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Abstract

Most of the research on the global illumination
problem in computer graphics has been con-
centrated on finite-element (radiosity) tech-
niques. Monte Carlo methods are an intrigu-
ing alternative which are attractive for their
ability to handle very general scene descrip-
tions without the need for meshing. In this
paper we study techniques for reducing the
sampling noise inherent in pure Monte Carlo
approaches to global illumination. Every light
energy transport path from a light source to
the eye can be generated in a number of dif-
ferent ways, according to how we partition the
path into an initial portion traced from a light
source, and a final portion traced from the
eye. Each partitioning gives us a different un-
biased estimator, but some partitionings give
estimators with much lower variance than oth-
ers. We give examples of this phenomenon and
describe its significance. We also present work
in progress on the problem of combining these
multiple estimators to achieve near-optimal
variance, with the goal of producing images
with less noise for a given number of samples.

1 Introduction

Many techniques have been proposed for solv-
ing the problem of global illumination in com-
puter graphics. By far the simplest of these
algorithms are the pure Monte Carlo (MC)
methods. These methods have several other
advantages: they guarantee that the expected
value of the solution at each image pixel is
correct (compared with the true mathemati-
cal solution); they require almost no storage
beyond the scene model itself; and they can
be applied to arbitrary surface geometries and
reflectance functions in a clean, uniform way.
The interface to the scene model is particu-
larly nice—all operations access the scene as
an object-oriented black box, allowing truly
procedural geometric and reflection models.
Pure MC methods do not suffer from many
of the artifacts and limitations that must be
addressed by radiosity techniques[8, 9, 10]
(“blocky” appearance, Mach bands, missing
shadows, limited reflectance models), making
them an excellent choice for the validation of
other methods.

However, Monte Carlo methods have one
well-known drawback: noise. The focus of this
research is to determine to what extent this
noise is an inherent limitation. That is, how
far can MC methods be taken in terms of



variance reduction, without adding bias to
the solution? Many techniques for variance
reduction have been described in the Monte
Carlo literature[l, 2] (e.g. importance sam-
pling, stratified sampling) and have long been
used by the computer graphics community/[3,
6, 7, 5]. Yet even with these techniques, there
are many reasonable scenes for which current
MC algorithms are not practical. Our goal
is the development of new variance reduction
methods that exploit the special properties of
global illumination.

In this paper, we restrict ourselves to pure
Monte Carlo methods for global illumination.
These are methods which

— give an unbiased estimate at every pixel,

— have no correlation between the errors at

different pixels,

work for general surface geometries and

reflectance functions, and

— do not require any data structures in ob-
ject space (such as a subdivision of sur-
faces into patches).

For example, MC methods which express the
solution as a linear combination of basis func-
tions are not pure, since this introduces cor-
relations between the errors at different pix-
els. Pure methods are attractive because the
only image artifact is noise; thus if an image
we compute does not appear to be noisy, we
have strong reason to believe that it is correct.
Pure methods include distribution ray trac-
ing[3] and path tracing[6]. Many variants on
these techniques are possible[4, 6, 5].

All pure MC techniques described in the lit-
erature have one feature in common: rays are
traced only from the eye, not from the light
sources. Techniques such as light ray trac-
ing[15, 13], bidirectional ray tracing[16, 12],
and Monte Carlo radiosity[14, 11] all use
the light rays to deposit energy on surface
patches. Since this requires a mesh in ob-
ject space, these methods are not “pure” for
the purpose of this paper. Also, these tech-
niques do not extend well to environments
with many small patches[17] or to non-diffuse
surfaces[18, 19, 20].

Lafortune and Willems[21] have indepen-
dently developed a “bidirectional path trac-
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ing” technique which uses some of the ideas
presented in this paper. However their frame-
work does not recognize explicitly the multiple
estimators for each path length, or the prob-
lem of optimally combining them.

Let’s consider a specific cause of noise in
MC images: highly non-uniform incoming il-
lumination. The problem is that the outgoing
illumination L, is essentially the product of
the incoming illumination L; with a reflection
term; generally we can obtain accurate local
information about the reflection term but not
about L;. For this reason, existing methods
sample where the reflection term is large (im-
portance sampling). However if L; is highly
non-uniform (for example 99% of the light
comes from only 1% of the hemisphere of solid
angles), this strategy is a poor predictor of the
important sampling directions, leading to high
variance.

In this paper we investigate pure MC meth-
ods which balance between sampling where
the reflection function is large and where the
incoming illumination is large. These methods
build transport paths in two parts, one start-
ing from a light source and the other from the
eye. We show that there are k ways to evaluate
the light flowing on transport paths of length
k, according to where we break the path be-
tween the eye and light portions. We are also
experimenting with techniques for partition-
ing the transport paths between the k meth-
ods to reduce the variance of our estimates.

Our results generalize the direct lighting
calculation[6, 5], a common optimization for
MC methods. Rather than following paths
all the way back to the light sources, this
optimization handles the last path segment
specially. Our partitioning technique gives a
rule for when the direct lighting calculation
should be applied; there are some situations
where it is not beneficial. More generally, our
techniques address the problem of noise due
to highly non-uniform indirect lighting. We
demonstrate that noise from bright indirect
light in typical MC images is due to following
transport paths only from the eye.

This paper is organized as follows. Section 2
gives an outline of our rendering algorithm,
along with several examples which demon-
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strate how it works. Section 3 describes a re-
formulation of the rendering equation as an
integral over rays. We have found this use-
ful in describing and analyzing the algorithm.
Section 4 discusses the problem of partitioning
transport paths among the rendering methods
to reduce variance, and describes several ideas
we are currently experimenting with to solve
this problem. Finally, the Appendix describes
a recursive formulation of the bidirectional
sampling, and gives some additional mathe-
matical details.

2 Outline of the Algorithm

The desired value at a pixel P can be ex-
pressed as an integral

/Q f(2)du(z)

over the space (2 of all transport paths x,
where the weight f(x) is proportional to the
contribution made to P by the light flowing
along z (see Sect.3,4). The largest contribu-
tions typically come from short paths, so we
can either ignore paths whose length exceeds
some threshold, or use Russian roulette[4] to
terminate long paths without adding bias.
This lets us partition the estimate at P into a
finite sum; we estimate separately the contri-
bution due to each path length k.

To estimate the contribution for a particu-
lar k, we use MC integration (Sect. 4). This in-
volves randomly generating a path z of length
k which potentially contributes to P, and scor-
ing the contribution f(z)/p(z) where p(z) is
the differential probability with which we gen-
erated z. To reduce the variance, we repeat
the whole process M times and take the aver-
age (see Fig. 1).

How should we go about generating paths
of length k7 In typical MC algorithms, paths
are generated by following random bounces
backward starting from the eye. The key fea-
ture of our algorithms is that they construct
transport paths starting from both the light
sources and the eye. The transport paths have

1 ESTIMATE-PIXEL(P)

2 S0

3 for n<1to M

4 for k<1 to Maz-length

5 x+ CHOOSE-PATH(P, k)
6 S S+ f(z)/p(x)

7 return S/M

Fig. 1. Simplified pseudocode for estimating the
value at a pixel P. CHOOSE-PATH(P, k) generates
a path z of length k& which potentially contributes
to P. f(x) is the differential contribution to P of
light flowing along x, and p(x) is the probability
density with which CHOOSE-PATH generates x.
In practice, the estimates for each k are not inde-
pendent; we can incrementally add a segment to
partial paths from the previous step(s), and save
the effort of generating an entire path each time.

the form

Yo=?Y1—= = Yn
~> Xy, 2 Xp—1 X0

consisting of a light portion yo,-..,yn, starting
at a point yo on a light source, followed by an
eye portion X,,...,Xo ending at a point xg
on the lens aperture. All x;,y; lie on surfaces
of the scene S (see Fig. 2).

The eye portion of a transport path is built
by following a chain of m random bounces
starting from the eye; this is “backward” rel-
ative to the direction light travels. Similarly
the light portion is built by following n ran-
dom bounces forward from the light source.
The connecting segment y,, ~> X,, is not cho-
sen randomly; it is completely determined by
the choice of y, and x,,. Of course it is pos-
sible that segment y, — x,, is occluded, in
which case no light flows along this path.

By controlling the number of steps taken in
each direction, there are k different methods
for path generation; each segment is a possible
breakpoint between the eye and light portions.
That is, by taking m steps from the eye and
n steps starting from a light source, we can
generate a path of length m+n+1=k. The
choice of m and n can have a large effect on
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Fig. 2. A complete transport path. For symmetry with the first two light steps, we draw the
lens aperture and film plane in the opposite order from a real camera.

the probability distribution of randomly gen-
erated paths; for example if we take all steps
from the eye, the path distribution does not
depend on the light source locations. This fact
is crucial in obtaining good MC estimates,
since the more closely the path distribution
p(x) matches the contributions f(z) made by
these paths, the lower the final variance will
be (see Sect. 4).

In effect, each of the k partitioning choices
leads to a different rendering algorithm for
the light flowing on paths of length k. We de-
fine a notation for these algorithms: an (m,n)-
method is one that generates transport paths
by taking exactly m eye steps and n light steps
(where m+n+1=k). Examples are given be-
low.

2.1 Area Lights and Lens Apertures

Note that Fig. 2 refers to two additional points
x4 and y. These points do not belong to
the scene S; they are artificial points that al-
low our algorithms to extend naturally to area
light sources and finite-area lens apertures.
To model area light sources, we consider
y4 to be a point radiance source which dis-
tributes light energy to the emitting surfaces
of the scene. We can think of y; as having a
directional distribution on the rays y; —y for
each point y of the scene. Since the point y4
is entirely artificial, we can define the behav-
ior of the light transport kernel K on these
rays. In particular we define K so that after

one “bounce”! the energy emitted along rays
Y4 — Y is scattered into exactly the desired
emitted distribution L. This is like applying
light transport in reverse; given an arbitrary
distribution L., we define an artificial kernel
that produces L. after one bounce from a sin-
gle point light source.

Similarly, we can model the effects of an ar-
bitrary lens system as a scattering function
from the external lens surfaces to an artificial
importance source X-. The directional distri-
bution at x; assigns importance to the light
arriving at each point on the lens surface.

In effect, this modification gives us two ex-
tra places to break the transport paths, since
choosing a point on the area light source/lens
aperture is considered a “step”. It lets us
handle problems involving arbitrary emitted
light distributions and filter functions with the
same methods that we use for a single point
light source and a single pinhole lens. It is
purely a formalism, in the sense that an imple-
mentation must still handle these cases spe-
cially. We can include multiple cameras and
motion-blur effects with the same technique.

A complete transport path is now a se-
quence

Y1—=Yo—= " Y¥Yn-1
A X1 X > X

consisting of k = m+n+1 segments, where
1 We define a bounce as a single application of

the light transport operator determined by K
(section 3).
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Fig.3. This transport path leaves the light
source, bounces off a surface, and passes through
the lens aperture onto the film plane. We can gen-
erate paths of this kind in four ways, by taking
differing numbers of eye and light steps.

we maintain the convention that an (m,n)-
method takes m eye steps and n light steps.
The first light step y-1 — yo chooses a random
point on a light-emitting surface; the second
chooses a direction in which light is emitted.
Similarly the first two eye steps (from x4)
choose a point on the lens aperture, and a
sampling direction that contributes to the cur-
rent pixel P.

2.2 Algorithms for One Bounce

Let’s qualitatively examine the rendering al-
gorithms we obtain for paths with k=4. Such
paths account only for light which bounces ex-
actly once on the way from a light source to
the eye (the bounces at xo and yg are arti-
ficial). Since there are four possible segments
where we could break between eye and light
portions, there are four possible rendering al-
gorithms.

A. The (0,3)-method (see Fig.3). The
light steps are: choose a point yg on a light
source, choose a direction to get an emitted
ray yo —y1, and follow it through one random
bounce to get y; = y2. A non-zero contribu-
tion occurs only if this ray happens to pass
through the lens aperture and strike the film
plane near the pixel P. This is exactly what
happens with a real camera.

B. The (1,2)-method. The two light steps
choose an emitted ray yo — yi. The eye
step chooses a point xo on the lens aperture.
To contribute, y; must be visible to z( in

the small range of directions corresponding to
pixel P (and of course y; ~»xo must be unob-
structed).

C. The (2,1)-method. The light step
chooses a point yo on a light source. The eye
steps choose an aperture point and direction.
To contribute, x; and yo must be mutually
visible. This technique is the one normally as-
sociated with MC ray tracing, which follows
paths backward from the eye, but computes
the direct lighting separately.

D. The (3,0)-method. The eye steps
choose a sample ray and follow it through one
bounce. To contribute, the path must land on
a light source. This technique is naive MC ray
tracing with no direct lighting component.

Note that to get a sample contribution with
any of these methods, not only must the con-
necting segment be unobstructed, but also the
BRDF’s at both ends must reflect some light
along it.

Methods A and B seem impractical. How-
ever if we allow point light sources and per-
fect mirrors, it is easy to construct examples
where these are the only methods (of the four)
capable of producing a reasonable result. To
see this, note that two or more eye steps re-
sult in a sample ray that is guaranteed to miss
any point light sources. This deficiency is of-
ten seen in Monte Carlo or ray-traced images,
where the effects of a point light source are vis-
ible but the light itself is not. (Depending on
the filter function used over the image plane,
a point source should be blurred over several
pixels.)

A more practical example comes from the
direct lighting calculation, i.e. the difference
between methods C and D. It is well-known
that if we view an area light source through a
perfect mirror, the direct lighting calculation
fails. Only a single point on the light source
contributes to a transport path ending on the
mirror; the probability of randomly choosing
this point is zero. It is much better to follow
the transport path backward through an addi-
tional bounce. More generally, if the surface is
almost a mirror, the direct lighting “optimiza-
tion” will give much noisier estimates than the
naive method (although both have the correct
expected value).
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Fig.4. (a) An image computed by building transport paths starting from the lights (in this
case, a single point source inside the lamp shade). (b) The same scene using standard MC
path tracing from the eye. See Plates 1 and 2 in the color section for more detailed images.

We emphasize that we are not claiming that
these techniques (when k=4) are practical in
most scenes; they are simply examples of the
methods which come naturally from our for-
mulation of bidirectional sampling. For larger
k, we do claim that the new methods can
be superior in practice; the following section
presents some evidence of this.

2.3 Two or More Bounces

As an example we have chosen a scene that is
very challenging for pure Monte Carlo meth-
ods, to emphasize the differences between var-
ious techniques. The best images produced by
our preliminary implementation are still quite
noisy. All images were computed with 50 sam-
ples per pixel. The images in the text itself
were computed at a resolution 300 by 225; the
color section contains two images computed at
900 by 675.

The scene in Fig.4(a) consists of a table,
a desk lamp, and a shiny slab of metal in a
closed room. (See Plate 1 in the color sec-
tion.) All surfaces are diffuse, except for the
metal slab which is Phong-specular. All light
in the scene comes from a single point light
source located in the lamp shade (the “bulb

filament”). Because of this, almost all light-
ing is indirect. Most light is reflected one or
more times within the lamp shade, and then
it strikes the table top before illuminating the
rest of the scene. This image was made with
the new techniques described in this paper;
it is the union of all (2, k)-methods (all steps
taken from the lights, except for the choice of
initial viewing ray).

A standard MC image made with the same
number of samples is substantially more noisy
and darker (Fig.4(b), Plate 2 in the color sec-
tion). The reason is clear when we examine
the surfaces that are lit directly (Fig.5(a)).
Even with the direct lighting optimization, a
transport path must randomly strike one of
these directly lit regions to make any contri-
bution, and most of the light energy after one
bounce is concentrated on the interior of the
lamp shade and a small area of the table. In
terms of the (m,n) notation defined above,
this image is the union all (k, 1)-methods.

Note that Fig.4(a) and (b) should have the
same average brightness, since both give the
correct expected value at each pixel. The rea-
son for the discrepancy is that most white pix-
elsin Fig. 4(b) are actually much brighter than
could be displayed, and have been truncated
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Fig. 5. (a) The direct lighting component (light which bounces exactly once on its way from
the light source to the eye). It is rendered with the (2,1)-method: two eye steps (to choose a
viewing ray) and one light step (choosing the point on the light source). (b,c) The two-bounce
component. The left image shows the (3,1)-method, the right image shows the (2,2)-method
(i.e. the right image takes an additional light step). (d,e,f) Three bounces. From left to right,

we have the (4,1), (3,2), and (2, 3)-methods.

at a maximum value.

Fig.5 shows various possibilities for ren-
dering the light due to one, two, and three
physical bounces (the first 3 components of
the steady-state solution). The (k, 1)-methods
correspond to standard Monte Carlo with the

direct lighting optimization. Our implementa-
tion does not yet support the (0, k)- and (1, k)-
methods, although this should be easy to do.
The images have been computed at low reso-
lution (160 by 120) so that individual pixels
can be seen. It was necessary to brighten these




images relative to Fig. 4, since each image ac-
counts for only a fraction of the light in the
scene.

3 Light Transport in Ray Form

To analyze our algorithms, we have found it
useful to reformulate the rendering equation|[6]
as an integral over rays. This leads to a very
simple expression for the kernel; the geomet-
ric terms are hidden in the measure function
we use for the inner product. We find that the
ray measure simplifies the description of bidi-
rectional sampling, and is very useful when
dealing with general filter functions and light
distributions.

3.1 Local Form

Pat Hanrahan has written an excellent devel-
opment of the following material which can be
found in [22]. Please consult this reference for
an explanation of terms not defined here.

Light transport is described by an integral
equation of the form:

Lo(x;u_jo) = Le(xau_jo) + (1)

KL (X, u_)'(,, Qi)Li(X, Ql) du)i .
Qan

We call this the local form of light transport
equation, because all quantities are expressed
in terms of x. It expresses the relation between
incoming and outgoing light at a particular
point x on a surface of the scene S.

The function K7, is called the kernel of the
integral equation, and describes how light is
scattered. For reflectance functions from sur-
faces, K1, has the form

KL(Xa (.30, ‘Dl) = fr(X, (,30, ‘Dl) cos(01)

where f; is the bidirectional reflectance distri-
bution function (BRDF) and 6; measures the
angle between &J; and the surface normal at x.
Physically accurate surface reflection models
lead to a symmetric BRDF, i.e. f,(x,d,, &) =
fr(x,&4, W) due to a physical principle known
as Helmholtz reciprocity[22].
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3.2 Three-Point Form

We can express L; in terms of L, via a change
of variables to get the three-point form of the
rendering equation (note that x is now x’, and
L, is now L):

L(xX' —»x") = Le(x' —x") + (2)

/ Ki(x—»x'—-x")L(x—x")dx .
S

The integration is now over the scene S, and
the kernel is given by

K3(x—x'=x") = filxex <x") V(xex')
_cos(6) cos(6)

[l —x']|?

3.3 Ray Form

Note that the domain of L is a 4-dimensional
space, the space of all rays. However, the
integration in (2) is taken only over a 2-
dimensional subset (those rays x — x' where
x' is fixed). It seems natural to integrate in-
stead over the domain of all rays, which leads
to the ray form of the rendering equation:

L(R) = Lo(%) + /R Kn(%, §)L(F) du(@) (3)

where X = x > x' and ¥y = y —» y' are rays,
and R contains all rays with y,y’ € S. Not all
rays contribute equally; this is controlled by
the measure function

cos () cos(6")

duy—=y') =V(yey')- Iy =y dy dy'

where V(y < y') is 1 if y and y’ are mutually
visible and 0 otherwise. The quantity du(y —
y') is known as the throughput of a differential
beam[22]. Finally, the kernel Ky describes the
fraction of light travelling along ¥ which is
scattered along X. For scattering to take place,
we need a delta function which says that one
ray terminates where the next begins:

Kr(x—=x',y=y') = fi(yoxex)i(y' —x) .
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It is useful to think of the integration as an
inner product:

(f.9) = /R f@e® du®) (@)

and to think of K as defining a light transport
operator

(TL)(X) = (Kr(X,-),L) . (5)

T has an intuitive meaning: it describes the
way light bounces (for the given scene S). If
L is any light distribution, then 7L is the
distribution after exactly once bounce. Us-
ing this notation, (3) has a very simple form:
L=L.+TL.

This is the essence of the ray form: a sim-
ple form for the kernel Kr, and a symmetric,
intuitively meaningful inner product over the
space of all rays. The framework is more gen-
eral than the three-point form, since operators
described in this way are closed under com-
position. (For example, the three-point form
cannot represent the transport operator T2)
This lets us think about general linear opera-
tors, where the output on a given ray depends
linearly on the entire input distribution.

3.4 Filter Functions on Rays

In computer graphics, the goal is to compute
intensity values at a discrete set of pizels. The
value at pixel P is computed by integrating
the solution L with a weighting or filter func-
tion Wp. Normally the filter for a given pixel
is equivalent to point-sampling a convolution
over the image plane.

The inner product over rays provides a sim-
ple way to manipulate more general filter func-
tions. Rather than specifying a filter over the
image plane, we supply a weighting coefficient
Wp(x — x') for each ray. The integration to
obtain a pixel value is written as (Wp, L), us-
ing the inner product over all rays. Note that
Wp also models the effects of the imaging
system. For example, we can model a sim-
ple finite-aperture “lens” by taking a stan-
dard pinhole camera and making the hole a
little larger. The rays that contribute to Wp
all pass through the aperture A and meet the

Fig. 6. Rays that contribute to the filter function
for a given pixel P. For symmetry with area light
sources, we have drawn the lens aperture behind
the film plane (they obviously occur in the other
order in a real cameral)

film plane near P (see Fig.6). For a pin-
hole aperture, Wp has a component which is
a two-dimensional J-function, reducing the in-
ner product to a 2D integration over the film
plane.

3.5 Importance Transport

Adjoint methods for the solution of integral
equations have long been used in other fields,
such as neutron transport[23, 24, 2]. A con-
tinuous adjoint formulation for radiance trans-
port was first proposed in the computer graph-
ics literature by [25], based on earlier work
in [26] and [27]. We review this material here
for two reasons: first, we believe that the in-
ner product on rays helps to clarify the rela-
tionship between the rendering equation and
its adjoint. Second, the idea of building paths
from the light sources can be viewed as a di-
rect solution method for the adjoint render-
ing equation. This idea has been applied in
neutron transport problems[24], where in fact
“direct” and “adjoint” methods have the op-
posite meaning they are given in computer
graphics. Appendix A develops this relation-
ship further. To our knowledge the bidirec-
tional Monte Carlo techniques proposed by
this paper have not been explored elsewhere.

Two linear operators O and O* are adjoint
if (f,0g) = (O*f,g) for all f and g, where
(f,g) in an inner product (we use the inner
product defined by (4)). The adjoint is not
a complex notion; the corresponding idea for
matrices of real numbers is the transpose op-
erator.
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If 7 is light transport operator defined by
(TL)(X) = (Kgr(X,-), L), then it is easy to ver-
ify that its adjoint is defined by

(T"W)(X) = (Kr(-,X), W) (6)

where the only difference between 7 and 7*
is the order of the arguments to Kr. What is
the meaning of 7*7 Just as T describes one
bounce of a light distribution L, 7* describes
a way to bounce the filter function W such
that (W, TL)Y = (T*W, L). We speak of W as
an importance distribution when it is propa-
gated by 7* in this way.

We give a simple proof here of a result
from [25], that except for a change in ray ori-
entation, radiance and importance are propa-
gated in the same way. We have

Kr(x—=x',y—=y') = fi(y xex)i(y —x)
= (X ey ey)ix-y)
= KR(y’_>Y7XI_)X)

from which we see that (5) and (6) are the
same except for the orientation of the rays.
This shows that the importance on a given
ray is propagated just as light flowing in the
opposite direction. This is not to be confused
with the notion of a self-adjoint linear opera-
tor 7 = T*, since this requires a symmetric
kernel Kg.

4 Partitioning for Variance
Reduction

As in Sect. 2, we focus on the problem of es-
timating the contribution to a pixel P from
light that travels on paths of length k. As
outlined there, we have k methods for gen-
erating the transport paths, which lead to &
algorithms for estimating the contribution to
P. In the terminology of statistics, we have k
different estimators for the same quantity. It
is natural to ask under what conditions each
of these k estimators has the lowest variance,
or more generally how to combine them to get
the best features of each one. In this section
we describe several ideas we are experimenting
with.
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4.1 What Makes a Good Estimator?

First, let’s examine how the estimators are
constructed and why they should have dif-
ferent variances. We will need a basic prin-
ciple of MC integration, namely that if X is a
random variable with probability distribution
p(z) (with respect to a measure u), then

| 1@ au) = [ L0 dua

o[

provided that f(z)/p(z) < oo for all z. Es-
sentially this says that to estimate an integral
Jf, we sample a point = chosen from an arbi-
trary probability distribution p(z), and take
f(z)/p(z) as our estimate.

We need to relate this to the estimators for
paths of length k. In our case, x is a transport
path of length &, and {2 is the space of all such
paths. The integral [f(z)du(z) is just a re-
formulation of the inner product (Wp,T*Le)
(see Sect.3.4) as an integral over these paths:

MhT%azéﬂ@WW) (7)

where f(z) is proportional to the light flow-
ing along z, (we call this the transport co-
efficient of the path), and dux(x) measures
the throughput of the path (we omit the de-
tails in this discussion). Finally, p(z) is the
probability density with which we generate z,
which is different for each of the k estimators.
Each estimator works by generating a path z,
computing f(z) and p(z) for this path, and
scoring a contribution f(z)/p(x) (we average
several samples from estimator to reduce the
variance).

Let’s examine why the methods generate
transport paths with different probabilities.
Each path is built by taking a number of steps,
where at each step we randomly choose a local
direction & in which to extend the path. Let y
be the current path endpoint, and let p(J) be
the probability distribution we use to extend
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Fig. 7. The choice of breakpoint between light
and eye steps has a large effect on the probability
of generating this path.

the path. The probability density of extending
the path to a point y' is

(&) cos(6')

p(P) dw =
(@) dw =50 Jie

dy' . (8)
So we see the probability of generating a
given path segment depends on the geometry
(i.e. the length of the segment and the surface
normals at its endpoints), as well as the choice
of p(&J). Note that the probabilities of gener-
ating y -y’ and y’' —y could be very differ-
ent, and this is exactly the distinction between
using a light step or an eye step to generate
this segment. Most important, for each of the
k methods there is a path segment that does
not need to be generated randomly (the con-
necting segment y,~» X, ).

For example, consider the path of length 4
in Fig. 7. What is the probability of generat-
ing this path if we take two light steps and
one eye step, vs. one light step and two eye
steps? In the first case we must generate bc
but not c¢d, and in the second we must gener-
ate dc but not cb. Since dc is much shorter
than bc in this example, by (8) the second
method is more likely to generate the path
abcde (other things being equal). It is this
effect that causes the noise visible in Plate 1
where two walls meet; there are important
transport paths which are generated with very
low probability.

Finally, we need to understand the rela-
tionship between a probability distribution on
paths and the variance of the corresponding
estimator. Let F' be one of the original esti-
mators f(X)/p(X) described above. One way
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to write the variance of F' is
Var[F] = E[F?| - E[F]?

and since E[F] is the fixed quantity we are
trying to estimate, we want to minimize the
second-order moment E[F?]. If E[F?] is large,
our image will be noisy. Examining F =
f(X)/p(X), it is clearly undesirable to have
p(z) small where f(z) is large, since this
makes a large contribution to E[F?]. This ef-
fect is responsible for the large amounts of
noise observed in Plate 2.

4.2 A Discrete Analogy

Here is a simple analogy which demonstrates
one idea that we are experimenting with. Sup-
pose that only four transport paths contribute
to the pixel we are evaluating (rather than
an infinite number), and we have three meth-
ods A,B,C of path generation (i.e. these are
paths of length three). We show the proba-
bility distribution of each method as a bar
graph (Fig.8). The paths are shown as bars
with different shadings; each path appears in
all three graphs (since each method can gener-
ate all the paths). However the bars have dif-
ferent shapes: the width of a bar is the prob-
ability p(z) of generating path z; the height
is the sample value f(z)/p(z) (recall f(z) is
the transport coefficient for the path). Note
that the bar corresponding to a path z has
the same area f(z) in all three graphs. This is
necessary for the methods to be unbiased.

We want to combine these estimators in a
way that remains unbiased (each path x occu-
pies the proper area f(z)), but also has a lower
variance. First we need to decide what sort of
estimator combinations we will allow. A nat-
ural way to combine the estimators is a parti-
tioning, where three new estimators A’, B', C'
each estimate the integral over a subset of
the paths, and the final estimate has the form
S = A"+ B+ C'. The estimator A’ uses the
same method for path generation as A; how-
ever A' has the flexibility to discard samples
when this is desirable, as long as the discarded
paths are accounted for by one of B’ or C'. We
would like to find a way to minimize the vari-
ance of S over all such partitionings.
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Fig. 8. The upper bar graphs show a discrete
probability distributions on four paths for three
estimators A, B, C. The lower bar graphs show a
partitioning of the paths among new estimators
A',B',C" which minimizes the sum of their sec-
ond-order moments.

4.3 A Partitioning Heuristic

We noted above that minimizing Var[S] is
equivalent to minimizing E[S?] since E[S] is
fixed. This is the second-order moment of a
sum A'+B'+C'. It turns out to be much easier
to minimize the sum of the second-order mo-
ments, E[(A")?] + E[(B')?] + E[(C")?]. This is
not the same as minimizing the variance, but
it is similar. To understand what this does,
examine Fig.8. Geometrically, the expected
value E[A'] is the sum over each path of its
rectangle area. Similarly the second-order mo-
ment E[(A")?] is the sum of each rectangle’s
area times its height. Intuitively, minimizing
the second-order moment is good because it
penalizes tall, thin rectangles; these “spikes”
can make a large contribution to the variance.

How do we partition the paths to minimize

Eric Veach and Leonidas Guibas

MaxiMUM-HEURISTIC(P)
S0
for k<1 to Maz-length
for i+1to k
@ ¢— CHOOSE-PATH( P, k, 1)
if pi(z) > pj(z) Vj#i
then S+« S+ f(x)/pi(x)

else (Discard = and score 0)

© 00 N O Ut R W N =

return S

Fig.9. The mazimum heuristic for combining
estimators. CHOOSE-PATH(P, k, 1) chooses a path
contributing to pixel P of length &, using segment
1 as the breakpoint between the eye and light por-
tions. Note that for efficiency, path generation for
length k will reuse the eye and light portions from
smaller path lengths.

this sum? Since each path z must be assigned
to one of A', B',C’, and the area of z is the
same in all cases, we want to place x where it
has the greatest width, i.e. the highest proba-
bility of being generated. We call this the maz-
imum heuristic, which assigns each path x to
the estimator that generates it with highest
probability.

Pixel estimation using the maximum heuris-
tic is outlined in Fig.9. The basic idea (for
k = 3) is to take one sample from each of
A',B',C" and sum the results. Sampling from
an estimator A’ is easy: we simply take a sam-
ple x from A, then we compute the probabil-
ities pa(z),pB(x),pc(x). If pa(x) is not the
largest of these, we reject z and return zero.
Note that once a path x has been chosen, it
is easy to compute the probability with which
any of the other methods generates it.

We are experimenting with several other
heuristics that combine the original estimators
in more general ways. For example, we can try
to minimize the variance over all weighted par-
titionings of the paths. In our discrete exam-
ple, this corresponds to splitting the rectangle
area f(x) among the new estimators, for each
path x. We have some preliminary theoretical
results about these heuristics, but have not
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yet verified their effectiveness in practice. The
goal is to automatically combine the best fea-
tures of all the original estimators.
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A Recursive Formulation

In this appendix we develop further the re-
lation between bidirectional sampling and
light /importance transport. The key is to
show how taking a light or eye step reduces
the estimation of (Wp, L) to a problem of the
same form.

Recall that 7 denotes the light transport
operator (5). As long as || 7| < 1 (satisfied by
all physically valid models), the formal solu-
tion to L = L.+ T L is given by the Neumann
series|[2],

L=Le+TLe+T?Le+ -+

The term 7L, in the expansion represents the
contribution of light which bounces exactly 4
times. Note that |7 L. | necessarily decreases
as i grows. For convenience we define the so-
lution operator

S=IZ-T)'=Z+T+T*+- (9

(where 7 is the identity operator), so that the
solution to the light transport equation is now
just L = SL., and our goal is to estimate
(Wp,SLe).

A.1 Notation for Eye and Light Steps

We assume that Wp represents a pinhole lens
with the point aperture located at xp, and
that the emitted light L. is due to a single
point light source at yo. It will be convenient
to define Wp and L. as “slices” of the ker-
nel Ky, i.e. as functions Kg(X,¥) where one
of X or y is held fixed. In particular, we de-
fine Kg(xo = x4,x—Xx') = Wp(x—x') and
Kr(y =y, y1 =2 y0) = Le(y = y'). We can
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think of the emitted light distribution L. as
the result of scattering energy flowing along a
single (artificial) ray y4 — yo, and similarly
for Wp. We can still handle arbitrary light
sources and filter functions by using the ar-
tificial point sources x;,y- as described ear-
lier. However to describe these emitted distri-
butions as slices of the kernel, we must take
this one step further: the initial light is con-
centrated on a single ray y» — y4 which is
scattered into the distribution at y4 by the
first bounce.

For each eye step our algorithm will define
an associated weighting function W;, where
Wo = Wp. Similarly each light step introduces
a new emitted radiance function L; where
Ly = L.. The algorithm works by estimating
a sequence of inner products (W;, SL;), start-
ing with the original problem (Wp,SL.). The
sequence of functions W; and L; will always
have the following form (i > 0):

Wi(X) = Kg(X;,X)

Li(¥) = Kr(¥,¥:)
where ¥; = y;.1 > y; and X; = x; & X1
(Fig.2). Thus each W; is a “slice” of the ker-
nel Ky that weights incoming rays x —+x; ac-
cording to how much light they reflect along
the outgoing ray x; — x;_1, and similarly for
L;. Property (10) is an important invariant
maintained by the following algorithm.

(10)

A.2 The Eye Step

To estimate (W;, SL;), we first apply the iden-
tity S=Z + TS (see (9)):

(WDSLj> = (WiaLj> + <W17TSLJ> .
We now need to estimate each of the two
terms. By the assumption of (10), (W;,L;)

can be evaluated exactly. In fact W; and L;
can interact along only a single ray (Fig.10):

(Wi, Lj)

z/RKR(ii,i)KR(i,y'j)du(i)
:fr(YJHXiHXifl)fr(y]'fl(—)y]'(—>Xi)
cos(6) cos(9")

Vs ox) T TR
7 7

(11)
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from light

to eye

Fig. 10. The inner product (W;, L;)

where 6 and ' are the angles between the ray
y; —Xx; and the surface normals at y; and x;
respectively. All terms in (11) can easily be
evaluated.

To evaluate the second term (W;, TSL;),
we use Monte Carlo sampling. Since W; is zero
except on rays of the form x — x;, we choose
a probability distribution p; which gives pos-
itive weight to rays of this form. (In practice,
p; is a distribution on the set of directions out
of x;, i.e. the possible directions to extend our
transport path). As long as W;(X)/p(X) < oo
for all X, we have

Wi(Xit1)(TSLy)(Xit1)
pi(Xit1)
(12)

where X;1 is randomly distributed according
to p;. The new ray is x;11 — x; where x;11 is
first surface point intersected in the randomly
chosen direction (which we are following back-
wards relative to the direction that light trav-
els).

All that remains is to evaluate the parenthe-
sized expression in (12), which requires that
we estimate (7 SL;)(X;+1). This is simply the
problem we started with, in disguise:

(TSLj)(Xit1) = (Kr(Xit1,7),SLj)
= (Wprl,SLj) .

(W, TSL;) = E

We have a new weighting function W;;q,
whose form is the same “slice” of Ky (10) that
we assumed for W;. The eye step is illustrated
in Fig. 11.
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from light

to eye

Fig. 11. The eye step replaces W; by a new emit-
ted importance function Wiy

We can apply this operation as many times
as we like, building a transport path extending
backward from the eye. We are actually build-
ing a family of transport paths, since each pre-
fix of the path contributes to the sample value.
At each step, the term (W;, L;) connects the
current prefix and suffix to build a complete
transport path from the light to the eye.

A.3 The Light Step

To take a light step, we use the adjoint trans-
port operator (see Sect.3.5). Rather than es-
timating (Wp,SLe), we estimate (S*Wp, L),
where S* = [(Z—T)7']* = (Z—T*)~!. To un-
derstand S*, consider the importance trans-
port equation W = Wp + T*W. Its solu-
tion is the steady-state importance distribu-
tion W = S*Wp. The value W (X) is propor-
tional to the contribution that radiance emit-
ted along X eventually makes to the final so-
lution (Wp,SLe). Thus we have two choices:
we can either solve for the steady-state ra-
diance L and compute (Wp, L}, or solve for
the steady-state importance W and compute
(W, Le). In fact we have more choices, since
we can choose whether to propagate light or
importance at each step of building a trans-
port path. It is this observation that leads to
k estimators for paths of length k.

We are now ready to describe a light step.
Again we want to estimate (W;, SL;), but this
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from light

to eye

Fig. 12. The light step replaces L; by a new emit-
ted radiance function L;i1

time we apply the identity S* =7 + T7*S*:
(S"Wi, Lj) = (Wi, Lj) +(T"S*Wi, Ly)

The term (W;, L;) is evaluated exactly as
before. For the other term, we have

(TS Wi)(¥j+1) L (¥j+1)
¢;(¥j+1)

(T*S*W;,L;)=E

(13)
where ¥,41 is a ray chosen randomly accord-
ing to ¢; (a sampling distribution for the rays
contributing to L;). Finally we need to esti-
mate

(T*S*Wi)(¥j+1) = (Wi, Kr (-, ¥j+1))
= <S*Wi,Lj+1>

which has the same form we started with, ex-
cept for the new emitted radiance distribution
L. The light step is illustrated in Fig. 12.

Since both eye and light steps leave us with
an estimation problem of the same form, we
can apply some of each. A complete transport
path consists of a prefix yo — - - -—y,, built by
taking light steps, a suffix x,,, = -+ —x¢ built
by taking eye steps, and a segment y, — X,
that deterministically connects them.
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Plate 1. This image was computed using a pure Monte Carlo method which generates transport
paths starting from the light sources. The scene contains a table, a desk lamp, and a shiny
(rough specular) slab of metal. The only light is a single point source in the lamp shade (the
“bulb filament”). It was computed at a resolution of 900 by 675 using 50 samples per pixel.

ptlbig.ps

Plate 2. The same scene computed using standard Monte Carlo path tracing, which builds
transport paths starting from the eye. The scene is very noisy even with 50 samples per pixel,
because most light comes indirectly from small, bright surfaces. Many of the white pixels are
much brighter than could be displayed (which is why the image is darker).
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