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Abstract

The purpose of these notes is to describe some of the physical and mathematical properties
of the equations occurring in global illumination. We �rst examine the physical assumptions
that make the particle model of light an appropriate paradigm for computer graphics and
then derive a balance equation for photons. In doing this we establish connections with the
�eld of radiative transfer and its more abstract counterpart, transport theory. The resulting
balance equation, known as the equation of transfer, accounts for large-scale interaction
of light with participating media as well as complex re
ecting surfaces. Under various
simplifying assumptions the equation of transfer reduces to more conventional equations
encountered in global illumination.

1 Introduction

Global illumination connotes a physically-based simulation of light appropriate for synthetic
image generation. The task of such a simulation is to model the interplay of light among
large-scale objects of an environment in order to approximate the quantity and quality of
light reaching the eye of an observer. The problem is global in that all objects can interact
with one another by means of scattered light. To properly simulate the lighting of a room,
for instance, the entire surroundings must be taken into account; architectural features and
even the interior decoration can a�ect the overall illumination [32].

But why the emphasis on physically-based simulation? The answer is that we wish to
accurately predict the appearance of a hypothetical scene, and by imitating the physics we
might thereby approximate the visual stimulus of viewing the scene. Of course, there is
more to it than physics. In addition to the behavior of light, there are many important
considerations in producing a convincing image; for instance, the characteristics of the
display device, the physiology of the eye, and even the psychology of perception.

Although global illumination does not reduce to physics and computation alone, these
aspects currently dominate the �eld. Consequently, global illumination is predominantly the
study of algorithms for simulating the interaction of visible light with large-scale geometry;
that is, geometry with at least some features signi�cantly larger than the wavelength of the
light. These goals are by no means unique to global illumination.

Global illumination can be considered a sub�eld of radiative transfer, which is the study
of the interaction of radiant energy with matter at the macroscopic scale [7, 43]. The origin
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of radiative transfer theory is generally attributed to the astrophysical work of Schuster [48]
and Schwarzschild [49] near the turn of the century. Since then, it has found application
in areas such as illumination engineering [31], radiative heat transfer [51], hydrologic op-
tics [44], agriculture [34, 33], remote sensing [3, 12], vision [64], and computer graphics [13].
The central tenets of radiative transfer are embodied in the equation of transfer; an integro-
di�erential equation describing the gross interaction of light with participating media and,
given appropriate boundary conditions, its interaction with arbitrary surfaces. Although
rendering methods exist for simulating participating media [21, 46], the origin and extensive
history of the equation of transfer are not widely recognized within the computer graphics
community. Studying the equation of transfer is an excellent way to build a bridge to the
vast literature in radiative transfer and its direct descendants, and this is one purpose of
these notes.

Global illumination can also be viewed as a sub�eld of transport theory [2, 17, 9], a �eld
that encompasses all macroscopic phenomena resulting from the interaction of in�nitesi-
mal particles with a medium. The macroscopic behaviors of photons, neutrons, and gas
molecules are all within its purview. The central equation of transport theory is known as
the Boltzmann equation.

Placing global illumination in the larger context of transport theory reveals common
ground with �elds such as neutron transport theory and the kinetic theory of gases. There
are advantages in exploring the similarities. While neutron migration may appear to have
little to do with rendering a foggy atmosphere, the equations governing the two phenomena
are virtually identical. Consequently, we can gain insight from the older, more developed
theories that describe such phenomena. As a more practical matter, many numerical tech-
niques have been devised in related �elds, and these are only beginning to be explored in
global illumination. A wide assortment of Monte Carlo techniques have been developed for
neutral particle transport [27, 55] that are relevant to global illumination [1]. The concept
of importance for view-dependent radiosity [54] is another example of a technique adapted
from a related �eld [26].

In the remainder of this section we examine some of the the assumptions of global
illumination and characterize the underlying physical model. In section 2 we derive a well-
known transport equation for abstract particles. In section 3 we specialize the abstract
equation to radiative transfer and deduce from it various equations occurring in computer
graphics.

1.1 The Physical Basis of Global Illumination

What does it mean for global illumination to be physically-based? Certainly it implies that
the simulation of light is in some sense faithful to the actual physical behavior of light.
Yet no image synthesis technique in use today captures the full repertoire of light. Ray
tracing [61] and radiosity [13, 38] feature nearly mutually exclusive models of light re
ec-
tion: each valid in itself, but incomplete. Methods that combine ray tracing and radiosity
typically neglect more complex modes of re
ection [53]. The rendering equation [19] and
methods that incorporate complex surface re
ection [4, 52] still neglect light scattering by
participating media such as smoke. Methods that model participating media have thus far
limited the forms of surface re
ection [46, 47, 21]. Finally, absent from all of the cited
approaches are macroscopic e�ects due to interference and di�raction. Every global illumi-
nation algorithm assumes some model of light and, with the possible exception of quantum
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electrodynamics [10], every model of light is itself incomplete.
Maxwell's equations provide a very detailed description of light, accounting for a wide

variety of phenomena including dispersion, interference, and di�raction. However, this phys-
ical optics level of description is overly detailed for global illumination. It is most relevant at
scales on the order of the wavelength of light, where wave optics e�ects predominate. Geo-
metrical optics, on the other hand, deals with the large-scale behavior of light, ignoring the
wave-related details of physical optics. However it leaves out too much. Pure geometrical
optics is insu�cient for global illumination because it incorporates no radiometric concepts
for the measure of light [22].

For global illumination, we need to model visual phenomena; those that are observable
by the eye or any instrument capable of discriminating light intensity and frequency. This is
called a phenomenological level of description as it focuses on phenomena corresponding to
percepts such as brightness and color. Because the principles of radiative transfer operate
at a size scale large compared to the wavelength of light, and a time scale large compared to
the frequency, it is essentially a phenomenological description of the behavior of light [43].
Thus, radiative transfer matches the needs of global illumination.

Radiative transfer does not provide explanations of phenomena at the level of quan-
tum mechanics or electromagnetism, yet it must incorporate information from these more
detailed levels. Theories at the microscopic scale are usually needed to predict �rst-order
e�ects such as local scattering and absorption, which then enter into the simulations at the
macroscopic scale. For instance, the physically-based re
ection model of He [16] employs
wave optics to characterize re
ection from rough surfaces, and this model can be used for
global illumination [52]. For many materials with complex microgeometries, there exists a
natural hierarchy of scales, with geometrical optics taking over at the point when wave ef-
fects become negligible [60]. Another avenue by which physical optics e�ects can enter into
radiative transfer is through physical measurements; incorporating bidirectional re
ectance
functions of actual materials is a prime example [57].

1.2 Dimensions and Units

Every physically-based simulation ultimately concerns physical quantities; that is, mea-
surable attributes of phenomena or of matter [35]. Implicit in any equation expressing a
relationship among physical quantities is a system of units in which the quantities were
measured. Thus, each algebraic equation with a physical interpretation has a correspond-
ing dimensional equation showing how the units combine [18]. Unfortunately, the units for
radiometric quantities can be troublesome, owing to the overwhelming number of distinct
and sometimes inconsistent de�nitions [30, 56, 36, 37, 20]. As we begin to consider domains
outside of radiative transfer the problem grows worse; each �eld has its own bewildering
assortment of units and terminology. This unfortunate fact is largely historical, resulting
from independent development of many fundamentally related �elds.

One defense against the onslaught of unfamiliar units and terminology is dimensional
analysis; that is, explicit examination of the associated dimensional equations. While dimen-
sional analysis cannot determine unknown coe�cients, it can reveal necessary relationships
among the quantities involved [18], and provides a �rst check of validity. Throughout these
notes, physical units will be discussed along with each quantity. We shall use the standard
notational device of brackets to the right of an equation to indicate the units possessed by
each term of the expression or equation.
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The present discussion is restricted to the physical domain, so we need not introduce
luminous intensity or its corresponding unit, the candela. This will keep the proliferation
of units to a minimum. The only units that we shall have occasion to use are the following,
from the international system of units [35]:

Quantity Units Symbol

time second s
length meter m
solid angle steradian sr
energy joule J
power watt W

Time, length, and solid angle are base units, while energy and power are derived units. The
joule has base units of m2 kg s�2, where kg is the unit of mass, and the watt is joules per
second. For our purposes we needn't reduce energy to anything more fundamental. We can
simply treat the joule as a base unit corresponding to some irreducible quantity that nature
has provided.

2 A Balance Equation for Particles

The macroscopic phenomena modeled by radiative transfer are accounted for by the particle
model of light. Consequently, radiative transfer is synonymous with photon transport, a term
connoting large-scale statistical behaviors of photons. This perspective leads naturally to
Monte Carlo simulations, in which large numbers of photon histories are tallied [50], but it
also provides a convenient conceptual model.

In this section we approach radiative transfer by �rst reducing the model of light to the
bare essentials, leaving behind only abstract particles. This captures the spirit of transport
theory, a theory whose goal is to determine the distribution of abstract particles in space and
time, taking into account their motion and interaction with a host medium. The resulting
distribution is expressed purely in terms of the geometrical and physical properties of the
medium [5, 9].

Transport theory is classical in nature, yet its focus on discrete particles di�erentiates it
from classical theories such as electromagnetism. It requires many assumptions concerning
the nature of these particles [27, 62]. The two most important assumptions are that 1)
the particles are so small and numerous that their statistical distribution can be treated
as a continuum, and 2) at any point in time a particle is completely characterized by its
position and velocity, and internal states such as polarization, frequency, charge, or spin.
These assumptions lead naturally to the notion of phase space.

Phase space is an abstraction for dealing with con�gurations of particles. Each dimen-
sion of phase space represents a degree of freedom of a particle; commonly six in all. For
simplicity, we shall only consider particles that move with a constant speed v and possess
no internal states. This restricted problem corresponds to gray or mono-energetic radiative
transfer, or one-speed transport for generic particles. The one-speed assumption requires
only �ve degrees of freedom per particle; three for position and two for direction. The
corresponding 5-dimensional phase space is R3 � S2 where R3 is Euclidian 3-space and S2

is the unit sphere in R3.
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To exactly characterize a con�guration of particles we must specify all degrees of freedom
of each particle at an instant in time; this corresponds to discrete points in phase space.
Such a complete accounting for discrete particles has a natural analogue for a continuum
of particles; namely, phase space density. Phase space density, denoted by n(r; !; t), is a
real-valued function de�ned over phase space and time such that

n(r; !; t) drd! (1)

is the number of particles in a di�erential volume dr about the point r 2 R3 moving in a
direction within a di�erential solid angle d! about ! 2 S2 at time t. Thus, its units are
m�3sr�1. Phase space density makes no mention of material attributes such as mass or
energy; these concepts do not enter until we assign physical meaning to the particles, as
we do in section 3. The abstract nature of phase space density makes it quite universal, it
underlies virtually all particle transport problems from radiative transfer to gas dynamics.

ω

dω

ds

dA

Figure 1: Phase space 
ux is the number of particles crossing the surface dA perpendicular
to ! per unit area, per unit solid angle, per unit time.

It is frequently more convenient to characterize the density of particles by their rate
of 
ow across a real or imaginary surface. Consider the particles that pass through a
di�erential area dA with directions in di�erential solid angle d! about the surface normal
in time dt. All the particles are contained within the volume dA ds, where ds = v dt, as
shown in Figure (1). Assuming that r is a point within this volume, the number of particles
is

n(r; !) dA ds d!: (2)

But rather than focusing on the particles within a volume can shift emphasis to the surface
dA and the rate at which particles cross it by de�ning phase space 
ux �:

�(r; !) � v n(r; !)

�
1

m2 sr s

�
. (3)

In terms of phase space 
ux, the number of particles in dA ds is

�(r; !) dA d! dt: (4)
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Emission Streaming Collisions

scattering

absorption

Figure 2: Particle behaviors fall into three categories: emission, streaming, and collisions.
The latter is further divided into absorption and scattering.

Phase space 
ux will be the fundamental quantity of interest; it can be used to express
virtually any quantity relating to a distribution of particles. Our goal is to derive an equation
for the function � based on particle conservation; this requires that we characterize all
properties of the particles that can a�ect their motion through the medium. We observe that
all particle behaviors fall into one of three categories: emission, streaming, and collisions.

Emission is the name given to any physical process that injects new particles into the
system. Physically, emission may result from chemical, thermal, or even nuclear processes.
Once emitted, particles travel until they su�er an instantaneous collision. For neutral
particles, such as photons and neutrons, the path followed is independent of external forces,
and the behavior of following such a path is called streaming. For photons this path is
determined by the eiconal equation [28] which accounts for continuously varying index of
refraction. If we neglect refraction, as we shall do here, streaming is in straight lines.

Collisions imply interactions with matter, and can be further subdivided into absorption
and scattering. Absorption removes a particle from the system by capturing it and convert-
ing its energy into some other form, such as thermal motion of the medium. Scattering is a
process that instantaneously changes the direction of travel of a particle. See Figure (2). If
the speed of travel or energy of the particle remains unchanged by the scattering it is called
elastic. All scattering is assumed to be elastic in one-speed transport.

A very common assumption concerning collisions is that particles do not interact with
one another; or more precisely, that such interactions are negligible. In the absence of
this assumption, the rate of collision is itself a function of the particle distribution; a
situation leading to a non-linear balance equation. This source of non-linearity is sometimes
unavoidable, as in some problems of gas dynamics [14]. To preserve linearity in photon
transport it is necessary to ignore e�ects such as interference, which imply photon-photon
interactions. In neutron transport, where inter-particle collisions are exceedingly rare, this
assumption is almost universally made.

2.1 An Abstract Transport Equation

In this section we derive a broadly applicable balance equation for neutral non-interacting
particles; the same equation appears in both radiative transfer and neutron transport theory.
The approach we shall take is similar to that of Duderstadt and Martin [9], and is sometimes
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× =

volume
V

solid angle
Ω

phase space
volume V × Ω

Figure 3: The Cartesian product of a volume and a solid angle results in a �ve-dimensional
volume in phase space.

called the Eulerian derivation [40] since the analysis is carried out with respect to a �xed
reference frame.

To derive a balance equation for the particles, we begin by examining the particles
within some �xed volume in phase space. Let V � R3 be an arbitrary volume, let 
 � S2

be an arbitrary solid angle, and consider the cartesian product V � 
. This product is a
set consisting of all pairs (r; !) such that r 2 V and ! 2 
, as depicted in Figure (3). Our
task is to determine how the number of particles in V � 
 changes with time. At any time
t, the number of particles in this volume, N(t), can be obtained by integrating phase space
density over the 5-dimensional volume:

N(t) =

Z



Z
V

n(r; !; t) dr d!; (5)

which results in a dimensionless quantity. We now consider the time derivative of N(t).
In general, the number of particles in a given volume can change with time due to time-
dependent properties of the medium and sources, or due to transient e�ects as the system
moves toward equilibrium. However, we need only consider the stationary or steady state
distributions since the speed of light is e�ectively in�nite compared to rates of macroscopic
motion in habitable environments. Thus, we can assume that equilibrium is reached instan-
taneously with respect to the geometric con�guration of the environment at any point in
time. Each volume then has a �xed number of particles, which implies that phase space

ux is independent of time, � = �(r; !), and that

dN(t)

dt
= 0

�
1

s

�
. (6)

Yet even in the stationary case time is evident in the constant motion of the particles,
implying that the equilibrium is dynamic. The 
ow of particles into and out of V � 

must exactly balance. To examine this balance it is instructive to �rst identify all possible
physical processes by which N could change, and then group the terms into gains and losses.
By equating the gains with the losses we arrive at a stationary balance equation for V �
.
Each of the three processes, emission, streaming, and collisions, can change the number of
particles within V � 
, so we require that2

4 change
due to
Emission

3
5+

2
4 change

due to
Streaming

3
5+

2
4 change

due to
Collisions

3
5 = 0: (7)
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Ω
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φ

φ

φ∂V

Figure 4: Integrating the 
ux due to 
 over the surface @V .

The �rst component, the change due to emission, accounts for the creation of new particles
by sources. We assume that there are one or more physical processes generating new
particles and that the combined e�ect is described by a phase space source function q, a
real-valued function de�ned on R3�S2. The phase space source function gives the number
of particles created per unit volume, per unit solid angle, per unit time, so its units are
m�3sr�1s�1. In terms of q, the change in N due to emission is

E �

Z



Z
V

q(r; !) dr d!

�
1

s

�
. (8)

Note that the units of E are in accord with the time derivative of N . Next, we account for
particles with directions in 
 that either escape from or enter into the volume V simply
by streaming. More precisely, the change due to streaming is the net 
ow of particles with
directions in 
 that pass through the surface @V of volume V . The process of streaming
through a real or hypothetical surface is called leakage. The leakage through each di�erential
patch on the surface depends only on the component of the 
ux that is normal to the patch.
Integrating the normal component of the 
ux due to particles in 
 over the entire surface
@V , we have

S �

Z



Z
@V

�(s; !)! � n(s) ds d!

�
1

s

�
, (9)

which is the change in N due to streaming through @V . In general, some of the di�erential
surface patches will have positive 
ows and some negative, as shown in Figure (4), so S

accounts for particles 
owing both into and out of the volume V . With outward-pointing
surface normals positive leakage indicates a net 
ow out of V , which decreases N .

The last component to analyze is the change due to collisions, which we separate into
absorption and scattering. As discussed in section 2, we assume that particles interact solely
with the medium and not each other, making the collision rate independent of �. Analysis
of the mechanisms of collisions belong to the realm of physical optics, quantum mechanics,
etc. At the scale of particle transport, we simply incorporate models for the microscopic
processes and look to other �elds to supply the various constants for speci�c materials.

We assume that the probability of a particle disappearing due to absorption is propor-
tional to the distance of travel through the medium. See Figure (5a). The constant of
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ds

(b)

 dω' 

(c)

φ'

φφ

φ'

 dω 

ds

(a)

φ'φ  dω 

 dω 

 dω' 

 dω' 

Figure 5: An intuitive view of volume interactions (a) per unit length, �0 / � ds, (b) per
unit solid angle per unit length, �0 / � d!0 ds, and (c) per unit solid angle, �0 / � d!0.

proportionality is called the absorption coe�cient �a, which has units of m�1. The ab-
sorption coe�cient may vary with position, but is normally assumed to be independent of
direction. This is equivalent to assuming that the medium is isotropic, ruling out regular
structure such as that of a crystal. The change in N due to absorption is expressed as

Cabs �

Z



Z
V

�a(r)�(r; !) dr d!: (10)

Collisions due to scattering are more complex. As with absorption, the probability of such a
collision occurring is proportional to the distance the particle travels. Upon collision, how-
ever, the new direction must also be accounted for. Because of the one-speed assumption,
we need not consider other changes to the particle as a result of scattering. We characterize
the process of scattering by the volume scattering kernel k. The function k is de�ned on
R3 � [�1; 1] such that

k(r;! � !0) dr d!0

is the probability that a particle at r moving in the direction ! will be de
ected into the
new direction !0, per unit solid angle about !0 per unit distance of travel. See Figure (5b).
The units of k are m�1sr�1. That k depends only on the dot product ! � !0 and not the
individual directions is again a statement about the isotropy of the medium.

Scattering may remove particles from V � 
 by a process known as out-scatter. In
out-scatter, a particle remains within V while its direction is instantaneously changed to
something outside of 
 as a result of a collision. To account for out-scatter we de�ne the
term Cout by

Cout �

Z



Z
V

Z
S2

k(r;! � !0)�(r; !) d!0 dr d!; (11)

which is the total number of scattering collisions su�ered by particles in V � 
 per unit
time. The opposite of out-scatter is a process by which particles are added to V � 
 by
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Figure 6: The �ve processes a�ecting the number of particles in volume V with directions
in solid angle 
.

being de
ected into it. To account for in-scatter we de�ne the term Cin by

Cin �

Z



Z
V

Z
S2

k(r;!0 � !)�(r; !0) d!0 dr d!; (12)

which is the number of particles in V , per unit time, with directions of travel in 
 after
scattering. Note that both Cout and Cin account for particles whose directions lie within 

both before and after scattering, which is neither a gain nor a loss. However, we need only
consider the net change due to scattering, which is the di�erence between Cin and Cout,
and this cancels the unwanted e�ect. Including the de
ections from 
 back into 
 in both
terms simpli�es the de�nitions, allowing the integration to be over S2 instead of S2 � 
.

We can now collect the terms corresponding to the �ve distinct physical processes that
can change N . Separating the terms into gains and losses and equating them, we have

S+Cabs +Cout| {z }
losses

= E+Cin| {z }
gains

(13)

The meanings of the �ve terms are summarized in Figure (6).
As it stands, equation (13) applies only to the phase space volume V �
, yet it contains

within it an equation that applies globally. To extract the global balance equation we need
only eliminate references to the �xed sets V and 
. To do this, observe that all but one
of the terms in equation (13) entail integration over V ; only the S term is expressed as an
integral over @V . Gauss's theorem can be used to convert the single surface integral into a
volume integral, yielding

S =

Z



Z
V

! � r�(r; !) dr d!: (14)
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Here, in addition to Gauss's theorem, we have used the fact that

r � [!�(r; !)] = ! � r�(r; !)

which holds because ! is �xed with respect to the divergence operator. With the new
expression for S, all �ve terms in equation (13) entail integration over both V and 
.
Because V �
 is arbitrary, it follows that equality must hold for the integrands (to within
a set of measure zero). Removing the two outer integrals from all �ve terms, we have

! � r�(r; !) + �a(r)�(r; !) +
Z
S2

k(r;! � !0) �(r; !) d!0

= q(r; !) +

Z
S2

k(r;!0 � !) �(r; !0) d!0: (15)

Now, the integral corresponding to Cout on the left-hand side of equation (15) can be
simpli�ed because the function � does not depend on the variable of integration. We
introduce the scattering coe�cient �s de�ned by

�s(r) �
Z
S2

k(r;!0 � !
0) d!0

�
1

m

�
,

which is the probability that a particle will su�er a scattering collision per unit distance
traveled, in exact analogy with �a(r). Here !0 can be an arbitrary direction in S2 because
of isotropy. Then �s becomes a factor of � in the balance equation. The two such factors,
�s and �a, can be conveniently grouped into a total interaction coe�cient �,

�(r) � �s(r) + �a(r)

�
1

m

�
,

which is the probability that a particle will su�er either kind of collision, per unit distance
traveled. With the new notation, equation (15) becomes

! � r�(r; !) + �(r)�(r; !) = q(r; !) +

Z
S2

k(r;!0 � !)�(r; !0) d!0 (16)

which is the standard form of the stationary one-speed particle transport equation in integro-
di�erential form. When time-dependent phenomena are included, as in many nuclear and
astrophysical applications, equation (16) appears in a slightly more general form; phase
space 
ux becomes a function of time, � = �(r; !; t), and an additional term,

1

v

@�(r; !; t)

@t
; (17)

appears on the left-hand side, since equation (6) no longer holds.
The above derivation of the transport equation is one of many possible approaches.

In the context of radiative transfer, Chandrasekhar [7] begins by considering directional
derivatives of the 
ux, and Pomraning [40] describes a \Lagrangian" approach based on
following packets of photons. Davison [8] and Weinberg and Wigner [59] elaborate many
of these same ideas in the context of neutron transport theory. Case and Zweifel [6] and
Kourgano� [23] give derivations that apply to many di�erent physical phenomena. Finally,
Preisendorfer [41, 42] has given a rigorous axiomatic derivation of the general transport
equation based on measure theory.
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(a) (b)

M

Figure 7: The surface M partitions (a) the set of directions S2 at each point s 2 M , and
(b) the set of all rays originating on M .

2.2 Boundary Conditions

The presence of the gradient operator makes equation (16) a �rst-order di�erential equation
in the spatial variables. As such, it cannot be a complete description of the physical situation
in itself. A property of all di�erential equations is that they require boundary conditions
to eliminate the arbitrary constants of integration [11].

Equation (16) is only valid away from surfaces, which are the boundaries. At the
surfaces, collectively denotedM , we need to specify what happens. To express the boundary
conditions, �rst observe that M imposes a natural partitioning of S2 into two hemispheres
at each point. Let n(s) denote the surface normal at s 2 M . Then we designate the
hemisphere where n(s) � ! > 0 the positive hemisphere and de�ne the set

H+
s � f! 2 S2 : ! � n(s) � 0g:

Similarly, we de�ne the collection of all pairs (s; !) corresponding to rays that originate on
M and point outward:

H+ � f(s; !) 2M � S2 : ! 2 H+
s g:

The sets H�

s and H� are de�ned analogously, and satisfy

H+
s [H�

s = S2

H+ [H� = M � S2:

See Figure (7). The purpose of boundary conditions is to specify the behavior of the
particles on the set H+; the set H� is accounted for by particles impinging on M . There are
numerous ways in which these conditions can be speci�ed, and di�erent physical situations
call for di�erent boundary conditions [9, 25]. The simplest in form are the explicit boundary
conditions in which

�(s; !) = qb(s; !) (18)

for all (s; !) 2 H+. Explicit boundary conditions are independent of � itself, accounting for
particles that are generated by independent processes and subsequently enter the system
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Figure 8: Two types of implicit boundary conditions: (a) specular re
ection, and (b) direc-
tional di�use re
ection.

through the boundaries. In contrast, implicit or re
ecting boundary conditions are of the
form

�(s; !) = f(�; s; !) (19)

for all (s; !) 2 H+. There are two common forms of implicit boundary conditions, both
expressing � restricted to H+ in terms � restricted to H�. The physical interpretation is
that of scattering at the boundary; particles originating at the boundary are a direct result
of those impinging on it. The �rst form is specular re
ection, and is of the form

�(s; !) = F (s;�!0)�(s;�!0) (20)

where !0 is the re
ection of ! through the surface normal at s. See Figure (8a). A second,
and far more general type of implicit boundary condition is given by an integral transfor-
mation:

�(s; !) =
Z
H
�

r

kb(s;!
0!!)�(s; !0) d!0; (21)

where kb is the surface scattering kernel with units of sr�1. The arrow notation \!0!!"
is used here in lieu of \!0; !" to indicate incident and re
ected directions. Note that the
surface scattering kernel lacks the length dimension of volume scattering. This is because
each particle scattering event takes place at the de�nite location on the surface determined
by the direction of travel. The integral transformation of equation (21) expresses the density
of particles re
ected in any direction as a weighted \sum" of the incoming densities, and
the weighting can depend strongly on both the incoming and outgoing directions. See
Figure (8b). This phenomenon is also known as directional di�use re
ection [16]. Note that
if we allow the kernel kb to include generalized functions, such as the Dirac delta function,
then we can write

kb(s;!
0!!) = F (s; !0) �(!0 � !);

which subsumes the case of specular re
ection. Finally, we note that there are physical
constraints on both F and kb. If the only source of new particles is q, conservation dictates
the constraints

F (s; !) � 1 (22)
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and Z
H
�

s
kb(s;!

0! !) d!(!0) � 1 (23)

for all (s; !) 2 H+ . Similarly, both F and kb must be non-negative everywhere.

3 The Equation of Transfer

The general transport equation derived in the last section is not tied to a particular physical
situation. We now rephrase it slightly to apply to the transfer of radiant energy; that is,
we now account for the semantics of photons. There are three properties of photons that
need to be incorporated into the equation. First, photons travel at a constant speed; in a
vacuum, this speed is a univeral constant denoted by c. Second, photons have an associated
frequency, an important internal attribute that determines their energy and a�ects their
behavior. And �nally, trajectories of photons are strongly in
uenced by surfaces; a property
shared by gas molecules, but not neutrons.

We begin by translating the abstract notion of phase space 
ux into the corresponding
radiometric concept of radiance. Radiance is the power per unit area per unit solid angle
due to radiant energy crossing a surface perpendicularly (or, equivalently, per unit projected
area). This is essentially the same concept as phase space 
ux; all that is missing is the
notion of energy per photon. But the energy of a photon is related to its frequency by

E = h� [J], (24)

where h is Planck's constant. It follows that the relationship between phase space 
ux and
radiance L(r; !) is

L(r; !) = h� �(r; !)

= ch� n(r; !)

�
W

m2 sr

�
.

Similarly, we need to translate the phase space source function into a quantity related to
radiant power. We de�ne a volume source term " by

"(r; !) � h� q(r; !)

�
W

m3 sr

�
.

The physical process of emission is a phenomenon of matter, and therefore applies only to
volumes. Nonetheless, it is a useful abstraction to allow surfaces to be emitters [39]. We
de�ne a surface source term "b by

"b(s; !) � h� qb(s; !)

�
W

m2 sr

�
.

The functions L, ", and "b will play the same roles as their abstract counterparts, with the
di�erence that they are now linked to physical units meaningful to the transfer of radiant
energy.
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Figure 9: The local coordinates for bidirectional re
ectance.

Because surfaces are a dominant in
uence in the realm of photons, we impose boundary
conditions that are most general, including both explicit and implicit terms. Then the
transport equation can be written in terms of L:

! � rL(r; !) + �(r)L(r; !) = "(r; !) +
Z
S2

k(r;!0 � !)L(r; !0) d!0

L(s; !) = "b(s; !) +
Z
H
�

s

kb(s;!
0 ! !)L(s; !0) d!0

(25)

where s is a boundary point. Equation (25) is the stationary gray equation of transfer with
boundary conditions.

Both emission and collision behaviors of neutral particles may depend upon internal
states or speed. Therefore "; "b; k, and kb are generally all functions of these attributes.
In photon transport these functions are usually strongly frequency-dependent. The one-
speed assumption, which translates into �xed frequency for photons, allows simulations at
di�erent frequencies to be decoupled. It is common in global illumination to use three or
more concurrent but independent simulations corresponding to di�erent frequencies.

The surface scattering kernel may be expressed in radiometric terms by relating it to
the bidirectional re
ectance distribution function, or BRDF, �. Denoting the BRDF at the
point s 2M by �s, we have

kb(s; !
0!!) = �s(�i; �i; �r; �r) cos �i

�
1

sr

�
, (26)

where the incoming and outgoing directions have been expressed as incident and re
ected
angles to indicate a shift to local coordinates. For instance, cos �i = �n(s) � !0 is the
cosine of the angle of incidence. See Figure (9). The units of �s are also sr�1, as cos �i is
dimensionless. The volume scattering kernel can also be put into another form by factoring
out the phase function Pr(x) de�ned by

Pr(x) � 4�
k(r; x)

�s(r)

�
1

sr

�
, (27)
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where x 2 [�1; 1] encodes the cosine of the angle between the directions before and after
scattering. In terms of Pr, the volume scattering kernel is

k(r; !0 � !) = �s(r)
Pr(!

0 � !)

4�
; (28)

which has the advantage of separating the notions of collision probability per unit length and
the resulting distribution of directions. See Figure (5c). The 4� appears in the de�nition of
phase function so that P � 1 corresponds to uniform scattering in all directions. A common
empirical phase function due to Rayleigh is

P (x) =
3

4
(1 + x2): (29)

3.1 Integral Form

In this section we derive an alternate form of the equation of transfer that is a pure integral
equation instead of an integro-di�erential equation, as equation (25). In performing this
transformation the boundary conditions are absorbed into the equation, leaving a single
expression that is equivalent but sometimes more convenient. The derivation below parallels
those of Pomraning [40] and Williams [63]. The idea is to integrate equation (25) along a
ray until a boundary point is reached. The integration eliminates the di�erential operator
and also incorporates the boundary value at the point of intersection with the ray. The key
observation is that the operator ! �r is a directional derivative in the direction !, allowing
us to write

! � rL(r; !) =
@

@x
L(r+ x!; !)

����
x=0

= �
@

@x
L(r� x!; !)

����
x=0

where x 2 R parametrizes the ray through r parallel to !. We shall express L(r; !) in terms
of what happens along the ray (r;�!), which makes the second expression above a more
convenient choice. To simplify notation, we de�ne Q(r; !) to be the gains due to volume
emission and in-scattering,

Q(r; !) � "(r; !) +

Z
S2

k(r;!0 � !)L(r; !0) d!0; (30)

and introduce the single-parameter functions

bL(x) � L(r� x!; !)bQ(x) � Q(r� x!; !)

b�(x) � �(r� x!);

where r and ! are to be considered �xed. Ignoring the boundary conditions for the moment,
equation (25) can be written as

d

dx
bL(x)� b�(x) bL(x) = � bQ(x): (31)
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Figure 10: The boundary point s corresponding to the ray (r; !). The point s is given by

(r;�!), and the distance h by b(r;�!).

Note that the term bQ(x) has no explicit dependence on bL. Even though bL is subsumed
by the in-scattering term of equation (30), its contribution is only on a set of measure
zero. Therefore, equation (31) is a linear �rst-order ordinary di�erential equation in bL
with variable coe�cients, which is easily solved by means of an integrating factor [45]. By
de�ning

v(x) � exp

�
�

Z x

0

b�(y) dy� ; (32)

equation (31) can be written as

d

dx

h
v(x) bL(x)i = �v(x) bQ(x); (33)

which is in a form that can be integrated directly. By integrating both sides from 0 to x

and noting that v(0) = 1, we solve for bL(0), yielding
bL(0) = v(x)bL(x) + Z x

0
v(y) bQ(y) dy: (34)

Here we have chosen to solve for bL(0) because bL(0) = L(r; !). Although equation (34)
holds for any x, it is only useful if we have a convenient expression for bL(x); otherwise we
have made no progress toward a simpler representaion for bL(0). Fortunately, if we choose
x so that bL(x) lies on the boundary, the boundary conditions provide such an expression.
That is, we let x = b(r;�!) where

b(r; !) � inffx > 0 : r+ x! 2Mg

gives the distance to the nearest point of intersection with the boundary along the given
ray. Similarly, we de�ne the closely related function 
 by


(r; !) � r+ b(r; !)!;

which returns the actual point of intersection. See Figure (10). For simplicity, we assume
that the surfaces M form a complete enclosure so that b and 
 are always well-de�ned; this
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is always possible by surrounding the scene with a non-re
ecting surface if necessary. Now,
to incorporate the value at the boundary into equation (34), we de�ne � to be the boundary
function

�(s; !) � "b(s; !) +
Z
H�

s

kb(s;!
0!!)L(s; !0) d!0 (35)

for any (s; !) 2 H+ . We must also generalize equation (34) back to a form that holds for
any ray, so we introduce several new functions. The optical distance function is de�ned by

�(r; r0) �

Z jjr0�rjj
0

�(r+ yu) dy; (36)

where u = (r0�r)= jjr0 � rjj is the unit vector pointing from r to r0, and the path absorption
function is de�ned by

�(r; r0) � e��(r;r
0): (37)

The function � is simply a more general form of the integrating factor v(x). Note that both
� and � are dimensionless. Finally, the stationary gray equation of transfer in integral form
can be written as

L(r; !) = �(s; r) �(s; !) +
Z h

0
�(r� x!; r)Q(r� x!; !) dx (38)

where s = 
(r;�!) and h = b(r;�!). Note that both � and Q are functions of L, so equa-
tion (38) is not a closed-form expression for L; it is merely an alternative to equation (25)
in which the boundary conditions are built in. Similar equations can be derived when L is
time-dependent [63] and where there is coupling between frequencies [58]; in both cases the
derivation proceeds as above after applying a Laplace transform.

3.2 Special Cases of the Equation of Transfer

The equation of transfer has several direct applications in global illuminaition, including
the simulating of participating media [21, 46] and physically similar e�ects [24] as well as
subsurface scattering [15]. But its usefulness extends beyond these applications. Because of
the generality of the equation of transfer, it subsumes many of the equations used in global
illumination and volume rendering. Just as the rendering equation [19] uni�es an array of
rendering techniques, the equation of transfer encompasses an even larger class. We now
consider some of the special cases that it subsumes.

3.2.1 Vacuum Conditions

If the space separating the surfaces is a vacuum, there can be no volume emission and no
particle collisions except at surfaces. Under these conditions equation (25) all but disap-
pears, leaving behind little more than the boundary conditions. More precisely, vacuum
conditions imply that

" � 0

�a � 0

�s � 0;
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Figure 11: With vacuum conditions, the incident radiance at (s; !) is equal to the radiance
at (s0; !).

therefore, equation (25) reduces to

! � rL(r; !) = 0 (39)

for all r 2 R3 �M and ! 2 S2. Equation (39) states that the directional derivative of L
vanishes everywhere in a vacuum. This implies that the radiance function L(r; !) is invariant
along each direction !, and consequently, L(r; !) at any interior point is determined by a
point on the boundary:

L(r; !) = L(
(r;�!); !) (40)

for all (r; !) 2 R3 � S2. See Figure (11). Substituting equation (40) into the boundary
condition of equation (25), we have

L(s; !) = "b(s; !) +

Z
H
�

s
kb(s;!

0!!)L(
(s;�!0); !0) d!0 (41)

which is a balance equation for L(s; !) restricted to H+. This is the governing equation for
direct radiative transfer between surfaces; it describes the same physical situation as the
rendering equation [19], but in terms of radiance.

The equation simpli�es further if we assume that all surfaces are pure di�use re
ectors.
In this case the radiance function depends on position but not direction. Making the
corresponding changes to L and �, we arrive at the continuous version of the radiosity
equation:

L(s) = "b(s) + �(s)

Z
H
�

s

L(
(s;�!0)) cos �i d!
0: (42)

3.2.2 Non-Scattering Media

Now consider the case where there is a medium that absorbs and emits, but does not scatter.
That is,

�s � 0:
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In this case it will be easier to study the implication by starting with the integral form of
the equation of transfer. The absence of scattering implies that the function Q de�ned in
equation (30) reduces to

Q(r; !) � "(r; !) (43)

so the governing equation is

L(r; !) = �(s; r) �(s; !) +

Z h

0
�(r� x!; r) "(r� x!; !) dx (44)

where s = 
(r;�!) and h = b(r;�!). If we further assume that the boundaries are non-
re
ecting, then

�(s; !) � "b(s; !) (45)

for all (s; !) 2 H+. Under these assumptions equation (44) no longer depends upon L at
all. The value of L(r; !) is therefore a function only of the absorption coe�cient �a(r) and
the volume emittance function "(r; !) along the path of the ray (r;�!). Using the notation
introduced in section 3.1, the equation for L(r; !) can then be written as

bL(0) = v(x)b"b(x) + Z x

0
v(y) b"(y) dy

= exp

�
�

Z x

0

b�(z) dz� b"b(x) + Z x

0
exp

�
�

Z y

0

b�(z) dz� b"(y) dy (46)

where x is the distance to the �rst surface, and

b"b(x) � "b(r� x!; !)

b"(x) � "(r� x!; !):

Finally, if we neglect the surfaces altogether, we have the emission-absorption model fre-
quently used in volume rendering [21]:

bL(0) = Z
1

0
exp

�
�

Z y

0

b�(z) dz� b"(y) dy: (47)
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Nomenclature

Symbol Units Page Meaning

b(r; !) m 1-17 distance along the ray to boundary
H+
s { 1-12 positive hemisphere at a point s 2M

H+ { 1-12 outgoing rays originating on M
k(r;! � !0) m�1 sr�1 1-9 volume scattering kernel
kb(s;!!!0) sr�1 1-13 surface scattering kernel
L(r; !) W m�2 sr�1 1-14 radiance function
M { 1-12 all surfaces (boundaries)
n(r; !) m�3 sr�1 1-5 phase space density
n(s) { 1-12 surface normal function
Pr(x) sr�1 1-15 normalized phase function at r
q(r; !) m�3 sr�1 s�1 1-8 phase space source function
qb(s; !) m�2 sr�1 s�1 1-12 explicit boundary condition
r { 1-5 a point in R3 representing a position
Rn { 1-4 n-dimensional Euclidean space
s { 1-12 a point in R3 representing a boundary point
S2 { 1-4 the unit sphere in R3

V { 1-7 a volume in R3

�(r; r0) { 1-18 path absorption
�a(r) m�1 1-9 absorption coe�cient
�s(r) m�1 1-11 scattering coe�cient
�(r) m�1 1-11 total interaction coe�cient
"(r; !) W m�3 sr�1 1-14 volume emittance function
"b(s; !) W m�2 sr�1 1-14 surface emittance function
�(r; !) m�2 sr�1 s�1 1-5 phase space 
ux

(r; !) { 1-17 ray shooting function
�s(�i; �i; �r; �r) sr�1 1-15 bidirectional re
ectance distribution function
�(r; r0) { 1-18 optical distance
! { 1-5 a vector in S2 representing a direction

 { 1-7 a subset of S2 representing a solid angle
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Global Illumination:
Transfer Equations, Linear Operators and 

Integral Equations

Jim Arvo
Program of Computer Graphics

Cornell University

The Equations of Global Illumination

Origins
Assumptions
Connections

Equations of Radiative Transfer

Mathematical Tools & Concepts
Linear Operators
Integral Equations
Using "Importance"

Derivation of classical transfer equation
Physical assumptions
Connections with other fields
Simplified models

What we'll cover Physical Models and
Physically-Based Rendering

Wave Model of Light

Particle Model of Light

Physical Optics
Maxwell's Equations
Diffraction & Interference

Geometrical Optics
Phenomenological Description
Intensity and Color

Radiative Transfer

Schuster 1905
Schwarzschild 1906
Chandrasekhar 1947

Interaction of light with matter at
the macroscopic scale

Based on energy conservation

Originated in astrophysics

Expresed by equation of transfer

Surface Scattering Volume Scattering

Interface between materials Participating medium

Work Involving Volume Interactions

Kajiya and Von Herzen  1984

Rushmeier and Torrance  1987, 1990

Krueger  1990

He  1993

Blinn  1982 

clouds

volume rendering

radiosity + participating media

subsurface scattering

dusty surfaces

Why study the equation of transfer?

Describes important phenomena

Provides a link to relevant literature

Participating media
Subsurface scattering

A useful conceptual model
Subsumes global illumination
Clarifies assumptions & generalizations

Radiative transfer
Other fields



Transfer Equations in Global Illumination 1-26

Abstract Particles

Radiosity
Equation

Rendering
Equation

Volume Rend
Equation

Physical Assumptions

Properties of Photons

No Medium No Scattering

Balance Equation

Equation of Transfer

The Grand 
Scheme

Radiative Transfer

Related Phenomena

Neutron Transport

These very distinct physical phenomena have
nearly identical governing equations:

Photons

Neutrons

MoleculesGas Dynamics

Collisions are instantaneous

Mono-energetic (gray, or one-speed)

No interactions among particles

Infinitely small & numerous

No external influences

Assumptions about Particles Particle Behaviors

Emission Streaming Collisions

scattering

absorption{ {{
Deriving a Balance Equation

change
due to

Emission[ ] change
due to

Streaming[ ] change
due to

Collisions[ ] 0+ =+

Particles are in constant motion, so equilibrium
is dynamic.   Changes due to all three behaviors
must balance.

Phase Space

Captures all degrees of freedom

5-dimensional in one-speed case

Used to represent state of particles

 3 for position
 2 for direction of travel
 More for internal states (energy)

 R3 × S2 is the whole space

×V Ω

Solid Angle
in S

3D Volume
in R 23

A Portion of Phase Space
Expressed as a Cartesian Product

The Cartesian Product ×V Ω

A Simple Phase Space Volume
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×V Ω

Phase Space Density n(r,ω)
(Angular Number Density)

r ω Number of particles in
box = n(r,ω) dr dω

Phase Space Flux    φ = v n

ω

dω

ds

dA

n ds dA dω 
   =  n (v dt) dA dω
   =  φ dt dA dω

m2
 sr s
1

s
m

m3
 sr

1

Flux from Density

φ(r,ω) = v  n(r,ω)

{Particle conservation is expressed by
an integro-differential equation

A Balance Equation for Particles

{

φ(r,  ω) σ(r)ω φ(r,  ω)

q(r,   ω) φ(r,  ω'  )k(r ;  ω. ω')  d ω'
S2

+=

+

Particle Behaviors

Emission Streaming Collisions

scattering

absorption{ {{ Phase space source function  q  accounts for 
new particles generated by chemical, thermal, 
or nuclear processes.

1[     ]q(r,ω)
m3

 sr s

Emission Accounts for
Creation of New Particles

1[  ]s

The Emission Term

V

q(r,ω) dr  dω
Ω

sr 
1

m3
 sr s

m3
 

Particles
per second

The rate of absorption is proportional to the
phase space flux φ.

Absorption Accounts for
Particles that are Destroyed
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ds

φ'φ
 dω  dω' 

The probability of absorption is proportional
to the distance of travel.

Absorption:
Collisions per Unit Distance

The Absorption Term

sr m3
 

σa(r) φ(r,ω) dr dω
VΩ Particles

per second

1[  ]s

m2
 sr s

1
m

1

Out-Scatter Accounts for
Particles Deflected Out of Ω

The rate of scattering is proportional to the
phase space flux φ.

Scattering collisions change the direction 
of travel instantaneously.

In-Scatter Accounts for
Particles Deflected Into Ω

ds

φ'

φ
 dω 

 dω' 

The probability of scattering is proportional
to the distance of travel and the solid angle.

Scattering per Unit Distance
per Unit Solid Angle

sr m3
 

m2
 sr s
1 sr m  sr 

1

The Scattering Terms

k(r;ω.ω') φ(r,   ) dω'dr  dω
S2VΩ

ω' for in-scatter
ω for out-scatter

Leakage depends only on the flux φ over ∂V

∂V

Leakage Accounts for
Particles that Stream Out of V

n

n

∂V

Ω

Ω

Ω

φ(s,ω) dsn(s)ω dω
Ω ∂V

n

Computing Leakage Through ∂V
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=

+

Terms of the Balance Equation

Leakage Abs. & out-scatter

Emission In-scatter

+

φ(r, ω)ω σ(r) φ(r, ω)

q(r,  ω) φ(r, ω' )k(r ;  ω 
. ω')  d ω'

S2

Boundary Conditions

Needed for complete balance equation

Two major forms

The differential operator requires
boundary conditions

Crucial in image synthesis
Surface effects predominate

Explicit (Sources)
Implicit (Reflecting)

The Semantics of Photons

Particles carry energy

Emission and collisions depend on ν

Implicit  boundary conditions essential

Phase space flux becomes radiance  
L(r,ω) = hν  φ(r,ω)

Complex interactions with boundaries

Strong frequency dependence
m2

 sr s
1J 

[      ]J
m2

 sr s

[     ]W
m2

   sr

Radiance
(Intensity)

L(r,ω) = hν φ(r,ω)

ω'

s

n(s)

 dω'
θi

Directional Diffuse Reflection

dL(s,ω) = kb(s ;ω '     ω)  L(s,ω ')  dω '  

{
Boundary Conditions for
the Equation of Transfer

{L(s,  ω) = εb(s,   ω) +      kb(s ;  ω'    ω) L(s,  ω'  ) d ω'
S2

surface scattering kernel

surface emittance [     ]W
m2

   sr

[   ]1
 sr

φr

θr
θi

φi

n(s)

x

y

ω'
ω

Local Coordinate System of the BRDF

kb(s;ω '     ω) = ρs(θ i,φ i,θr,φr) cos θi 

Vacuum Conditions

In a vacuum, the volume scattering and
emission terms disappear, leaving only

L(r, ω) = 0ω
which implies that radiance is constant
along straight lines.
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n(s)

s

s'

ω

n(s')

ω

The radiance at s in direction ω is given by the
radiance at s' in direction ω.

Surfaces separated
by a vacuum

Radiance Determined from other Surfaces An Equation for Direct Exchange
Between Surfaces

L(s,  ω) = εb(s,   ω) +      kb(s ;  ω'    ω) L(s',  ω'  ) d ω'
S2

This is an equation for L

defined on the set H +. 

The values of L on H -are 
given by other surfaces.

H -

H +

rn(s)

s 

h

boundary

ω

Integrate combined source term backwards along 
the ray until boundary is reached.

Derivation of Integral Form Non-Scattering Medium and Boundary

L(0) = v(x) εb(x) +     v(y)  ε(y)  dy   

0

x

optical distance
x

L(0)
e
-    σ(z)  dz   

0

x


