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Abstract

We examine a class of adaptive sampling techniques em-
ployed in image synthesis and show that those com-
monly used for efficient anti-aliasing are statistically bi-
ased. This bias is dependent upon the image function
being sampled as well as the strategy for determining the
number of samples to use. It is most prominent in ar-
eas of high contrast and is attributable to early stages
of sampling systematically favoring one extreme or the
other. If the expected outcome of the entire adaptive
sampling algorithm is considered, we find that the bias
of the early decisions is still present in the final estima-
tor. We propose an alternative strategy for performing
adaptive sampling that is unbiased but potentially more
costly. We conclude that it may not always be practical
to mitigate this source of bhs, but as a source of error
it should be considered when high accuracy and image
fidelity are a central concern.

CR Categories and Subject Descriptors: I.3.7—
[Computer Graphics]: Three-Dimensional Graph-
ics and Realism; 1.3.3—[Computer Graphics]: Pic-
ture/Image Generation;
General Terms: Algorithms, Graphics
Additional Key Words and Phrases: Adaptive Sam-
pling, Anti-aliasing, Monte Carlo, Statistical Bias.

1 Introduction

Many of the sampling techniques employed in computer
graphics are adaptive in the sense that they attempt to
concentrate effort in areas where complexity is high. In
particular, adaptive anti-aliasing schemes choose to sam-
ple at a higher rate where the scene is interesting, such as
near edges. Many such schemes have been devised, both
deterministic [11, 4] and stochastic [6, 2, 9, 7, 8]. The
latter category has received the most attention and es-
sentially consists of multi-stage Monte Carlo integration
techniques. Common to all of these is the notion of using
a small number of samples to detect regions where addi-
tional sampling is required to achieve a reliable answer,
that is, one with an acceptably low level of noise.
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While all of these methods have been reasonably suc-
cessful in achieving this goal, it is important to under-
stand the statistical effects of such a strategy. To do this
we must examine multi-stage sampling plans in toto and
characterize their statistical behavior. In particular, we
wish to determine whether they in fact attain the correct
answer on average.

Every stochastic anti-aliasing algorithm can be viewed
as defining a random variable at each pixel to estimate
the quantity of interest. This quantity is typically the
unknown image function integrated with a filter kernel
such as a gaussian or a box-filter. The purpose of adap-
tive sampling is to reduce the variance of these random
variables, or estimators, with minimal increase in com-
putation. If the expected value of an estimator is the
solution we are seeking, it is said to be unbiased. If the
estimator has a bias that can be made arbitrarily small,
perhaps by increasing the number of initial samples suf-
ficiently, then it is said to be consistent [3].

By analyzing the behavior of a prototypical multi-
stage sampling algorithm operating on a simple class of
test cases, we will show that most adaptive sampling plans
fall into the category of consistent but biased estimators.
Although the bias is typically small, this is a source of
error that should be taken into consideration when hirzh
accuracy is required.

2 Common Sources of Sias

Sources of statistical bizs can be found in many seemingly
innocuous operations in image synthesis. For example,
pixel values are frequently truncated or otherwise trans-
formed so as to fall within the gamut of color monitors.
Removing out-of-gamut colors can shift the distribution
mean. At a very low level, the pseudo-random number
generators at the heart of Monte Carlo approaches often
have a built-in bkt. At higher levels, the practice of im-
portance sampling [5, 10] red uces variance by sampling
more frequently where the result is large, which requires
precise renormalization if the original expected value is to
be maintained. Another example is the practice of trun-
cating excessively deep ray trees in ray tracing. This can
cause a systematic bias by eliminating a large number of
small contributions [I].

In general, whenever we depart from naive Monte
Carlo in an attempt to improve statistical efficiency, care
must be taken to avoid introducing unnecessary bias.
This is also true in screen space, for example, when anti-
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EstimateMean(X, n, c)
begin

Draw a set of n identically distributed random
samples from X.

sn-{xl, x2,.. .,xn};

if Variation (S~) < c then begin
This is the “easy” case: use the sample
mean as an estimate o} the true mean.

~4-x;
end

else begin
This is the “hard” case: invoke a costly
oracle to compute the true mean.
f - TrueMean(X);
end

return f;
end

Figure 1: A hypothetical adaptive sampling algorithm similar
in spirit to mmt existing algorithms. This is biased for most
inputa.

aliaaing at the pixel level. As we show in the following
section, adaptive anti- aliasing algorithms can introduce a
systematic bias dependent upon the image function. This
bias is greatest in areas of high contrast and is caused by
early stages of sampling systematically favoring one ex-
treme or the other. In Section 4 we propose a modified
approach that is unbiased.

3 Bias From Adaptive Sampling

In this section, we examine the statistical behavior of
common adaptive anti- aliaaing algorithms. We begin by
formulating a hypothetical sampling algorithm that re-
tains the salient features of most multi-level sampling
plans yet is simple enough to allow convenient analy-
sis. The basic strategy is to use samples sparingly except
where more work is deemed necessary. The decision to
invoke a more costly method as a second stage is baaed
upon a statistic we will call “variation,” a function of
the first-stage, or pilot, sample. This could be the sam-
ple variance, the ‘contrast”, or a function of the sample
size and variance as in [6] and [9]. An idealized algo-
rithm using this strategy is shown in Figure 1, where X
is the “populationn whose mean we wish to estimate. For
anti-aliasing, X will be the set of image values with prob
abilities influenced by the filter kernel.

Although the meaning of variation differs among the
various approaches, a universal feature is that it goes to
zero as the maximum deviation within the sample goes to
zero. Thus, any such algorithm would be satisfied with
only the first-stage sample when all values are identical.

If the variation is greater than some c, then we will
classify the population as “hard” to sample, and invoke
a more expensive second-stage sampling technique. For
simplicity we will assume here that the second-stage “or-

acle” computes the exact mean; in reality, this action
would be simulated through a large number of samples.
Because this ideal can be approximated to any given pre-
cision, our conclusions carry over to real algorithms, al-
though the actual amount of bias witl differ.

To demonstrate that the strategy in Figure 1 can be
problematic we need only examine its behavior on a sim-
ple class of inputs. In particular, we will assume that X
consists of a finite number of distinct values, ~1, 12, ..., Ik,
with corresponding probabilities w, wz, ..., LJk. This sit-
uation occurs, for example, when applying a box filter to a
pixel area consisting of k constant-intensity region% the
Z’s would represent the intensities within the pixel and
the w‘s would represent their fractional coverages. The
actual mean is then

(1)

With this characterization of X we can easily compute
the expected value of the random variable < returned by
the algorithm in Figure 1. Using conditional expectations
based on a classification of “easy” or “hard”, indicating
that the variation of S~ is below or above the threshold
c, respectively, we have

E[~] = E[~ Ieasy] x Prob[easy]

+ E[< I hard] x Prob[hard] (2)

The oracle guarantees that E[~ I hard] = 1, the true
mean. To analyze the conditional expectations we ob-
serve that any sample, S., can be characterized as a k-
tuple, (nl, nz, ..., nk ), where nj is the number of samples
assuming the value Ij. Then nl + .-. + nk = n and the
probability of a k-tuple is given by the multinominal dis-
tribution [3]:

4’ w ...w.k
prob[nl, nz, . . ..nk] = n1fn21+. .nk! n!. (3)

. .

Using this fact, we cau compute E[<] for any input of
the form described above. We simply step the algorithm
through all distinct k-tuplez and sum the resulting values
of f weighted by the corresponding probabilities. How-
ever, if we assume c to be sufficiently small that S~ will
be classified as “easy” only when all n samples are of
the same value, then Equation 2 reduces to a very simple
expression. In this case we have

Prob[easy] = w; + w: + . ..+ w; (4)

and the expected value of <, given that the initial sample
was found to be ‘easy”, is

(5)

Substituting these into Equation 2 and observing that
Prob~ard] = 1 – Prob[easy] we arrive at the expression

(6)

i=l

Because 1 is the true mean, the summation on the right
of Equation 6 is the amount of bias. This will be nonzero
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for all but a small class of inputs. The bias diminishes as
the number of initial samples increases, indicating that
the estimator is consistent. In Section 5 we present ex-
perimental data obtained from Equation 6.

4 An Unbiased Adaptive Sampling Plan

The hidden flaw in the algorithm above is that the first-
stage samples deemed “eas y“ are not completely random,
and therefore may not fairly represent the entire popula-
tion. That is, the test for accepting a first-stage sample
is usually correlated in some way with the mean of the
sample.

There is a straightforward modification of the above
sampling plan to avoid this bias. First select a small
subset of the area X, call it R, and draw a sample of
size n from this subset. We may examine this sample to
determine the number of samples to draw from the rest of
the region, X– R, but in any case we use the initial sample
mean to estimate the mean of R. Because we do not
alter the estimate of R, no bias is introduced there. Also,
because the second stage is simply a choice among two
or more unbiased estimators for a dis~int region, it also
remains unbiased. It follows that a weighted sum of the
these sample means, weighted proportionately by area,
results in an unbiased estimate over the entire region.
This approach is outlined in Figure 2.

As with any multi-stage scheme, the goal is to estimate
the population variance by means of a first-stage sample.
To the extent that the region R is representative of the
entire region, drawing the pilot sample from it will serve
this purpose. This suggests that R should be “scattered”
throughout X.

As a special case of this strategy, note what happens
if we allow the area of region R to shrink to zero. The
result is a strategy whereby the pilot sample is used solely
to select the sample size for the second stage – not for
estimating the mean. This clearly avoids any possibility
of a correlation between the estimator of the mean and
the variation of the pilot sample.

These examples suggest a simple rule that will avoid
introducing bias in multi-stage sampling schemes: decide
how a sample is going to be used before it is drawn – not
based on the actual values drawn. Observing this rule
prevents us from modifying estimates in any way that
may be correlated with the result.

This technique can be applied in a hierarchical fashion
and stratified, similar to [6]. After the first decision has
been made baaed on the pilot sample, we can make addi-
tional decisions later, provided that we either discard the
samples used to influence the strategy, or decide ahead of
time that they will be used to estimate the mean over the
subregion from which they were drawn.

The main disadvantage of using a technique such as
this is that it is difficult to avoid either wssting samples or
producing a high-variance result that cannot be remedied.
The former occurs if R is chosen to be so small that the
pilot sample contributes very little to the final estimate.
The latter occurs if R is large and the pilot sample fails to
provide a sufficiently reliable estimate of its mean. We are
then left with a poor estimate. Improving it with further
sampling will, in most cases, alter the distribution of the
‘easy” cases and introduce bias.

UnbiasedEstimateMean(X, R,p, n], nz, c)
begin

Draw a set of p identically distributtxi random
samples from R C X.

SPt{xl, xz,. ... xp}cli;

if Variation < c then n + nl
else n + nz;

Draw a set of n identically distributed random
samples from the rest of X.

S.+{ X1, X2,..., }CXCR– R

Compute [ based on the unbiased estimates
of the two disjoint components.

(-3xlRl+~xlX– Rl;

return (;
end

Figure 2: An unbiased adaptive sampling algorithm. It is
aszumedtbat RC X andnl < na.

Figure 3: Absolute Bias as a function of initial sample size n
for a collection of fractional areas.

5 Results

To study the extent of the biasing problem we have com-
puted the exact bias introduced by the algorighm in Fig-
ure 1 for a range of initial sample sizes and a variety of
tw~intensity pixels. In this case Equation 6 provides the
actual bias. Both Figures Fig. 3 and Fig. 4 show curves
for WI ranging from 0.125 to 0.875. For each of these
curves, W2 = 1 – U1, 11 = O, and 12 = 1. Note that while
the absolute bias is symmetric about zero, the percent
bias increases as the actual mean decreases.

While these figures are informative, it is difficult to
see how this really afTects an image. Fig. 5a (upper left)
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Figure 4: Percent Bias as a function of initial sample size n 

for a collection of fractional areas. 

Figure 5: a) Unbiased image, b) Unbiased image (hi-res), 
c) Biased image, d) Biased image (hi-res) 

shows a black / white edge, and a thin white polygon on 
a black background, at 32x32 resolution. Fig. 5b (upper 
right) is a hi-res version of Fig. 5a. Fig. 5a & b were 
computed using the expected value of the unbiased algo- 
rithm from Figure 2. Fig. 5c & d were computed using 
the expected value of the biased algorithm described in 
Figure 1. Therefore, these images illustrate the tenden- 
cies of these algorithms, not actual results. Pixels in all 
figures were integrated using a box filter. 

Note that in Fig. 5c & d, the familiar “roping” in the 
antialiased edges is worse than in Fig. 5a & b. This is 
because the small partial coverages in each pixel are un- 
derestimated in the biased approach. Likewise, the large 
partial coverages are overestimated. In this case, the bias 
accentuates problems with antialiasing of edges. 

6 Conclusions 

We have shown that common adaptive anti-al&zing algo- 
rithms can be statistically biased, and have proposed an 
alternative algorithm that is unbiased. 

It may not always be worthwhile to remove this source 
of bias. The error is typically small, especially when the 
initial sample is large. Our alternative sampling plan, 
while unbiased, possesses other drawbacks in terms of 
additional cost and parameter selection. For each ap- 
plication the cost must be weighed against the benefit of 
improved accuracy. 

The analysis presented here has identified a subtle 
deficiency hidden within most anti-abasing approaches 
which should be addressed in future schemes. 
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