Unit 11: Software Metrics

Objective
– To describe the current state-of-the-art in the measurement of software products and process.

Why Measure?

• "When you can measure what you are speaking about and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind: it may be the beginnings of knowledge but you have scarcely in your thoughts advanced to the stage of Science."
 – Lord Kelvin (Physicist)
• "You cannot control what you cannot measure."
 – Tom DeMarco (Software Engineer)
What is Measurement

- measurement is the process by which numbers or symbols are assigned to attributes of entities in the real world in such a way as to describe them according to clearly defined unambiguous rules

Examples of Entities and Attributes

<table>
<thead>
<tr>
<th>Entity</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Design</td>
<td>Defects discovered in design reviews</td>
</tr>
<tr>
<td>Software Design Specification</td>
<td>Number of pages</td>
</tr>
<tr>
<td>Software Code</td>
<td>Number of lines of code, number of operations</td>
</tr>
<tr>
<td>Software Development Team</td>
<td>Team size, average team experience</td>
</tr>
</tbody>
</table>
Types of Metric

- direct measurement
 - eg number of lines of code
- indirect/ derived measurement
 - eg defect density = no. of defects in a software product / total size of product
- prediction
 - eg predict effort required to develop software from measure of the functionality – function point count

Types of Metric

- nominal
 - eg no ordering, simply attachment of labels
 (language: 3GL, 4GL)
- ordinal
 - eg ordering, but no quantitative comparison
 (programmer capability: low, average, high)
Types of Metric

- interval
 - eg between certain values
 (programmer capability: between 55th and 75th percentile of the population ability)
- ratio
 - eg (the proposed software is twice as big as the software that has just been completed)
- absolute
 - eg the software is 350,000 lines of code long

Types of Metric

- product metrics
 - size metrics
 - complexity metrics
 - quality metrics
- process metrics
- resource metrics
- project metrics
Example I (product metric - size)

- Number of Lines of Code (NLOC)
 - number of delivered source instructions (NDSI)
 - number of thousands of delivered source instructions (KDSI)
- Definition (Conte 1986)
 - "A line of code is any line of program text that is not a comment or a blank line, regardless of the number of statements or fragments of statements on the line. This specifically includes all lines containing program headers, declarations, and executable and non-executable statements."

Example II (product metric - size)

- Function Point Count
 - A measure of the functionality perceived by the user delivered by the software developer. A function count is a weighted sum of the number of
 - inputs to the software application
 - outputs from the software application
 - enquiries to the software application
 - datafiles
 - internal to the software application
 - shared with other software applications
Example (product metric - complexity)

- **Graph Theoretic Metric**
 - The McCabe Complexity Metric

 a software module can be described by a control flow graph where

 - each node correspond to a block of sequential code
 - each edge corresponds to a path created by a decision

Example (product metric - complexity)

- \[V(G) = e - n + 2p \]
 - \(e \) = number of edges in the graph
 - \(n \) = number of nodes in the graph
 - \(p \) = number of connected module components in the graph

\[
\begin{align*}
e &= 8 \\
n &= 7 \\
p &= 2 \\
V(G) &= 5
\end{align*}
\]
Example (product metric - quality)

- Defects - deviation from required product quality attributes
- Record
 - Type
 - Cause
 - Consequence
 - Severity
 - Detection mechanism
 - Rectification details
 - effort
 - implications

portability, reliability, and so on...

defect related metrics of this type are simple and can be very revealing!
Example (process metrics)

- many facets of the process yield metrics, for example:
 - application of methods and tools
 - use of standards
 - effectiveness of management
 - performance of development system

It is also possible to use product metrics calculated on the process description.

Example (resource metrics)

- effort expended
 - on tasks within a project, classified by lifecycle phase
 - software function
 - on extra-project activities
 - training
- elapsed time
- computer resources
A Metrics Programme

- software development organisations should have a metrics programme in order to:
 - calibrate models that can be used to forecast project/product behaviour
 - give measures that can be used to control the software development process

involves metrics AND data collection

GQM (goal-question-metric) Approach

Goal to develop software that will meet performance requirements

Question can we accurately predict response time at any phase in development?

Sub-question can response time be estimated during specification phase

Sub-question can the size be estimated during specification phase

Metric function point count
cyclomatic complexity
design metrics

Sub-question can the number of program iterations be predicted

Sub-question can the number of program iterations be predicted
Data Collection

- instrument the process
- can be supported by off-the-shelf tools, for example Krakatau for Java
- Krakatau supports a full range of object-oriented, procedural, language specific, complexity and size metrics for C/C++ and Java.
 - supported metrics include Cyclomatic Complexity, Enhanced Cyclomatic Complexity, Halstead Software Science metrics, LOC metrics and MOOD metrics. In all over 70 metrics are offered

Key Points

- To survive a software development organisation must make accurate cost estimates and improve productivity and quality.
- If you do not know where you are now you certainly won't know where you will be in the future.
- To achieve accurate measurements of productivity and quality requires metrics collection and analysis.