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ABSTRACT
UsingMAGPIE (Machine Automated General Performance Improve-
ment via Evolution of software) we show genetic improvement GI
can reduce the cache load of existing computer programs. Cache
miss reduction is tested on two industrial open source C programs
(Google’s Open Location Code OLC and Uber’s Hexagonal Hierar-
chical Spatial Index H3) and two C++ 2D photograph image process-
ing tasks, counting pixels and OpenCV’s SEEDS segmentation al-
gorithm. Magpie’s patches functionally generalise. In one case they
reduce data misses on the highest performance L1 cache by 47%.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering.
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1 INTRODUCTION
For the next decade or more, computing will be increasingly parallel
and increasingly the limiting factor will not be computing itself
but instead getting data to the many compute engines in a timely
fashion. That is, computing is cheap, it is data movement that is
expensive. Data caches remain the only way to simultaneously
feed data into the mouths of hundreds, even thousands, of CPUs
at anything like their free running rate. We show evolutionary
computing can automatically adapt existing software to reduce
the load it places on data caches. Further, we seek to strengthen
the claim that it can optimise any comparable aspect of existing
software. A longer version is online https://arxiv.org/abs/2304.03235

Section 3 details the fitness test cases for Google’s OLC and
Uber’s H3 digital mapping programs, the Blue image benchmark,
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and the OpenCV SEEDS resource intensive image segmentation
algorithm. While Section 4 describes using a Coupon Collector
argument to choose how much of the search space Magpie should
sample. The results in Section 5 show on the image examples Mag-
pie gave reduction in L1 data cache misses of up to 47% even on
the existing compiler (GCC -O3) optimised code (see Table 1). In
Section 6 there is a discussion of non-stationary noise, profiling and
our use of a Tabu list to improve search. We conclude in Section 7,
but first we describe Magpie.

2 GENETIC IMPROVEMENTWITH MAGPIE
Genetic improvement research is often via bespoke one-off exper-
iments. David White recognised this and proposed GIN [11] as a
generic GI tool for Java programs. Similarly Gabin An [1] proposed
PyGGI for Python. Nevertheless recently a user study said that GI
lacked user friendly tools [12]. To address this Magpie [2] was re-
leased last year as an open source project. It is freely available from
https://github.com/bloa/magpie. We use it to hopefully convince
the reader that evolution can in principle improve any comparable
measure of software quality.

As of 27 November 2022, including examples and documentation,
Magpie contains 4871 lines of code, mostly written in Python. It
contains examples in Python, C, C++ and Ruby.

2.1 Updates to Magpie
In the course of previous work [9], we had enhanced Magpie to use
Python’s ctypes to directly call the patched code. This allows us
to reduce noise by collecting data directly on the individual C/C++
routines rather than the whole Magpie sub-process. Also to exclude
the Python interpreter from our measurement, we clear the L1 data
cache before invoking the patch code by setting and reading a fixed
array of 32K bytes (the size of our CPU’s fastest, L1, data cache).
To make the fitness robust, each patch is tested multiple times and
since the mean is notoriously suspect to noisy outliers, we use
instead the first quartile to summarise the measurements.

In the image segmentation example (Section 3.2) 17% of the lines
consist of a single closing brace }. These are naturally interchange-
able and so it was discovered that Magpie was wasting a lot of
effort testing programs that were identical (apart from white space,
etc). To prevent this, the compilation step keeps a “tabu” list [6].
Previously [6] we had a complicated tabu of both genotypic and
phenotypic information (of up to 340 MBytes), here we simply keep
a copy of each object file (on average 407 files per run, occupying
about 30 MBytes). After compilation, semantically identical patches
are rejected by simply comparing their object file with object files
of the same size from previous patches. New unique patches are
added to the tabu directory and identical ones are discarded without
fitness testing. Although in the limit this could be slow as the tabu
directory grows, in practice the time taken is negligible.
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The Linux GNU perf utility allows access to many hardware
performance counters. In particular we used the perf run time
library linux/perf_event.h to collect L1 data and instruction
cache misses, the count of instructions executed and elapsed time.
(Only the L1 data cache misses are used by the fitness function.)

2.2 Datasets
We use four open source C/C++ examples. Two industrial geospatial
programs, both written in C [8]. One from Google’s OLC and the
other from Uber’s H3 (see Section 3.1). And two C++ photographic
image processing examples (Section 3.2). These are: our Blue bench-
mark from the 2018 Tarot summer school [4] and OpenCV’s image
segmentation code [7].

3 FITNESS FUNCTION
Magpie attempts to run the patched program on all the test cases.
If the patch passes them all, Magpie runs it again multiple times to
try to get a good robust estimate of its performance.

In summary: Magpie uses multiple objectives to calculate a mu-
tation’s fitness. In sequential (priority) order: 1) does the patch
compile without error (warnings are ignored), 2) does the mutant
software run without crashing or timing out on every test case,
3) are its outputs the same as those of the original code and 4) how
many L1 data cache misses does perf record.

(1) The source code is compiled using the GCC compiler (ver-
sion 10.2.1) with the same options and switches, e.g. -O3, as are used
by the developers (Google, Uber and the OpenCV team). To avoid
wasting time on reporting multiple errors, -fmax-errors=1 is used
to stop GCC on the first error. If the compiler succeeds in compiling
the patch, it is linked with non-evolvable code outside the patch,
and the C code that calls the perf run time library, to form a shared
object library. (The GCC options -shared and -fPIC are used to
create the shared library ./prog.so). The Python interpreter uses
python ctypes on the shared library to call the C interface routine
which calls the perf runtime library and the patched code. After
the patch has been run, the perf runtime library extracts hardware
counters from within the CPU, which the interface code passes
back to the Python interpreter, along with the outputs generated
by the patch.

(2) Both Magpie (via the Python interpreter) and the mutant
itself, can signal a problem via the Unix exit status. In either case,
the main Magpie thread will discard the patch giving it poor fitness
and then move onto generating and testing the next patch.

(3) For each test case the Python subprocess will check that out-
put of the patch is as expected for each user supplied test case. For
example, with OLC, Magpie checks that the patched code returned
the same 16 characters as Google’s code for the test’s pair of latitude
and longitude. If any characters are different or missing the test fails
and fitness testing for that patch stops immediately. Before using
Magpie, we ran the original OLC, H3, Blue and SEEDS programs
on each test case, recorded their output and then this was auto-
matically converted into a Python list data structure. For example,
with OLC, the fitness training consists of ten latitude and longitude
floating point numbers and ten 16 character strings, formatted as
ten Python bracketed tuples.

(4) Section 2.1 above describes how the perf C runtime library
is integrated into Python. Magpie uses the first quartile (Q1) of all

the patch’s repeated measurements to give its fitness measure (see
also Section 2.1). Even in supposedly deterministic programs, the
hardware counters for cache statistics, instructions run and elapsed
time are noisy. Despite the use of robust statistics like Q1 on perf’s
L1 data cache misses, fitness remains noisy. But as we will see, in
some cases Magpie is able to make progress.

3.1 Test Cases for Google’s OLC and Uber’s H3:
GB Post Codes

We used the same test cases as before [8] when optimising OLC
and H3.

Both Google’s Open Location Code (OLC) https://github.com/
google/open-location-code (downloaded 4 August 2022) and Uber’s
Hexagonal Hierarchical Geospatial Indexing System (H3) https:
//github.com/uber/h3 (downloaded the previous day) are open in-
dustry standards (total sizes OLC 14 024 and H3 15 015 lines of
source code). They include C programs which convert latitude and
longitude into their own internal codes (see Table 1). For OLC
we used Google’s 16 character coding and for H3 we used Uber’s
highest resolution (-r 15) which uses 15 characters. Following
our earlier work [8], we use as test cases the position of actual
addresses.

For Google’s OLC we used the [8] dataset which was the location
of the first ten thousand GB postcodes downloaded from https://
www.getthedata.com/downloads/open_postcode_geo.csv.zip (dated
16 March 2022). The addresses are alphabetically sorted starting
with AB1 0AA, which is in Aberdeen. For training ten pairs of
latitude and longitude were selected uniformly at randomly The
unmutated code was run on each pair and its output saved (16
bytes). For each test case each mutant’s output is compared with
the original output.

Uber’s H3 was treated similarly. (Full details of both OLC and
H3 datasets are given in [8]).

3.2 Test Cases for Blue and OpenCV SEEDS
We had previously produced a simple example of the GISMO GI
system for students attending the 2018 TAROT summer school
on Software Testing, Verification and Validation [4] http://www.cs.
ucl.ac.uk/staff/W.Langdon/ftp/gp-code/opencv_gp.tar.gz. We gener-
ated ten random images and calculated the number of “blue” pixels
in each. These were used by Magpie as training data, with a goal
of optimising their code to minimise L1 cache misses. Notice the
training images contain 96 × 128 = 12 288 coloured pixels, occupy-
ing 49 152 bytes, and so exceed the L1 data cache. We removed the
comments, leaving 100 lines of C++ code.

In contrast OpenCV is an enormous suite of C++ image pro-
cessing tools. At the beginning of 2023 OpenCV’s open source
repository on GitHub comprised more than two million lines of
code (mostly C, C++ and XML). Therefore, we selected an important
routine: the state-of-the-art OpenCV SEEDS superPixels image seg-
mentation algorithm. This figured in the $50K OpenCV Challenge,
and we had previously used it in GI experiments to reduce run time
whilst respecting its API [7].

The OpenCV code of the SEEDS SuperPixel algorithm is 1500
lines of C++ code, but the important routines are held in one file
updatePixels.cpp. After removing comments and empty lines
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Table 1: Left: size of C/C++ sources to be optimised (com-
ments and blank lines removed). Middle: averages for up to
five Magpie runs. Columns 3–4 size of patch. Column 5 best
training fitness (average reduction in L1 data cache misses).
Right: Column 6 size of search space explored. Column 7
fraction of mutants which compile, run ok and give cor-
rect answer. Column 8 average Magpie run times for 1 core
on a 3.6 GHz Intel i7-4790 desktop with GCC 10.2.1 and
Python 3.10.1

Example LOC Mutant Magpie
size L1D steps % run ok duration

OLC 134 1– 5 5% 700 23% 66 secs
H3 1615 6–18 6% 19077 33% 3.9 hours
blue 100 7–10 47% 904 30% 1.7 hours
SEEDS 319 2– 7 7% 3151 2% 5.2 hours

there are 319 lines. Unfortunately the SEEDS algorithm is compute
intensive and so instead of using full images obtained from [7],
we reduced the training data to 1/16. Notice the 204×153 training
image contains 31 212 coloured pixels (124 848 bytes) and so the
major data structure used by the SEEDS algorithm exceeds the L1
data cache.

4 MAGPIE SEARCH
Magpie generated 700 OLC, 19 077 H3, 904 Blue and 3151 SEEDS
patches (see Table 1). The OLC and H3 (700 and 19077) values
are taken from our previous work [8]. As before [8], we use a
coupon collector [3] argument to calculate how many random
samples would be needed to be almost certain of visiting every line
of the C/C++ source code at least once. (The H3 source code to be
optimised is much bigger than the others, see Table 1, hence the
larger search effort.) In all four cases we used Magpie’s run time
reduction option: python3 -m bin.magpie_runtime.

Magpie used a single main thread on an otherwise mostly idle
32 GB 3.60 GHz Intel i7-4790 desktop CPU running networked Unix
Centos 7, using Python 3 version 3.10.1 and version 10.2.1 of the
GNU C compiler. In all four cases there was a lot of variation in
values recorded by perf.

5 RESULTS
The results are summarised in Table 1. Note in particular that the
results in columns 3 and 4 (Mutant size and L1D) are for the best
fitness found by Magpie during its runs. That is, in Table 1, the L1
data cache misses, L1D, reduction is as measured during training.
In the cases of the two geographic programs (OLC and H3), while
the patches retain their functional ability to pass up to 10 000 hold-
out tests, the desired improvement in cache performance did not
generalise. Indeed it appears after taking care of the noise, there
is no real difference in L1 data cache misses between the original
and patch code. This is in great contrast to the two data rich image
programs, where the patches do give reduced data cache misses on
images of the same size as the training data (See Figure 1). Again
both Blue and SEEDS patches also generalise in terms of still giving
the correct answer on unseen images. However, the right-hand
side of Figure 1 (blue ×) shows the SEEDS patch does not give a
reduction in L1 data cache misses in images four or more times
larger than the training image.

Table 2: Summary of Magpie patches. Average of five runs
on each L1 data cache experiment.

Compile error Test failed time out too big ok
OLC 72% 5% 0% 0% 23%
H3 61% 4% 0% 2% 33%
Blue 56% 13% 1% 0% 30%
SEEDS 87% 10% 0% 0% 2%
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Figure 1: Left Magpie “Blue” patch out of sample perfor-
mance on 150 hold out images. In all cases the patch incurs
only about half as many L1 data cache misses. Right: Mag-
pie SEEDS patch out of sample performance on 150 hold out
images of various sizes. The patch tends to reduce L1 data
misses on 153×204 images (red +) of the same size as the
training image and worse on larger images (blue ×).

On average 72% of OLC patches fail to compile1, about 5% fail
one or more test cases, while the remaining 23% pass all ten fitness
tests. Table 2 summarises the statistics for all four experiments. The
patterns for H3 and Blue are similar to OLC. However the tabu list
used with SEEDS means whenever a patch fails a tabu check, it
is marked by Magpie as if it had failed to compile. Hence the low
figure for SEEDS’ ok column2. Note mostly patches which compile,
run ok and pass all the tests.

Although Magpie has a nice tool for minifying patches, we did
not use it due to the noisy nature of our perf based fitness measure.

In all four experiments, the final patch generated the same results
as the original program. In the case of the two geographic tools
(OLC and H3), the holdout set contains “missing data”, i.e. postal
addresses without a latitude, longitude location. In these 85 cases
OLC produces a default output, while H3 aborts (with a non-zero
Unix error code) and an error message. The H3 patches similarly
detected and reported the error. On the other 9915 holdout locations
the patch similarly returns the same output as the original H3. That
is, both OLC and H3 patches pass all 10 000 hold out tests. However
in neither case, were we able to show the fitness seen in the Magpie
runs, translated to re-running them.

Our results are summarised in Table 1 column 5 “L1D” which
gives the percentage reduction in L1 data cache misses during
training. Unfortunately, as will be discussed in the next section,
the improvements in cache use reported during training with OLC
and H3, did not generalise and out of sample, there is no reduction
in L1 data cache misses. In contrast on both image processing

1Previously we used specialist mutation operators with LLVM IR which ensured all
mutants compiled successfully to machine code [8].
2In [5] we used a similar idea to test if mutated code is identical by comparing the X86
assembler generated by the GNU gcc compiler.
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examples we find significant (non-parametric Mann-Whitney test)
reduction in L1 data cache misses. For the Blue bench mark it is 47%.
And 1% for the patch to the OpenCV image segmentation SEEDS
C++ code on 30 unseen unrelated images of the same size as the
training image.

6 DISCUSSION: NON-STATIONARY NOISE,
PROFILING AND THE TABU LIST

As mentioned in Section 2.1, motivated by large positive outliers
often seen in run time measurement, we have used the first quartile
in the fitness function, as it is a robust statistic which is relatively
immune to positive outliers. The distribution of cache misses is
very noisy and is more symmetric and Gaussian like than expected.
Given the apparent symmetry it may be that the median would
give a more consistent fitness measure than the first quartile.

However, the data show another little discussed problem: The
L1D noise is not stationary but subject to some unknown drift.
Classical arguments, which assume multiple measurements are
independent and identically distributed (IID), suggest increasing
the number of measurements n will reduce the impact of noise
in proportion to

√
n. However this misses the fact if the noise is

non-stationary, then measurements taken during a Magpie run (or
indeed during any evolutionary computing EC run) will drift. Not
only during the EC run itself, but also when the evolved artifact
is used. It may be we need, not only to take multiple L1D mea-
surements per fitness evaluation, but also, during the EC run, to
make estimates of the drift. Perhaps this might be done by running
some known fixed example code, such as the original unmutated
code [5]. If online drift estimation also turns out to be effective for
L1D cache measurements, it is likely that effort spent on combating
noise during EC runs would be well worth while, as it should lead
to better more robust solutions.

Magpie has targeted whole functions that could possibly be
called. Particularly in our largest example, H3, this is not sufficient.
Since there are both lines of code and pre-set data values that are
never used, but Magpie is wasting effort on trying to optimise them.
It is common in GI to profile the program to be evolved, and then
to target only code that is indeed executed [10]. In these examples,
profiling was not used. Indeed the presence of a huge volume of
unused data in H3 hints at a further problem. Earlier profiling has
concentrated upon code execution. It appears not to have considered
that data might be created (and so need maintaining) which is not
used by the code during every-day mundane operations.

Of courseMagpie hasmore sophisticated syntax aware approaches
and they also might benefit from profile data. Apparently more re-
cent version of Magpie, already rule out simple patches that move
#include files or simply swap lines containing just a single curly
bracket “}”. These may help, but we fear that as usual, fitness driven
evolution will find a way to exploit code changes by making other,
as yet unthought of, apparently “useless” changes.

The trick of enforcing that each patch make a new semantic
change by keeping a tabu list (as was used with SEEDS) will not
deal with the problem of wasted effort being spent on generat-
ing patches that mutate either unused code or unused data. The
tabu list it uses to prevent duplicates is based on the object file
created by the compiler. Changes to either unused code or unused
pre-set data would change the object file and so although useless

would appear to be plausible semantic changes. The problem is
exacerbated here with Magpie’s local search, as apparently “use-
less” changes to un-executed code or unused data can, due to the
noisy fitness function, appear to be beneficial and so drive search
in unproductive directions. However we need to be cautious, as the
behaviour of caches is often proprietary and the implications of
even “obviously useless” changes is in practice unknowable. For
example, even when the compiler issues a warning saying the patch
introduces an “unused variable”, it may change the machine code it
generates. So potentially changing the behaviour of the caches.

7 CONCLUSIONS
We have taken a new open source genetic improvement tool written
in Python (Magpie), and industrial C source codes from Google
and Uber, C++ code for the “Blue” image processing problem and
OpenCV’s state-of-the-art image segmentation, and applied it to
the never before attempted optimisation of the hardware data cache.
For OpenCV’s SEEDS a 1% reduction on compiler -O3 optimised
code was found, whilst “Blue” L1 data cache misses were almost
halved (47%).
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