Unit ©: Object-Oriented Software Engineering:
Analysis Model

Objectives

This Unit will outline the construction of the Analysis Model
building on outputs of Requirements Model. It will describe the
basic UML notations associated with analysis and introduce
new types of analysis objects . The use cases will be used and
refined and the inputs for Design Model defined.

OOSE Models

Use case
model

S »| USECASE UML Representations
~ MODEL

REQUIREMENTS problem

domain N
model |
el ——————— S WV B

Class se
diagram ases
first draft

Use case
model - _ N
Mbject roles and
ANALYSIS ~J responsibilities %Sgd‘éfse
model Sa Bt
. . + descriptions
‘analysis
. A
ovreets Qlass pe rations
diagram g lience
+ packages
________________ F-t-—Sg——-4--~-
Sequence associations.| — _| »| Sequence
diagram attributes Diagram
classes | clas ses 5
operation
State states
diagram [~ (T T T T T 7] ™! State
DESIGN Diagram
{mode ’/merface
definition 2
CLASS interface
finii
DIAGRAM

Aims of Analysis Model

 To provide a logical model’ of the system, in terms of :

— classes,
— relationships

e “How to get the thing right, now and in the future”

Producing an Analysis Model

Draft initial class diagram

Re-examine behaviour in use cases and objects
Refine class diagram

Execute check

Revise class diagram

Group classes into packages

Analysis Model Inputs & Outputs

* Inputs:
— uses cases and use case model
— problem domain object list
e Outputs:
— class roles and responsibilities [text]
— use case description in terms of classes and operations
[text x use case]

— completed analysis model [class and package diagrams]

Analysis Notations

» Notations introduced:
class (rectangle containing name, attributes, operations)
object (rectangle plus obx:Cx)
association (by value/aggregation, cardinality/multiplicity)
generalisation (UML term replacing OOSE ‘inheritance’)
package

depends association

Classes in UML

className

attribute name: type

operation name (parameter: type): result type

className

Polygon

centre: Point
vertices: List of Point
borderColour: Colour
fillColour: Colour

display (on: Surface)
rotate (angle: Integer)
erase ()

destroy ()

select (p: point): Boolean

Polygon

Objects in UML

objectName: className

attribute name: type = value

(same operations
for all instances
of a class)

objectName: className

trianglel: Polygon

centre = (0,0)

vertices = (0,0), (4,0), (4,3)
borderColour: black
fillColour: white

display (on: Surface)
rotate (angle: Integer)
erase ()

destroy ()

select (p: point): Boolean

trianglel: Polygon

U Generalisation

SUPERCLASS

q?

SUBCLASS SUBCLASS SUBCLASS

" 1

KeyboardHan dler MouseHan dler JoystickHandler

Associations in UML

bidirectional / binary
unidirectional
aggregation
composition

@ association name #

[+ single directional arrow] I:I Supplementary
role name role name characteristics

multiplicity multiplicity

Association Examples in UML

authorised on >)
User [T | Workstation
* *

1 ClassDecl

Authorisation AttributesOfClass »
priorities
privileges 1‘

i OperationOfClass
*
1| home directory

*

Class Diagram in UML

» (Class diagrams
— show logical, static structure of system
— provide core of ‘unified model
» Generation of initial class diagram from problem domain object
list
— classes of objects
— associations / attributes

— inheritance relationships

Initial Class Diagram for Recycling Machine

Name _ Total cans
Deposit value Total bottles

Daily total Total crates

i

Customer panel

Neck Width
Length Height
Bottom Length

I e

Exploiting Use Cases

» Employ classes and use cases, one by one
— to describe roles and responsibilities of each class
— to distribute behaviour specified in use cases

— to ensure that there is a class for every behaviour

Roles of Classes in OOSE

» Interface classes

— for everything concerned with system interfaces
» Entity classes

— for persistent information and behaviour coupled to it
» Control classes

— for functionality not normally tied to other classes

* Integrated into UML as stereotypes:

<< interface >> << entity >> << control >>

® O ®

interface name entity name control name

Interface Classes

Contains functionality directly dependant on system
environment

Definition focuses on interaction between actors and use

@®
cases T Receipt Receiver
\

Receipt
Printer

Operator
Panel O ‘"\

Customer Customer Alarm f
Panel Devi ‘/Operator
evice

Associations Between Interface Classes

o Definition of both dynamic and static associations

Receipt
Printer
/V V\
OH
|_O Operator 6
Customer \ Panel Customer Panel
Panel

H

AET)
Device

<<interface >>

<<interface >>

O

Receipt button

<<interface >>

O

Crate slot

<<interface >>

O

Can slot

<<interface >>

O

Bottle slot

Entity Classes and their Attributes

» Purposes of entity classes :

— To store information persisting after completion of a use
case

— To define behaviour for manipulating this information

<< entity >>
Deposit Item

Name: String
Deposit value: ECU
Daily total: Integer

<< entity >>
Crate

Entity Communication

» A primary task to identify associations involving

communication
modelling of communication between objects
shows the sending and receiving of messages as stimuli
starts from object initiating communication

directed to object where reply generated or operation

executed () (>

Receipt Basis Deposit Item

Entity Operations

* Defining entity operations for:
— storing and fetching information
— creating and removing object

— behaviour that must change if entity object is changed

<< entity >>
Deposit Item

Name: String
Deposit value: ECU
Daily total: Integer

Create ()
setValue (integer)
Increment ()

6—10

Control Classes

» Control classes needed to provide for:
— behaviour not natural in interface and entity classes

— 'glué between other classes in use case

typical control behaviours deposititem

receiver
improved maintainability report 6 C?
:
1

gene rator
extends

information 6 alarm é

administrator device

Use Case YView

e Model each use case

e Describe use case in terms of classes

|—O<—>O—>O_|

Customer Deposit Item Receipt
Panel Receiver printer

N

1 0..n
E—)

Deposit Item

g 5%

Bottle Crate

Receipt
BENS

6—11

An Elaborated Use Case

When the customer returns a deposit item the Customer FPanel's sensors
measure its dimensions. These measurements are sent to the control
object Deposit Item Receiver which checks via Deposit Item whether it is
acceptable. If 0, Receipt Basis increments the customer total and the
daily total is also incremented. If it is not accepted, Deposit Item Receiver
signhals this back to Customer Fanel which signals NOT YALID.

When the Customer presses the receipt button, Customer Panel detects
this and seends this message to Deposit Item Receiver. Deposit Item
Receiver first prints the date via Receipt Printer and then asks Receipt
Basis to go through the customer's returned items and sum them. This
information is sent back to Deposit Item Receiver which agks Receipt
FPrinter to print it out.

Packages

* Packages are necessary:
— because of large numbers of classes
— to provide optional functionality
— to minimise effect of change
* Packages should have a:
— tight functional coupling inside

— weak coupling outside indicated by 'dependency
associations' between packages

6—12

Packages (Continued)

* Packages may:

— ‘contain’ nested packages with ‘service packages’ as atomic
parts

— have individual classes outside

— be result of organisational or managerial pressures

Recycling Machine Packages

[Recept i

~
~
N

~
Administratio S

6—13

“Deposit” Package in UML

A}
<< comlo\ >>
Deposm Item

Receiver »
/ Alarm::Alarmist

<< entity >>
Deposit Item

Name: String
<< entity >> Deposit v alue: ECU

RECEIDl basis | ——— | pail total: Integer

<< entity >> << entity >> << entity >>
Can Bottle Crate

Analysis Model

e Outputs:
class roles [text]

use case description in terms of classes and operations

[text x use case]
completed analysis model classes [diagram]
sub-system diagrams [package diagram]

* Notations introduced:

— class, object, associations (binary, unidirectional,
aggregation, generalisation)

— stereotypes (classes, associations)

— package (+ dependancy association)

6—14

Key Points

=]
o
=
D
8
S
®
L
o
S
L
o
©
=j
N
®
=
N
D
©
=
—
N
S
T
S
®
Y
5
L
©
<
=
<
E
©
=
D
&=
=
&=
)
<
o
=
[]

is based on Actors and Use Cases and places a strong

emphasis on requirements modelling. It has a high resistence

to effects of change. It provides: ways to identify and define

classes and objects; effective and useful identification of roles

recognition of user role (and interface). The

.
£4

of classes

approach has been refined with practical use.

T panuiRuod

(<uonesIuNWWo9>) UoNLeI0SSEe
‘(uoal ‘awreu ‘<adAi-s> ‘xoq sse|d) sadAl 10alqo adAioalels
:pPa2NPOAUI SUOHEION
suoifeI00SSe dlWeuAp oy palsinbal suonelado Buikyoads -
suonelnosse onels buimsinal -
Auoidininw pue sadAy buippe pue senguie buimsinei -
J93[go [01u09,
Jo oalqo adepaul, ‘108lqo Anus, se BulAyissed -
:Aq weiBelp ssejo ul sassed auyay (z1
“Inoineyaq A19As 1o} a|gisuodsal SSejd e Si 818U} Jey) aINsus -
‘saniiqisuodsal Jo uonedoje 1o} (payads aq 03) saulepinb Adde -
‘sased asn ul paidads Inoineysq sinquUisIp -
‘sanigisuodsal pue sa|0. S} JO SSe|d YIea Joj suonduossp ajum -
10} JBpJO Ul ‘8uo Aq auo ‘sased asn pue sasse|d Aojdw3 (TT
(,@2ueIByul, 3500 Buroeidas wis) JNN) uonesijessausd
‘(AnondninwyAneuipies ‘uoebaibbe/anien Aq) uoneroosse
‘(xoxqasn|d s|bueloau) 198(qo
ifsnesado ‘sanqune ‘sweu Bujurejuod ajbueidal) ssed
:Pa2ONPOAUI SUOHEION
sdiysuone|as saueIByUI -
SUONEID0SSE 21E)S -
s103[qo Sseo -

:Bujureiuod weibelp ssed feniul bunyeip Aq 1si| 193lq urewop wsajqoid areloge|3 (0T

1s1] 198[qo urewop wajqoud -
|9pOW 3SEd 85N pue S9sed Sasn -
sinduj

uononpoud jo sabeis
13A0ON SISATVNY

15

6

6—16

