
Stack-Based Genetic Improvement

Aymeric Blot Justyna Petke

University College London, UK
UK EPSRC grant EP/P023991/1

GI@ICSE — 3 July 2020

RIP Larry Tesler 1945–2020: inventor of cut/copy & paste (and more) 1

In a Nutshell

Solution representation in GI:
I Software itself
I Diff patch
I Sequence of edits

Current GI edits:
I Delete(l)
I Replace(l1, l2)
I Insert(l1, l2) (x2)
I ...

Proposed GI edits:
I Cut(l)
I Copy(l)
I Paste(l) (x3)
I ...

Petke et al., IEEE Transactions on Evolutionary Computation, 2018 (literature review) 2

Why? Are Current Edits Not Good Enough?

Insert(1, 2) Delete(3)

“i” 1 2 “d” 3 ∅

“i” 1 2“d” 3 ∅

op fault fix

Advantages:
I Focus on the changes only
I Easy creation/mutation/crossover
I Close to human understanding

Limitations:
I Complex high granularity

recombination
I Type constraints

Oliveira et al., Empirical Software Engineering, 2018 (decoupled representation) 3

High Granularity Recombination

crossover

repair repair repair

op fault fix op fault fix

Example: One Point Across All Subspaces
I Issue: invalid, incomplete genes
I Solution: individual caches

Oliveira et al., Empirical Software Engineering, 2018 (high granularity crossovers) 4

Ensuring “Type” Validity

Consistency is important!
I Replace([statement], [statement]) will work
I Replace([condition], [condition]) will work
I Replace([condition], [statement]) will fail horribly

Possible solutions?
I Disable high granularity recombination
I Multiple decoupled sub-representations
I Any other complex bespoke mechanism

5

Equivalent Stack-Based Edits

Initial state: Cut(1) Copy(2) Paste(3) Paste(4) Copy(5)
 empty patch + empty stack: []

Cut: Cut(1) Copy(2) Paste(3) Paste(4) Copy(5)
 Delete(1) + stack: [1]

Copy: Cut(1) Copy(2) Paste(3) Paste(4) Copy(5)
 Delete(1) + stack: [1, 2]

Paste: Cut(1) Copy(2) Paste(3) Paste(4) Copy(5)
 Delete(1) Replace(3, 2) + stack: [1]

Final patch: Cut(1) Copy(2) Paste(3) Paste(4) Copy(5)
→ Delete(1) Replace(3, 2) Replace(4, 1) + discarded stack

6

“It Just Works”TM

Insertion?
I replace = paste in place
I insert before = paste before
I insert after = paste after

High granularity recombination?
I Simple “non-decoupled” crossover
I Full decoupling with Target(l) (x3), Copy(l), Cut(l), Paste(l)

Type validity?
I Pop and push to type-specific stacks

Spector and Robinson, Genetic Programming Evolvable Machines, 2002 (Push language) 7

Conclusion

Idea:
I Replacement set of edits
I Equivalent, backward compatible

Advantages:
I Same features but simpler
I Built-in memorisation mechanism
I Automatic type separation (multiple stacks)

8

Selected References

Vinicius Paulo L. Oliveira, Eduardo Faria de Souza, Claire Le Goues, and Celso G.
Camilo-Junior.
Improved representation and genetic operators for linear genetic programming for
automated program repair.
Empirical Software Engineering, 23(5):2980–3006, 2018.

Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon, David R.
White, and John R. Woodward.
Genetic improvement of software: A comprehensive survey.
IEEE Transactions on Evolutionary Computation, 22(3):415–432, 2018.

Lee Spector and Alan J. Robinson.
Genetic programming and autoconstructive evolution with the push programming
language.
Genetic Programming and Evolvable Machines, 3(1):7–40, 2002.

+1

	Context
	State of the Art
	Proposition
	Conclusions
	Appendix

