic method based on experience
— Popular and successful

— Complete method




What Comprises a Method?

e Method described via
— syntax (how it looks)
— semantics (what it means)

— pragmatics (heuristics, rules of thumb for use)

System Development as “Building Models”

— ANALYSIS ——® CONSTRUCTION —— TESTING —»

Requirements Model:* Design Model: % Test!/lodel:
captures functional impose implementation documentation
requirements from % constraints on analysis; and test results

user perspective 1 model ‘
Analysis Model: Implementation Model:
maintainable with system code written
logical structure; from the design model
implementation-
independent
< >

Seamless, incremental transition between stages and models, iterations possible

S stages, 5 models




Use case
model

Use case
model

model

Sequence
diagram

State
diagram




Use case USE CASE
model MODEL
model
iagram
first draft
Use case
model Use case
mode?s. .
+ descriptions
model

Class
diagram
+ packages

Sequence
Diagram
Sequence

diagram

State
State Diagram
diagram
CLASS
DIAGRAM

Use case USE CASE
model MODEL

model

Class
diagram
first draft

Use case
model

N Used clase
model . .
model + descriptions

Class
diagram
+ packages

Sequence
Sequence i
diagram

State

diagram State
Diagram
model

CLASS
DIAGRAM




Analysis Stage

* Primary objectives

— to determine what the system must do

— to embed the software system in its environment
* Two concerns

— to get the right thing

— to get the thing right (now and for future)

* Products

—

Dl[o_ ol

interface|

requirements
— Requirements Model % C =

®)

— Analysis Model

customer

use case mod
domain object model

-

Requirements Model

Producing a Requirements Model

—_—

Derive possible use cases

Discriminate between possible use cases

Generate use case descriptions

Identify associations between use cases

Refine and complete use cases and use case model
Describe and test user interfaces

Describe system interfaces

Identification of problem domain objects

2
3
4
5
Z
7
&
9

Check incorporation of requirements




Requirements Model Inpute and Outputs

* Inputs :
— System requirements specifications [multiple media]
— Documentation of existing systems, practices etc. that are
to be followed [text, graphic]
— Exchanges between developers and users and specifiers
[multiple media]

Requirements Model Inpute and Outputs

e Outputs :
use case model [graphic]
concise descriptions of use cases [text]
user interface descriptions [text ... prototypes]
system interfaces [protocols]
— problem domain object list (names, attributes) [text]
» Notations introduced :
— use case diagram (system box, ellipses, names, actor icons,
— actor/case links (<uses> and <extends> associations)

* association (<extends>, <uses>)




Kequrcmenta Example

Multi-purpose recycling machine

Recycle Machine Machine must:

- receive & check items for customers,
- print out receipt for items received,

- print total received items for operator,
Bottes - change system information,

OCans
O - signal alarm when problems arise.

O Receipt

ACTORS

An actor is:

— anything external to the system, human or otherwise
— a user type or category

A user doing something is an occurrence of such a type
A single user can instantiate several different actor types

Actors come in two kinds:

— primary actors, using system in daily activities

— secondary actors, enabling primary actors to use system




USE CASES

* A use case
— constitutes complete course of events initiated by actor
— defines interaction between actor and system

— is a member of the set of all use cases which together
define all existing ways of using the system

instantiateoi as instantiate(f as

* initiates . | scenario

Examples of Use Cases

o Returning items is started by Customer when she wants to
return cans, bottles or crates. With each item that the
Customer places in the recycling machine, the system will
increase the received number of items from Customer as well
as the daily total of this particular type. When Customer has

deposited all her items, she will press a receipt button to get a

recelpt on which returned items have been printed, as well as
the total return sum.

NB Particular instances of use would be different “ The
morning after the party Sarah goes to the recycling centre
with three crates containing .... ”




Use Case Model

e A use case model

— presents a collection of use cases

— characterise behaviour of whole system, plus external actors

Recycling Machine

i \\ Returning Generate
Customer item report

Change item
information

\
Operator

|dentifying Use Cases

Consider situation,

ldentify actors,

Read specification,

ldentify main tasks,

ldentify system information,
ldentify outside changes,
Check information for actors,
Draft initial use cases, [text]
ldentify system boundary,

Draft initial use case model [graphic]




When is a Use Case ... ¢

* Discrimination between possible use cases
— Estimate frequency of use,
— Examine degree of difference between cases

— Distinguish betweeen ‘basic' and ‘alternative’ courses of
events

— Create new use cases where necessary

Elaborated Example

« BASIC

— When the Customer returns a deposit item, it is measured by the
system. The measurements are used to determine what kind of can,
bottle or crate has be deposited. If accepted, the Customer total is
incremented, as is the daily total for that specific item type.

o ALTERNATIVE
— If the item is not accepted, 'NOT YALID' is highlighted on the panel.
e BASIC

— When Customer presses the receipt button, the printer prints the date.
The customer total is calculated and the following information printed
on the receipt for each item type: name, number returned, deposit value,
total for this type. Finally the sum that the Customer should recéive is
printed on the receipt.

5—10



Use Case Extensions

* Extensions provide opportunities for :
optional parts

alternative complex cases

separate sub-cases

insertion of use cases

UML <<esxtends>> association

Refinements

Abstract use case
~

7 X
«<uses> ~ K<uses>>

N
Z
Concrete use case

Abstract actors % Receipt Receiver
inherit;ﬂ Nherits
Concrete actors
Customer Operator

5—11



User Interface Deacriptionﬁ

Describe user interfaces .
Operator’s interface

Test on potential users,
Change bottle data

Type: C—1

if necessary using Size: T
Value: —1

simulations or prototypes

Describe system interfaces for non-human actors

Problem Domain Objects

* Object in specification
* Direct counterpart in the application environment
* Refinement in stages :
Object noun ->
Logical attributes ->
Static associations
Inheritance ->
Dynamic associations ->

Operations

5—12



Object Examples

OBJECT ATIRIBUTES

name characteristic / information : type
Deposit item nhame: string, total: integer, value: ECU
Can width: cm, height: cm

Bottle width: cm, height: cm, bottom: cm
Crate width: cm, height: cm, lenght: cm
Receipt total cans: int, total bottles: int, ...
Customer panel  receipt button: button

Operator panel  bottle data: cm, ...

Requirements Model

e Outputs :

— use case model [graphic]
concise descriptions of use cases [text]
user interface descriptions [text .. prototypes]

gystem interfaces [protocols]

problem domain object list (name, attribute: type) [text]

Requirements specifications
|
|

Use case _V I - USE CASE
model MODEL
N ~ . problem
Requirements model \dor_nain_ /
object IIS\I use
4| Class cases

diagram
first draft

5—13



14

5

*** panunuUod

(<sazijesauab>)

SI0}O® ,3)310U09, U JJBIISUE, JO UOIeINUSPI -

(<sasn>) sased asn ,81919U09, pue JoelISae, JO UOedyNuSp! -

[9pOW 3sed asn pue sased asn 919|dwod pue auyay (S

9sed asn e 1dnuialul JO OJUI PALISSUI 8] UBD SSSED 9SN JUSIBYIP SISUYM SUonen)Is -
S9OUBISWNDIID JO SOSEI SWOS Ul PaINdaxa sased-qns sjesedss -

alel ale Jey) sesed aAleuls)e pue xa|dwod -

sued jeuondo -

Buijjspow Ag SasE€I BSN USSMISQ SUOIRIIOSSE <SpUBIXe> Ajusp] (7

[o1ydelb ‘1xa1] |opow ased asn |ny
B 91eald pue 1xa) afenbue| [einyeu ul uondidosap B 8seI asn Yaes Joj sjelauso (g

A1essa2au aJaym SaseI asn Mmau 81eald -
SJUBAS JO S8SIN0J ,BAleUIB][R, PUR DISB(, Usdamiag ysinbunsip -
S9SED U9aMIS( 9IUSIHIP JO 9aiBap sulwexs -
‘asn jo Aouanbaly ayewnss -
sased asn 3|qissod usamiaq areulwndsid (z
[oiydeuh]
|opow ased asn [eniul Yelp pue Arepunog walsAs Apuspi -
[1xa1] (sarejdwa) Buisn ¢) sased asn [eniul yeup -
‘sabueyd pajoadxaun Jo pawlojul g 0} SPaaU JOJe JI 393D -
‘INoge wiaisAs swuojul Jojoe yaiym sabueyd apisino Ajuspi -
‘1010 Aq pabueyd Jo usnum ‘pess uonewloul walsAs Apuspl -
‘10108 [eNPIAIPUI YOBS YIIM PaJeloosse Syse) ulew Apuap! -
‘annnoadsiad s, ojoe a|qissod yoea woly d9ads peal -
s1019e Ajuapl -
suolFeNn)Is 10 Sauads 3|qissod JapISU0I -
uoieoyoads syuawalinbas woly sased asn ajqissod aaaq (T
[w w] siay0ads pue siasn pue siadojanap usamiaq sabueyoxy -
[omydeshixal] pamojjoy a9 0}
ale Tey; 918 sadnoeld ‘swaishs Bunsixa Jo uoneuswnaoq -
[eipaw ajdynw] suoneayvads sjuswalinbal walsAs -
sindup

is is

to get

15

irst step i

”. The f

ing
system use in context via the use case model . Th

der “to get the right th

uononpoud jo sabeis
T3A0ON SININEHINOIY

complemented by user interface descriptions.

in or
diagram.

©
BNy
o
RS
()]
»
<
QO
=
(b
5
=
=
[§)
g
(b)
<
FY
Q
»
-
8
>
Q
<
[b)
S
A
=
o
<
©
<
o]
B
8
n
(\}
S
Qo
(())
[

* Problem domain objects are identified as a prelude to class

» System development can be viewed as model building.

Key Points




"a[euoltel pue Ajjiqeasel) ‘S}0ayd 10} [NjasN ‘UOEIUSWNIOP
[euyy jo ped se paurelal aq pinoys sjnpoid arelpawISiul pue SINAINo [9POIN

'suonelay
noynm a9e|d a3 e} 0} A|RXIUN [SPOW SISA[RUY 0} [9POW SHUSWSINDSY WOI) UOHSURI L

(<sasn> ‘<spuaixa>)

uonelopsse

(Suoneroosse <spusixa> pue <sasn>

‘SyuI| 8SBD/I0)0E ‘SUOII JOoJIe ‘sawreu ‘sasdl||d ‘X0q WalsAS)
welbelp ased asn

:PaONPOAUI SUOHEION

[1xa1] (semngune ‘saweu) 1s1 193(qo urewop wajgoid -
[s1020101d] S82€UBIUI WAISAS -

[sadAi0104d "+ 1x81] suondiosap adeyiaul Jasn -
[1xe1] sased asn jo suondLasap 8s1ou0d -

[o1ydeih] jspow ases asn -

:sindino

pajesodiodul
uaaq aney sindul Aq payioads syuswalinbal [je ‘moy pue ‘Jayiaym 323yD (6

uoeay1dads pue sased asn ay) WoJy PaALISP
Jsi| unou, e yum Buiuuibaq ‘syoslqo urewop wajgold jo uoesyiuspl femu] (8

*038 s|od030.d
UOIEJIUNWIWOD JO SWIS) Ul SI0J9€ UBWNY-UOU 10} Sa9elI8Iul WalsAS aquasaq (L

sadAjojoud 10
suonenwis Buisn Aressadau Ji ‘'siasn [enusiod Uo 1S8) pue sadepsiul 1ash aquasaq (9

uononpoud jo sabels
(PenuUNUO2) TIAON SININTHINOTY

15

5



