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INTRODUCTION 
Line drawings are the most common type of render- 
ing used to convey geometrical description. This is 
due to the economy of preparing such drawings and 
the great information density obtainable. On a pure 
line drawing, that is where no attempt is made to speci- 
fy or suggest shadows, tone or color, the lines ren- 
dered are either the intersection curves of surfaces 
or the contour curves of surfaces. The nature of these 
curves are adequately discussed in the literature' and 
in a previous report.2 In order to convey a realistic im- 
pression of an object or an assembly of objects, the 
segments of lines which cannot be seen by an observer 
are not drawn or are drawn dashed. Without specifi- 
cation of visibility a drawing is ambiguous. This pa- 
per presents a recently developed scheme for the de- 
termination of visibility in a line drawing which en- 
ables comparitively high speed calculation and excel- 
lent resolution. 

Visibility tests 

There have been varied approaches to the determi- 
nation of line drawing visibility. All schemes that have 
been implemented to date have assumed a limited vo- 
cabulary of solids or surfaces. E. E. Zajac and, more 
recently, P. Loutrel have discussed determining the 
hidden edges of a convex p~lyhedron."~ By their tech- 
niques if the angle between the local line of sight and 
the outward normal to a face of a convex polyhedron 
is greater than 90" the face is declared invisible, and 
any line which is the intersection of two invisible faces 
is declared invisible. This is essentially a surface visi- 
bility test, where the basic element tested for visibil- 
ity is a surface element. Such testing is valid only for 
convex polyhedra because on other types of solids a 
surface can be partially hidden. Because surface visi- 
bility testing applied to a single convex polyhedral ob- 
ject determine the visibility of a complete line seg- 
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ment, there is no resolution problem. The line connect- 
ing two vertex points is either completely visible or 
completely invisible. Also since only 'one test is 
made on every surface the time to determine visi- 
bility of an object does not vary significantly with the 
viewpoint. Schemes for handling convex polyhedra 
are very fast, usually requiring only two to five times 
as much calculation time as a wire frame drawing.* 

L. G. Roberts has done the most advanced work for 
convex polyhedra by determining not only the hidden 
edges in a single object but also the segments of visi- 
ble edges that are hidden by other objects in the same 
scene5. The very important aspect of his strategy was 
that two procedures are implemented. 

Edges which are the intersection of hidden surfaces 
are determined and suppressed, and then all other 
edges are tested to determine to what extent they are 
hidden by other objects. The prime limitation of his 
work is that is is applicable only to solids which are 
assemblies of convex polyhedra modules. This is a 
severe limitation on the vocabulary of shapes which 
can be rendered. 

A far greater vocabulary of solids have been han- 
dled in the point visibility determination or "brute 
force" schemes but at very high calculation times. 
These schemes essentially have the following strat- 
egy: a curve is broken down into many small seg- 
ments and a small segment is drawn if a test point on 
the segment is not hidden by any surface in the scene. 
The author has developed a scheme for the perspec- 

*A good machine independent measure of visibility versus nonvisi- 
bility rendering is the ratio of calculation time required for render- 
ing. The ratios mentioned in this paper are based upon measure- 
ments of the author's programs run on an IBM 7094 and are meant 
to provide an approximate comparison of schemes and are not in- 
dicative of limitations of the state-of-the-art. In general, it is not pos- 
sible to exactly specify a ratio of visibility to non-visibility time since 
this ratio varies from object to object and from viewpoint to view- 
point for the same object. 
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t h e  rendering of assemblies of planes in space which 
are bounded by straight line segments.* This work 
takes into account internal boundaries (holes), and ex- 
ternal boundaries. Y .  Okaya has applied the point visi- 
bility scheme to assemblies of spheres and cylinders 
which are used to form a molecular model.6R.A. Weiss 
has developed a very powerful system for rendering 
combinations of planes and quadric surfaces in ortho- 
graphic projection.i Point visibility schemes are appli- 
cable to a large vocabulary of surfaces, combinations 
of surfaces and projection schemes. These schemes 
are very docile, since computation errors are not cu- 
mulative and usually affect only a small curve seg- 
ment. The main disadvantage of point visibility tests is 
the large computation times required for high resolu- 
tion renderings. For renderings of engineering useful- 
ness of about 40 surfaces and 150 lines, computation 
time for visibility determination can exceed fifteen 
minutes on an IBM 7094. This cost increases directly 
with the size of the picture, the resolution required, 
and the complexity of the scene. Rendering assemblies 
of planes bounded by line segments with visibility de- 
termined at points costs about 100 to 1000 times as 
much as the wire frame rendering. 

Quantitative invisibility 

The rationale behind the scheme to be presented in 
this paper is that there ought to be a visibility determi- 
nation scheme which would be midway in character- 
istics between the surface visibility and the point visi- 
bility schemes. Obviously the scheme should be based 
upon determining the change in visibility on a curve. 
The fundamental notion of quantitative invisibility is 
that it is not sufficient to specify a curve invisible 
or visible, but that the total number of visible sur- 
faces that hide a point on the curve should be meas- 
ured and when no surface hides points on the curve, 
the curve is rendered. This notion is useful because 
techniques developed for detecting changes in quanti- 
tative invisibility along a line are more economical 
than measuring quantitative invisibility at a point. Al- 
gorithms for detecting changes in quantitative invisi- 
bility have only been developed for straight lines and 
planes but the strategy should be applicable to higher 
order curves and surfaces. Procedures for line visi- 
bility determination have been implemented, and cal- 
culation times of about 10 to 20 times the wire frame 
calculation time resulted. 

Define a material line as having specific end points 
and that this line does not pierce any bounded sur- 
face with the surface boundary. From a practical view- 
point, only material lines are manufactured and since 
we are interested in rendering real objects only mate- 
rial lines need be dealt with. When a volume is com- 

pletely enclosed by flat surfaces, assign to every sur- 
face a material vector which points into the volume or 
into the material of the object. When the angle be- 
tween a material vector and the line of sight to 
the origin of that vector is less than 90" then the sur- 
face associated with that material vector can never 
be seen and the surface must be invisible. Lines which 
are the intersection of two invisible surfaces are ob- 
viously invisible. Surfaces whose material vectors 
form angles of greater than 90" with the local line of 
sight may be completely or partially visible or even 
completely invisible. Define a contour line as being a 
line along which the line of sight is tangent to the sur- 
face. For polyhedra, given a specific viewpoint, a con- 
tour line is a material line which is the intersection of 
two surfaces, only one of which is invisible. For a giv- 
en viewpoint, the quantitative invisibility of a material 
line can change only when it passes behind a contour 
line. Figure 1A illustrates the variation in quantita- 
tive invisibility as a line passes behind two overlap- 
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Figure 1 -Changes in quantitative invisibility 

ping surfaces. Figure 1 B illustrates how quantitative 
invisibility varies as a line pases behind a solid. No- 
tice that quantitative invisibility can change as it 
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crosses a hidden contour line which is a concave cor- 
ner. Only surfaces that are viewed from the spatial 
side should affect the measurement of quantitative 
invisibility. 
Implied vorticity 

There are two basic mathematical procedures re- 
quired in order to utilize the notion of quantitative 
invisibility: detecting when a material line passes be- 
hind a contour line, and determining whether the ma- 
terial line is going behind or coming from behind the 
visible surface of which the contour line is a boundary. 
Economic techniques developed for these two pro- 
cedures make use of a property of closed plane bound- 
aries which can be called implied vorticity. This prop- 
erty is a consequence of the order in which the vertex 
points of a plane bounded by line segments are entered 
and stored. From the order in which vertex points are 
stored it can be determined whether a point coplaner 
with the bounding line segments is on the interior or 
exterior side of the line. Referring to Figure 2, where 
the vertex points P, are entered in a counterclockwise 
manner, when point A or B are on the interior side of 

PI 

Figure 2 -A bounded plane and two points 

a line P,P,+, the sense of rotation about A or B from 
P, to P,+, is counterclockwise. When A or €3 is on the 
exterior side of a line the sense of rotation from P, to 
P,,, is clockwise. In essense then, the vector from P, 
to P,,, has a moment or an implied vorticity about a 
point not colinear with the vector. When the sense of 
the vorticity is compared to the sense in which the ver- 
tex points of the plane containing P, are listed, the lo- 

cation of the point relative to the line can be quickly 
deduced. When the sense of vorticity and the sense of 
listing are the same then the point lies on the interior 
side of the line. If the senses disagree the point is on 
the exterior side. This does not necessarily mean the 
point lies within the boundary. For example, in Fig- 
ure 2, point A lies on the exterior side of line P2P, 
and point B lies on the interior side on line P,P,. How- 
ever, when the surface boundary is a triangle and if the 
sense of implied vorticity of all three sides are identi- 
cal about a coplaner point, that point must lie within 
the triangular boundary. This test for whether a point 
lies within a triangle is very fast and for reference we 
can call this a tri-sense test. Another application of im- 
plied vorticity is that it can be used to determine 
whether a vector is pointing into or out of a surface 
boundary as it crosses the boundary. For example, 
referring again to Figure 2, if we take the vector A to B 
which crosses line PIP2, the sense of Pipz about point 
B disagrees with the implied vorticity of the vertex 
points so the vector AB points out of the boundary as 
it crosses line Pip,. The vector BA points into the 
boundary as it crosses PIP2 because the sense of im- 
plied vorticity about point A agrees with the implied 
vorticity of the vertex points. This notion of implied 
vorticity and its applications can be applied to holes 
in a surface if the direction in which the vertex points 
which describe the hole is opposite to the outer bound- 
dary direction. 

A rapid method to determine the sense of rotation of 
a vector P, P,,, about a point 0 is to take the sign of 
the matrix equation for the area of the triangle 
(P,,P,+I,O). 

This matrix equation is: 

A = & a / 2 1 y i  Yo zo zi ) i ( l a )  1 

Yi+i  Zi+l 

where a, b, c, are the direction cosines of a line perpen- 
dicular to the plane of the triangle (Pi,Pi+l,O). At least 
one of the equations (1) can be used for any plane 
since a2+b2+c2 = 1.  In the usual application of the ma- 
trix equations (1) the indeterminancy of sign is treated 
as a nuisance, but for purposes of indicating the direc- 
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tion of rotation it is essential. Since the sign of a ma- 
trix is changed if any two rows are interchanged, a 
change in the order in which the points are entered 
in the matrix equations (1) will change th sign of the 
matrix. For example, the matrix A/a is positive when 
evaluated for a triangle in the first quadrant which is 
not perpendicular to the x = 0 plane when the points 
are entered in a counterclockwise sense, and the ma- 
trix is negative if the points are entered in a clockwise 
sense. This is illustrated for a simple triangle in Fig- 
ure3. 
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Figure 4 -Determining when a line to be drawn passes behind a 
contour line 
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Figure 3-Sign change of area with direction 

The sweep plane of a line to be drawn is the plane 
which contains this line and the viewpoint. This plane 
is bounded by a triangle whose vertex points are the 
eye of the observer and the end points of the line to be 
drawn. The line to be drawn passes behind a contour 
line for a specific viewpoint when (i) the piercing 
point of the contour line in the sweep plane lies 
within the limits of the contour line and (ii)  the pierc- 
ing point lies within the triangular boundary of the 
sweep plane. Condition (i) can easily be determined by 
a distance test or evaluation of the parametric variable 
of the piercing point when all line equations are in pa- 

After determining that a line to be drawn has passed 
behind a contour line, it is necessary to determine 
what effect this had on the count of quantitative invisi- 
bility. Referring to Figure 5 ,  the procedure for deter- 
mining this effect is as follows: 

1. Determine piercing point of line to be drawn 
(PIP2) in sweep plane (SP,) of the contour line 
(CL). The line to be drawn starts at point PI. 

2. Locate preceding point (K) on the line to be 
drawn which is a small distance (usually lo-' 
units) closer to the starting end of the line (P,) to 
be drawn than the piercing point. 

3 .  Project this preceding point (K) onto the plane 
(S) which contains the contour line (CL). The 
projected point (J) is the piercing point of the line 
of sight to the preceding point (K). 

4. Determine the sense (CL/J) of implied vorticity 
of the contour line (CL) about the projected 
point (J). When the sense (CL/J) agrees with the 
sense of implied vorticity of the surface (S) 
then the line (PlP2) is coming out from behind 
surface (S) and the count of quantitative invisi- 
bility is to be decreased by one. When the sense 
(CL/J) disagrees with the sense of implied vorti- 
city of the surface (S) then the line (PIP2) is go- 

rametric form. Condition (ii) can be determined by a 
tri-sense test of the three vertex points of the sweep 
line about the piercing point. Referring to Figure 4, 
contour line 1 satisfies both conditions on sweep 
plane SP,, contour line 2 fails condition (i) and con- 
tour line 3 fails condition (ii). 
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Figure 5 -Determining the change of quantitative invisibility 

ing behind surface (S) and the count of quantita- 
tive invisibility is increased by one. Those seg- 
ments of line (PIP,) which have a zero count of 
quantitative invisibility are rendered. 

Since all the lines to be rendered on a drawing are 
in contact with other lines, for example the line (PIP2) 
has a common vertex P, with line (PzP3), an initial 
measurement of quantitative invisibility need not be 
made very often, as the count of quantitative invisibil- 
ity is valid for both intersecting lines at their corn. 
mon vertex point. This initial measurement of quan- 
titative invisibility is a count of all those surfaces 
which hide the starting point. The starting point is 
connected to all other vertex points on a completely 
described object by material lines so that the changes 
in quantitative invisibility can be rapidly determined 
by the methods of implied vorticity. An initial meas- 
urement of quantitative invisibility need be under- 
taken only once for every object in a scene or, where 
the list processing becomes time consuming, once 
for every internal or external surface boundary. 

Initial measurement 

A bounded surface hides a point when the line of 
sight to that point pierces the surface within the sur- 
face boundaries, and the piercing point is closer to the 
observer than the point being tested for visibility. The 
essential problem of point visibility testing is the deter- 
mination of when a point lies within a surface bound- 

ary. The author has previously described in another 
report a test of this kind,* but J .  Rutledge has sug- 
gested a scheme which has proven to be more econom- 
ical. If we connect a point, whose relative location 
to a surface boundary is unknown, to a point which is 
outside the boundary by a curve (usually a line), and 
if the number of times this connecting curve (line) 
crosses the boundary is odd, the point being tested 
lies within the boundary. In order to make an initial 
measurement of quantitative invisibility at a point the 
piercing points of the line of sight to that point on all 
surfaces are determined and a count is made of those 
piercing points which are: 

i) closer to the observer than-the point being meas- 

ii) within a surface boundary as detected by Rut- 
ured. 

ledge’s scheme. 

Figure 6 -  Singularities 

Corners 

Several singularities arise in the implementation of 
the notion of quantitative invisibility and techniques of 
implied vorticity. These are illustrated in Figure 6. 
In drawing the boundary of surface A, as line 4-7 is 
completed, contour line 2-7 is crossed at vertex point 
7 .  There should be no change in quantitative invisibil- 
ity at point 7. In rendering surface B,  as the bound- 
ary turns at vertex point 2 from line 1-2 to line 2-3 
the count of quantitative invisibility should increase by 
one, which in this single object picture will make line 
2-3 invisible. When drawing surface C as the boundary 
turns at vertex point 2 from line 6-2 to line 2-  1, the 
count of quantitative invisibility should decrease by 
one. I f  surface C is being drawn in the opposite direc- 
tion, as line 2-6 leads to line 6-5 at vertex point 6, 
no change should occur at the vertex point as the far 
segment of line 6-5 will become visible as it crosses 
contour line 8-2. Obviously, the rules to specify 
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changes in quantitative invisibility when a contour 
line passes thru a vertex point are: 

when an external corner line leads at a common 
vertex point to an internal corner line, quantita- 
tive invisibility increases by one only when a 
contour line exists at the common vertex and the 
internal corner is a contour line. 
When an internal corner line leads at a common 
vertex point to an external corner line, quan- 
titative invisibility decreases by one only when 
a contour line exists at the common vertex and 
the internal corner is a contour line. 
When no contour line exists at a common vertex 
no change in quantitative invisibility can take 
place. 

What these rules essentially detect is the instance 
when an internal corner line is hidden from view. 
When an internal corner line is not a contour line, we 
are looking into the corner. For example in drawing 
surface D as line 8-2 leads to line 2-10 at vertex point 
2, the internal corner 2-10 is not a contour line so no 
change in quantitative invisibility occurs. 

All of the procedures discussed in this paper have 
been reduced to practice. Coding has been in Fortran 
IV and is executed on an IBM 7094 with graphic out- 
put on an IBM 1627 (CalComp) plotter. Figures 7 
thru 12 are examples of the graphic output. When ap- 
propriate, the captions specify calculation time and 
the number of surfaces and surface boundary lines in 
a scene. All computer generated pictures in this arti- 
cle were rendered under the control of the same com- 
puter program. 

Figure 8-Assembly of three machine parts 41 surfaces 104 lines 
7094 calculation time per view. about 9 3 seconds 

T - 
2 

Figure 9 -Assembly of a transonic aircraft from five components 
each of which may be altered independently, 143 surfaces, 226 lines 

7094 calcdation time per view: about 4 1.5 seconds 
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Figure I0 - A selection of perspective views of aircraft where all 
non-contour lines except those which describe the cockpit, intake 
vents and exhaust are suppressed. This reduces 7094 calculatio 

time to about 23.5 seconds per view 

Figure 1 1 - A perspective view of the aircraft flying over an object 
which in general layout approximates an Essex class (CVS) air- 
craft carrier 190 surfaces 402 lines 7094 calculation time: about 

84.6 seconds 
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