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In a Nutshell

Solution representation in GI:
I Software itself
I Diff patch
I Sequence of edits

Current GI edits:
I Delete(l)
I Replace(l1, l2)
I Insert(l1, l2) (x2)
I ...

Proposed GI edits:
I Cut(l)
I Copy(l)
I Paste(l) (x3)
I ...

Petke et al., IEEE Transactions on Evolutionary Computation, 2018 (literature review) 2



Why? Are Current Edits Not Good Enough?

Insert(1, 2) Delete(3)

“i” 1 2 “d” 3 ∅

“i” 1 2“d” 3 ∅

op fault fix

Advantages:
I Focus on the changes only
I Easy creation/mutation/crossover
I Close to human understanding

Limitations:
I Complex high granularity

recombination
I Type constraints

Oliveira et al., Empirical Software Engineering, 2018 (decoupled representation) 3



High Granularity Recombination

crossover

repair repair repair

op fault fix op fault fix

Example: One Point Across All Subspaces
I Issue: invalid, incomplete genes
I Solution: individual caches

Oliveira et al., Empirical Software Engineering, 2018 (high granularity crossovers) 4



Ensuring “Type” Validity

Consistency is important!
I Replace([statement], [statement]) will work
I Replace([condition], [condition]) will work
I Replace([condition], [statement]) will fail horribly

Possible solutions?
I Disable high granularity recombination
I Multiple decoupled sub-representations
I Any other complex bespoke mechanism
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Equivalent Stack-Based Edits

Initial state: Cut(1) Copy(2) Paste(3) Paste(4) Copy(5)
 empty patch + empty stack: [ ]

Cut: Cut(1) Copy(2) Paste(3) Paste(4) Copy(5)
 Delete(1) + stack: [ 1 ]

Copy: Cut(1) Copy(2) Paste(3) Paste(4) Copy(5)
 Delete(1) + stack: [ 1, 2 ]

Paste: Cut(1) Copy(2) Paste(3) Paste(4) Copy(5)
 Delete(1) Replace(3, 2) + stack: [ 1 ]

Final patch: Cut(1) Copy(2) Paste(3) Paste(4) Copy(5)
→ Delete(1) Replace(3, 2) Replace(4, 1) + discarded stack
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“It Just Works”TM

Insertion?
I replace = paste in place
I insert before = paste before
I insert after = paste after

High granularity recombination?
I Simple “non-decoupled” crossover
I Full decoupling with Target(l) (x3), Copy(l), Cut(l), Paste(l)

Type validity?
I Pop and push to type-specific stacks

Spector and Robinson, Genetic Programming Evolvable Machines, 2002 (Push language) 7



Conclusion

Idea:
I Replacement set of edits
I Equivalent, backward compatible

Advantages:
I Same features but simpler
I Built-in memorisation mechanism
I Automatic type separation (multiple stacks)
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