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Abstract

Most of the research on the global illumination
problem in computer graphics has been con�
centrated on �nite�element �radiosity� tech�
niques� Monte Carlo methods are an intrigu�
ing alternative which are attractive for their
ability to handle very general scene descrip�
tions without the need for meshing� In this
paper we study techniques for reducing the
sampling noise inherent in pure Monte Carlo
approaches to global illumination� Every light
energy transport path from a light source to
the eye can be generated in a number of dif�
ferent ways� according to how we partition the
path into an initial portion traced from a light
source� and a �nal portion traced from the
eye� Each partitioning gives us a di�erent un�
biased estimator� but some partitionings give
estimators with much lower variance than oth�
ers� We give examples of this phenomenon and
describe its signi�cance� We also present work
in progress on the problem of combining these
multiple estimators to achieve near�optimal
variance� with the goal of producing images
with less noise for a given number of samples�

� Introduction

Many techniques have been proposed for solv�
ing the problem of global illumination in com�
puter graphics� By far the simplest of these
algorithms are the pure Monte Carlo �MC�
methods� These methods have several other
advantages� they guarantee that the expected
value of the solution at each image pixel is
correct �compared with the true mathemati�
cal solution�	 they require almost no storage
beyond the scene model itself	 and they can
be applied to arbitrary surface geometries and
re
ectance functions in a clean� uniform way�
The interface to the scene model is particu�
larly nice�all operations access the scene as
an object�oriented black box � allowing truly
procedural geometric and re
ection models�
Pure MC methods do not su�er from many
of the artifacts and limitations that must be
addressed by radiosity techniques�
� �� ���
��blocky� appearance� Mach bands� missing
shadows� limited re
ectance models�� making
them an excellent choice for the validation of
other methods�
However� Monte Carlo methods have one

well�known drawback� noise� The focus of this
research is to determine to what extent this
noise is an inherent limitation� That is� how
far can MC methods be taken in terms of
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variance reduction� without adding bias to
the solution� Many techniques for variance
reduction have been described in the Monte
Carlo literature��� �� �e�g� importance sam�
pling� strati�ed sampling� and have long been
used by the computer graphics community���
�� �� ��� Yet even with these techniques� there
are many reasonable scenes for which current
MC algorithms are not practical� Our goal
is the development of new variance reduction
methods that exploit the special properties of
global illumination�
In this paper� we restrict ourselves to pure

Monte Carlo methods for global illumination�
These are methods which

� give an unbiased estimate at every pixel�
� have no correlation between the errors at
di�erent pixels�

� work for general surface geometries and
re
ectance functions� and

� do not require any data structures in ob�
ject space �such as a subdivision of sur�
faces into patches��

For example� MC methods which express the
solution as a linear combination of basis func�
tions are not pure� since this introduces cor�
relations between the errors at di�erent pix�
els� Pure methods are attractive because the
only image artifact is noise	 thus if an image
we compute does not appear to be noisy� we
have strong reason to believe that it is correct�
Pure methods include distribution ray trac�
ing��� and path tracing���� Many variants on
these techniques are possible��� �� ���
All pure MC techniques described in the lit�

erature have one feature in common� rays are
traced only from the eye� not from the light
sources� Techniques such as light ray trac�
ing ���� ���� bidirectional ray tracing ���� ����
and Monte Carlo radiosity ���� ��� all use
the light rays to deposit energy on surface
patches� Since this requires a mesh in ob�
ject space� these methods are not �pure� for
the purpose of this paper� Also� these tech�
niques do not extend well to environments
with many small patches���� or to non�di�use
surfaces��
� ��� ����
Lafortune and Willems���� have indepen�

dently developed a �bidirectional path trac�

ing� technique which uses some of the ideas
presented in this paper� However their frame�
work does not recognize explicitly the multiple
estimators for each path length� or the prob�
lem of optimally combining them�
Let�s consider a speci�c cause of noise in

MC images� highly non�uniform incoming il�
lumination� The problem is that the outgoing
illumination Lo is essentially the product of
the incoming illumination Li with a re
ection
term	 generally we can obtain accurate local
information about the re
ection term but not
about Li� For this reason� existing methods
sample where the re
ection term is large �im�
portance sampling�� However if Li is highly
non�uniform �for example ��� of the light
comes from only �� of the hemisphere of solid
angles�� this strategy is a poor predictor of the
important sampling directions� leading to high
variance�
In this paper we investigate pure MC meth�

ods which balance between sampling where
the re
ection function is large and where the
incoming illumination is large� These methods
build transport paths in two parts� one start�
ing from a light source and the other from the
eye� We show that there are k ways to evaluate
the light 
owing on transport paths of length
k� according to where we break the path be�
tween the eye and light portions� We are also
experimenting with techniques for partition�
ing the transport paths between the k meth�
ods to reduce the variance of our estimates�
Our results generalize the direct lighting

calculation��� ��� a common optimization for
MC methods� Rather than following paths
all the way back to the light sources� this
optimization handles the last path segment
specially� Our partitioning technique gives a
rule for when the direct lighting calculation
should be applied	 there are some situations
where it is not bene�cial� More generally� our
techniques address the problem of noise due
to highly non�uniform indirect lighting� We
demonstrate that noise from bright indirect
light in typical MC images is due to following
transport paths only from the eye�
This paper is organized as follows� Section �

gives an outline of our rendering algorithm�
along with several examples which demon�
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strate how it works� Section � describes a re�
formulation of the rendering equation as an
integral over rays� We have found this use�
ful in describing and analyzing the algorithm�
Section � discusses the problem of partitioning
transport paths among the rendering methods
to reduce variance� and describes several ideas
we are currently experimenting with to solve
this problem� Finally� the Appendix describes
a recursive formulation of the bidirectional
sampling� and gives some additional mathe�
matical details�

� Outline of the Algorithm

The desired value at a pixel P can be ex�
pressed as an integral

Z
�

f�x�d��x�

over the space � of all transport paths x�
where the weight f�x� is proportional to the
contribution made to P by the light 
owing
along x �see Sect� ����� The largest contribu�
tions typically come from short paths� so we
can either ignore paths whose length exceeds
some threshold� or use Russian roulette��� to
terminate long paths without adding bias�
This lets us partition the estimate at P into a
�nite sum	 we estimate separately the contri�
bution due to each path length k�
To estimate the contribution for a particu�

lar k� we use MC integration �Sect� ��� This in�
volves randomly generating a path x of length
k which potentially contributes to P � and scor�
ing the contribution f�x��p�x� where p�x� is
the di�erential probability with which we gen�
erated x� To reduce the variance� we repeat
the whole processM times and take the aver�
age �see Fig� ���
How should we go about generating paths

of length k� In typical MC algorithms� paths
are generated by following random bounces
backward starting from the eye� The key fea�
ture of our algorithms is that they construct
transport paths starting from both the light
sources and the eye� The transport paths have

� Estimate�pixel�P �

� S��

� for n�� to M

� for k�� to Max�length

	 x�Choose�path�P� k�


 S�S � f�x��p�x�

� return S�M

Fig� �� Simpli
ed pseudocode for estimating the
value at a pixel P �Choose�path�P� k� generates
a path x of length k which potentially contributes
to P � f�x� is the di�erential contribution to P of
light �owing along x� and p�x� is the probability
density with which Choose�path generates x�
In practice� the estimates for each k are not inde�
pendent� we can incrementally add a segment to
partial paths from the previous step�s�� and save
the e�ort of generating an entire path each time�

the form

y��y��� � ��yn

�xm�xm���� � ��x�

consisting of a light portion y�� � � � �yn starting
at a point y� on a light source� followed by an
eye portion xm� � � � �x� ending at a point x�
on the lens aperture� All xi�yi lie on surfaces
of the scene S �see Fig� ���
The eye portion of a transport path is built

by following a chain of m random bounces
starting from the eye	 this is �backward� rel�
ative to the direction light travels� Similarly
the light portion is built by following n ran�
dom bounces forward from the light source�
The connecting segment yn�xm is not cho�
sen randomly	 it is completely determined by
the choice of yn and xm� Of course it is pos�
sible that segment yn � xm is occluded� in
which case no light 
ows along this path�
By controlling the number of steps taken in

each direction� there are k di�erent methods
for path generation	 each segment is a possible
breakpoint between the eye and light portions�
That is� by taking m steps from the eye and
n steps starting from a light source� we can
generate a path of length m�n��� k� The
choice of m and n can have a large e�ect on
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Fig� �� A complete transport path� For symmetry with the �rst two light steps� we draw the
lens aperture and �lm plane in the opposite order from a real camera�

the probability distribution of randomly gen�
erated paths	 for example if we take all steps
from the eye� the path distribution does not
depend on the light source locations� This fact
is crucial in obtaining good MC estimates�
since the more closely the path distribution
p�x� matches the contributions f�x� made by
these paths� the lower the �nal variance will
be �see Sect� ���
In e�ect� each of the k partitioning choices

leads to a di�erent rendering algorithm for
the light 
owing on paths of length k� We de�
�ne a notation for these algorithms� an �m�n��
method is one that generates transport paths
by taking exactlym eye steps and n light steps
�where m�n���k�� Examples are given be�
low�

��� Area Lights and Lens Apertures

Note that Fig� � refers to two additional points
x�� and y��� These points do not belong to
the scene S	 they are arti�cial points that al�
low our algorithms to extend naturally to area
light sources and �nite�area lens apertures�
To model area light sources� we consider

y�� to be a point radiance source which dis�
tributes light energy to the emitting surfaces
of the scene� We can think of y�� as having a
directional distribution on the rays y���y for
each point y of the scene� Since the point y��
is entirely arti�cial� we can de�ne the behav�
ior of the light transport kernel K on these
rays� In particular we de�ne K so that after

one �bounce�� the energy emitted along rays
y�� � y is scattered into exactly the desired
emitted distribution Le� This is like applying
light transport in reverse	 given an arbitrary
distribution Le� we de�ne an arti�cial kernel
that produces Le after one bounce from a sin�
gle point light source�
Similarly� we can model the e�ects of an ar�

bitrary lens system as a scattering function
from the external lens surfaces to an arti�cial
importance source x��� The directional distri�
bution at x�� assigns importance to the light
arriving at each point on the lens surface�
In e�ect� this modi�cation gives us two ex�

tra places to break the transport paths� since
choosing a point on the area light source�lens
aperture is considered a �step�� It lets us
handle problems involving arbitrary emitted
light distributions and �lter functions with the
same methods that we use for a single point
light source and a single pinhole lens� It is
purely a formalism� in the sense that an imple�
mentation must still handle these cases spe�
cially� We can include multiple cameras and
motion�blur e�ects with the same technique�
A complete transport path is now a se�

quence

y���y��� � ��yn��

�xm���� � ��x��x��

consisting of k � m�n�� segments� where

� We de
ne a bounce as a single application of
the light transport operator determined by K
�section ���
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Fig� �� This transport path leaves the light
source� bounces o� a surface� and passes through
the lens aperture onto the 
lm plane� We can gen�
erate paths of this kind in four ways� by taking
di�ering numbers of eye and light steps�

we maintain the convention that an �m�n��
method takes m eye steps and n light steps�
The �rst light step y���y� chooses a random
point on a light�emitting surface	 the second
chooses a direction in which light is emitted�
Similarly the �rst two eye steps �from x���
choose a point on the lens aperture� and a
sampling direction that contributes to the cur�
rent pixel P �

��� Algorithms for One Bounce

Let�s qualitatively examine the rendering al�
gorithms we obtain for paths with k��� Such
paths account only for light which bounces ex�
actly once on the way from a light source to
the eye �the bounces at x� and y� are arti�
�cial�� Since there are four possible segments
where we could break between eye and light
portions� there are four possible rendering al�
gorithms�
A� The ����	
method �see Fig� ��� The

light steps are� choose a point y� on a light
source� choose a direction to get an emitted
ray y��y�� and follow it through one random
bounce to get y�� y�� A non�zero contribu�
tion occurs only if this ray happens to pass
through the lens aperture and strike the �lm
plane near the pixel P � This is exactly what
happens with a real camera�
B� The ����	
method� The two light steps

choose an emitted ray y� � y�� The eye
step chooses a point x� on the lens aperture�
To contribute� y� must be visible to x� in

the small range of directions corresponding to
pixel P �and of course y��x� must be unob�
structed��
C� The ����	
method� The light step

chooses a point y� on a light source� The eye
steps choose an aperture point and direction�
To contribute� x� and y� must be mutually
visible� This technique is the one normally as�
sociated with MC ray tracing� which follows
paths backward from the eye� but computes
the direct lighting separately�
D� The ����	
method� The eye steps

choose a sample ray and follow it through one
bounce� To contribute� the path must land on
a light source� This technique is naive MC ray
tracing with no direct lighting component�
Note that to get a sample contribution with

any of these methods� not only must the con�
necting segment be unobstructed� but also the
BRDF�s at both ends must re
ect some light
along it�
Methods A and B seem impractical� How�

ever if we allow point light sources and per�
fect mirrors� it is easy to construct examples
where these are the only methods �of the four�
capable of producing a reasonable result� To
see this� note that two or more eye steps re�
sult in a sample ray that is guaranteed to miss
any point light sources� This de�ciency is of�
ten seen in Monte Carlo or ray�traced images�
where the e�ects of a point light source are vis�
ible but the light itself is not� �Depending on
the �lter function used over the image plane�
a point source should be blurred over several
pixels��
A more practical example comes from the

direct lighting calculation� i�e� the di�erence
between methods C and D� It is well�known
that if we view an area light source through a
perfect mirror� the direct lighting calculation
fails� Only a single point on the light source
contributes to a transport path ending on the
mirror	 the probability of randomly choosing
this point is zero� It is much better to follow
the transport path backward through an addi�
tional bounce� More generally� if the surface is
almost a mirror� the direct lighting �optimiza�
tion� will give much noisier estimates than the
naive method �although both have the correct
expected value��
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eye�only�small�ps
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Fig� �� �a	 An image computed by building transport paths starting from the lights �in this
case� a single point source inside the lamp shade�� �b	 The same scene using standard MC
path tracing from the eye� See Plates � and � in the color section for more detailed images�

We emphasize that we are not claiming that
these techniques �when k��� are practical in
most scenes	 they are simply examples of the
methods which come naturally from our for�
mulation of bidirectional sampling� For larger
k� we do claim that the new methods can
be superior in practice	 the following section
presents some evidence of this�

��� Two or More Bounces

As an example we have chosen a scene that is
very challenging for pure Monte Carlo meth�
ods� to emphasize the di�erences between var�
ious techniques� The best images produced by
our preliminary implementation are still quite
noisy� All images were computed with �� sam�
ples per pixel� The images in the text itself
were computed at a resolution ��� by ���	 the
color section contains two images computed at
��� by ����
The scene in Fig� ��a� consists of a table�

a desk lamp� and a shiny slab of metal in a
closed room� �See Plate � in the color sec�
tion�� All surfaces are di�use� except for the
metal slab which is Phong�specular� All light
in the scene comes from a single point light
source located in the lamp shade �the �bulb

�lament��� Because of this� almost all light�
ing is indirect� Most light is re
ected one or
more times within the lamp shade� and then
it strikes the table top before illuminating the
rest of the scene� This image was made with
the new techniques described in this paper	
it is the union of all ��� k��methods �all steps
taken from the lights� except for the choice of
initial viewing ray��

A standard MC image made with the same
number of samples is substantially more noisy
and darker �Fig� ��b�� Plate � in the color sec�
tion�� The reason is clear when we examine
the surfaces that are lit directly �Fig� ��a���
Even with the direct lighting optimization� a
transport path must randomly strike one of
these directly lit regions to make any contri�
bution� and most of the light energy after one
bounce is concentrated on the interior of the
lamp shade and a small area of the table� In
terms of the �m�n� notation de�ned above�
this image is the union all �k� ���methods�

Note that Fig� ��a� and �b� should have the
same average brightness� since both give the
correct expected value at each pixel� The rea�
son for the discrepancy is that most white pix�
els in Fig� ��b� are actually much brighter than
could be displayed� and have been truncated
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Fig� �� �a	 The direct lighting component �light which bounces exactly once on its way from
the light source to the eye�� It is rendered with the ��� ���method� two eye steps �to choose a
viewing ray� and one light step �choosing the point on the light source�� �b�c	 The two�bounce
component� The left image shows the ��� ���method� the right image shows the ��� ���method
�i�e� the right image takes an additional light step�� �d�e�f	 Three bounces� From left to right�
we have the ��� ��� ��� ��� and ��� ���methods�

at a maximum value�

Fig� � shows various possibilities for ren�
dering the light due to one� two� and three
physical bounces �the �rst � components of
the steady�state solution�� The �k� ���methods
correspond to standard Monte Carlo with the

direct lighting optimization� Our implementa�
tion does not yet support the ��� k�� and ��� k��
methods� although this should be easy to do�
The images have been computed at low reso�
lution ���� by ���� so that individual pixels
can be seen� It was necessary to brighten these
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images relative to Fig� �� since each image ac�
counts for only a fraction of the light in the
scene�

� Light Transport in Ray Form

To analyze our algorithms� we have found it
useful to reformulate the rendering equation���
as an integral over rays � This leads to a very
simple expression for the kernel	 the geomet�
ric terms are hidden in the measure function
we use for the inner product� We �nd that the
ray measure simpli�es the description of bidi�
rectional sampling� and is very useful when
dealing with general �lter functions and light
distributions�

��� Local Form

Pat Hanrahan has written an excellent devel�
opment of the following material which can be
found in ����� Please consult this reference for
an explanation of terms not de�ned here�
Light transport is described by an integral

equation of the form�

Lo�x� ��o� � Le�x� ��o� � ���Z
���

KL�x� ��o� ��i�Li�x� ��i� d�i �

We call this the local form of light transport
equation� because all quantities are expressed
in terms of x� It expresses the relation between
incoming and outgoing light at a particular
point x on a surface of the scene S�
The function KL is called the kernel of the

integral equation� and describes how light is
scattered� For re
ectance functions from sur�
faces� KL has the form

KL�x� ��o� ��i� � fr�x� ��o� ��i� cos��i�

where fr is the bidirectional re
ectance distri�
bution function �BRDF� and �i measures the
angle between ��i and the surface normal at x�
Physically accurate surface re
ection models
lead to a symmetric BRDF� i�e� fr�x� ��o� ��i� �
fr�x� ��i� ��o� due to a physical principle known
as Helmholtz reciprocity �����

��� Three
Point Form

We can express Li in terms of Lo via a change
of variables to get the three�point form of the
rendering equation �note that x is now x�� and
Lo is now L��

L�x��x��� � Le�x
��x��� � ���Z

S

K��x�x��x���L�x�x�� dx �

The integration is now over the scene S� and
the kernel is given by

K��x�x��x��� � fr�x�x��x���V �x�x��

�
cos��� cos����

kx� x�k�
�

��� Ray Form

Note that the domain of L is a ��dimensional
space� the space of all rays � However� the
integration in ��� is taken only over a ��
dimensional subset �those rays x� x� where
x� is �xed�� It seems natural to integrate in�
stead over the domain of all rays� which leads
to the ray form of the rendering equation�

L��x� � Le��x� �

Z
R

KR��x� �y�L��y� d���y� ���

where �x � x� x� and �y � y� y� are rays�
and R contains all rays with y�y� � S� Not all
rays contribute equally	 this is controlled by
the measure function

d��y�y�� � V �y�y�� �
cos��� cos����

ky � y�k�
dy dy�

where V �y�y�� is � if y and y� are mutually
visible and � otherwise� The quantity d��y�
y�� is known as the throughput of a di�erential
beam����� Finally� the kernelKR describes the
fraction of light travelling along �y which is
scattered along �x� For scattering to take place�
we need a delta function which says that one
ray terminates where the next begins�

KR�x�x��y�y�� � fr�y�x�x��	�y��x� �



Bidirectional Estimators for Light Transport �

It is useful to think of the integration as an
inner product�

hf� gi �

Z
R

f��x�g��x� d���x� ���

and to think ofKR as de�ning a light transport
operator

�T L���x� � hKR��x� ��� Li � ���

T has an intuitive meaning� it describes the
way light bounces �for the given scene S�� If
L is any light distribution� then T L is the
distribution after exactly once bounce� Us�
ing this notation� ��� has a very simple form�
L � Le � T L�
This is the essence of the ray form� a sim�

ple form for the kernel KR� and a symmetric�
intuitively meaningful inner product over the
space of all rays� The framework is more gen�
eral than the three�point form� since operators
described in this way are closed under com�
position� �For example� the three�point form
cannot represent the transport operator T ���
This lets us think about general linear opera�
tors� where the output on a given ray depends
linearly on the entire input distribution�

��� Filter Functions on Rays

In computer graphics� the goal is to compute
intensity values at a discrete set of pixels � The
value at pixel P is computed by integrating
the solution L with a weighting or �lter func�
tion WP � Normally the �lter for a given pixel
is equivalent to point�sampling a convolution
over the image plane�
The inner product over rays provides a sim�

ple way to manipulate more general �lter func�
tions� Rather than specifying a �lter over the
image plane� we supply a weighting coe cient
WP �x� x�� for each ray� The integration to
obtain a pixel value is written as hWP � Li� us�
ing the inner product over all rays� Note that
WP also models the e�ects of the imaging
system� For example� we can model a sim�
ple �nite�aperture �lens� by taking a stan�
dard pinhole camera and making the hole a
little larger� The rays that contribute to WP

all pass through the aperture A and meet the

aperture

pixel

Fig� �� Rays that contribute to the 
lter function
for a given pixel P � For symmetry with area light
sources� we have drawn the lens aperture behind
the 
lm plane �they obviously occur in the other
order in a real camera��

�lm plane near P �see Fig� ��� For a pin�
hole aperture� WP has a component which is
a two�dimensional 	�function� reducing the in�
ner product to a �D integration over the �lm
plane�

��� Importance Transport

Adjoint methods for the solution of integral
equations have long been used in other �elds�
such as neutron transport���� ��� ��� A con�
tinuous adjoint formulation for radiance trans�
port was �rst proposed in the computer graph�
ics literature by ����� based on earlier work
in ���� and ����� We review this material here
for two reasons� �rst� we believe that the in�
ner product on rays helps to clarify the rela�
tionship between the rendering equation and
its adjoint� Second� the idea of building paths
from the light sources can be viewed as a di�
rect solution method for the adjoint render�
ing equation� This idea has been applied in
neutron transport problems����� where in fact
�direct� and �adjoint� methods have the op�
posite meaning they are given in computer
graphics� Appendix A develops this relation�
ship further� To our knowledge the bidirec�
tional Monte Carlo techniques proposed by
this paper have not been explored elsewhere�
Two linear operators O and O� are adjoint

if hf�Ogi � hO�f� gi for all f and g� where
hf� gi in an inner product �we use the inner
product de�ned by ����� The adjoint is not
a complex notion	 the corresponding idea for
matrices of real numbers is the transpose op�
erator�
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If T is light transport operator de�ned by
�T L���x� � hKR��x� ��� Li� then it is easy to ver�
ify that its adjoint is de�ned by

�T �W ���x� � hKR��� �x��W i ���

where the only di�erence between T and T �

is the order of the arguments to KR� What is
the meaning of T �� Just as T describes one
bounce of a light distribution L� T � describes
a way to bounce the �lter function W such
that hW� T Li � hT �W�Li� We speak of W as
an importance distribution when it is propa�
gated by T � in this way�
We give a simple proof here of a result

from ����� that except for a change in ray ori�
entation� radiance and importance are propa�
gated in the same way� We have

KR�x�x��y�y�� � fr�y�x�x��	�y� � x�

� fr�x
��y��y�	�x � y��

� KR�y
��y�x��x�

from which we see that ��� and ��� are the
same except for the orientation of the rays�
This shows that the importance on a given
ray is propagated just as light 
owing in the
opposite direction� This is not to be confused
with the notion of a self�adjoint linear opera�
tor T � T �� since this requires a symmetric
kernel KR�

� Partitioning for Variance

Reduction

As in Sect� �� we focus on the problem of es�
timating the contribution to a pixel P from
light that travels on paths of length k� As
outlined there� we have k methods for gen�
erating the transport paths� which lead to k
algorithms for estimating the contribution to
P � In the terminology of statistics� we have k
di�erent estimators for the same quantity� It
is natural to ask under what conditions each
of these k estimators has the lowest variance�
or more generally how to combine them to get
the best features of each one� In this section
we describe several ideas we are experimenting
with�

��� What Makes a Good Estimator


First� let�s examine how the estimators are
constructed and why they should have dif�
ferent variances� We will need a basic prin�
ciple of MC integration� namely that if X is a
random variable with probability distribution
p�x� �with respect to a measure ��� then

Z
�

f�x� d��x� �

Z
�

f�x�

p�x�
p�x� d��x�

� E

�
f�X�

p�X�

�

provided that f�x��p�x� 
 � for all x� Es�
sentially this says that to estimate an integralR
f � we sample a point x chosen from an arbi�
trary probability distribution p�x�� and take
f�x��p�x� as our estimate�
We need to relate this to the estimators for

paths of length k� In our case� x is a transport
path of length k� and � is the space of all such
paths� The integral

R
f�x� d��x� is just a re�

formulation of the inner product hWP � T
kLei

�see Sect� ���� as an integral over these paths�

hWP � T
kLei �

Z
�

f�x�d��x� ���

where f�x� is proportional to the light 
ow�
ing along x� �we call this the transport co�
e�cient of the path�� and d�k�x� measures
the throughput of the path �we omit the de�
tails in this discussion�� Finally� p�x� is the
probability density with which we generate x�
which is di�erent for each of the k estimators�
Each estimator works by generating a path x�
computing f�x� and p�x� for this path� and
scoring a contribution f�x��p�x� �we average
several samples from estimator to reduce the
variance��
Let�s examine why the methods generate

transport paths with di�erent probabilities�
Each path is built by taking a number of steps�
where at each step we randomly choose a local
direction �� in which to extend the path� Let y
be the current path endpoint� and let p���� be
the probability distribution we use to extend
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b

c
d

e

a

Fig� �� The choice of breakpoint between light
and eye steps has a large e�ect on the probability
of generating this path�

the path� The probability density of extending
the path to a point y� is

p���� d� �
p���� cos����

ky� y�k�
dy� � �
�

So we see the probability of generating a
given path segment depends on the geometry
�i�e� the length of the segment and the surface
normals at its endpoints�� as well as the choice
of p����� Note that the probabilities of gener�
ating y�y� and y��y could be very di�er�
ent� and this is exactly the distinction between
using a light step or an eye step to generate
this segment� Most important� for each of the
k methods there is a path segment that does
not need to be generated randomly �the con�
necting segment yn�xm��
For example� consider the path of length �

in Fig� �� What is the probability of generat�
ing this path if we take two light steps and
one eye step� vs� one light step and two eye
steps� In the �rst case we must generate bc
but not cd� and in the second we must gener�
ate dc but not cb� Since dc is much shorter
than bc in this example� by �
� the second
method is more likely to generate the path
abcde �other things being equal�� It is this
e�ect that causes the noise visible in Plate �
where two walls meet	 there are important
transport paths which are generated with very
low probability�
Finally� we need to understand the rela�

tionship between a probability distribution on
paths and the variance of the corresponding
estimator� Let F be one of the original esti�
mators f�X��p�X� described above� One way

to write the variance of F is

Var�F � � E�F ���E�F ��

and since E�F � is the �xed quantity we are
trying to estimate� we want to minimize the
second�order moment E�F ��� If E�F �� is large�
our image will be noisy� Examining F �
f�X��p�X�� it is clearly undesirable to have
p�x� small where f�x� is large� since this
makes a large contribution to E�F ��� This ef�
fect is responsible for the large amounts of
noise observed in Plate ��

��� A Discrete Analogy

Here is a simple analogy which demonstrates
one idea that we are experimenting with� Sup�
pose that only four transport paths contribute
to the pixel we are evaluating �rather than
an in�nite number�� and we have three meth�
ods A�B�C of path generation �i�e� these are
paths of length three�� We show the proba�
bility distribution of each method as a bar
graph �Fig� 
�� The paths are shown as bars
with di�erent shadings	 each path appears in
all three graphs �since each method can gener�
ate all the paths�� However the bars have dif�
ferent shapes� the width of a bar is the prob�
ability p�x� of generating path x	 the height
is the sample value f�x��p�x� �recall f�x� is
the transport coe cient for the path�� Note
that the bar corresponding to a path x has
the same area f�x� in all three graphs� This is
necessary for the methods to be unbiased�
We want to combine these estimators in a

way that remains unbiased �each path x occu�
pies the proper area f�x��� but also has a lower
variance� First we need to decide what sort of
estimator combinations we will allow� A nat�
ural way to combine the estimators is a parti�
tioning � where three new estimators A�� B�� C �

each estimate the integral over a subset of
the paths� and the �nal estimate has the form
S � A� � B� � C �� The estimator A� uses the
same method for path generation as A	 how�
ever A� has the 
exibility to discard samples
when this is desirable� as long as the discarded
paths are accounted for by one of B� or C �� We
would like to �nd a way to minimize the vari�
ance of S over all such partitionings�
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A CB

f(x)/p(x)

p(x)

B’ + C’A’ +

Fig� �� The upper bar graphs show a discrete
probability distributions on four paths for three
estimators A�B�C� The lower bar graphs show a
partitioning of the paths among new estimators
A�� B�� C� which minimizes the sum of their sec�
ond�order moments�

��� A Partitioning Heuristic

We noted above that minimizing Var�S� is
equivalent to minimizing E�S�� since E�S� is
�xed� This is the second�order moment of a
sum A��B��C �� It turns out to be much easier
to minimize the sum of the second�order mo�
ments� E��A���� �E��B���� �E��C ����� This is
not the same as minimizing the variance� but
it is similar� To understand what this does�
examine Fig� 
� Geometrically� the expected
value E�A�� is the sum over each path of its
rectangle area� Similarly the second�order mo�
ment E��A���� is the sum of each rectangle�s
area times its height � Intuitively� minimizing
the second�order moment is good because it
penalizes tall� thin rectangles	 these �spikes�
can make a large contribution to the variance�
How do we partition the paths to minimize

� Maximum�Heuristic�P �

� S��

� for k�� to Max�length

� for i�� to k

	 x�Choose�path�P� k� i�


 if pi�x� � pj�x� �j �� i

� then S�S � f�x��pi�x�

� else �Discard x and score ��

� return S

Fig� �� The maximum heuristic for combining
estimators� Choose�path�P� k� i� chooses a path
contributing to pixel P of length k� using segment
i as the breakpoint between the eye and light por�
tions� Note that for e�ciency� path generation for
length k will reuse the eye and light portions from
smaller path lengths�

this sum� Since each path x must be assigned
to one of A�� B�� C �� and the area of x is the
same in all cases� we want to place x where it
has the greatest width� i�e� the highest proba�
bility of being generated� We call this themax�
imum heuristic� which assigns each path x to
the estimator that generates it with highest
probability�

Pixel estimation using the maximum heuris�
tic is outlined in Fig� �� The basic idea �for
k � �� is to take one sample from each of
A�� B�� C � and sum the results� Sampling from
an estimator A� is easy� we simply take a sam�
ple x from A� then we compute the probabil�
ities pA�x�� pB�x�� pC�x�� If pA�x� is not the
largest of these� we reject x and return zero�
Note that once a path x has been chosen� it
is easy to compute the probability with which
any of the other methods generates it�

We are experimenting with several other
heuristics that combine the original estimators
in more general ways� For example� we can try
to minimize the variance over all weighted par�
titionings of the paths� In our discrete exam�
ple� this corresponds to splitting the rectangle
area f�x� among the new estimators� for each
path x� We have some preliminary theoretical
results about these heuristics� but have not
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yet veri�ed their e�ectiveness in practice� The
goal is to automatically combine the best fea�
tures of all the original estimators�
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A Recursive Formulation

In this appendix we develop further the re�
lation between bidirectional sampling and
light�importance transport� The key is to
show how taking a light or eye step reduces
the estimation of hWP � Li to a problem of the
same form�
Recall that T denotes the light transport

operator ���� As long as kT k 
 � �satis�ed by
all physically valid models�� the formal solu�
tion to L � Le�T L is given by the Neumann
series ����

L � Le � T Le � T
�Le � � � � �

The term T iLe in the expansion represents the
contribution of light which bounces exactly i
times� Note that kT iLek necessarily decreases
as i grows� For convenience we de�ne the so�
lution operator

S � �I � T ��� � I � T � T � � � � � ���

�where I is the identity operator�� so that the
solution to the light transport equation is now
just L � SLe� and our goal is to estimate
hWP �SLei�

A�� Notation for Eye and Light Steps

We assume that WP represents a pinhole lens
with the point aperture located at x�� and
that the emitted light Le is due to a single
point light source at y�� It will be convenient
to de�ne WP and Le as �slices� of the ker�
nel KR� i�e� as functions KR��x� �y� where one
of �x or �y is held �xed� In particular� we de�
�ne KR�x��x���x�x�� � WP �x�x�� and
KR�y� y��y�� � y�� � Le�y� y��� We can

think of the emitted light distribution Le as
the result of scattering energy 
owing along a
single �arti�cial� ray y�� � y�� and similarly
for WP � We can still handle arbitrary light
sources and �lter functions by using the ar�
ti�cial point sources x���y�� as described ear�
lier� However to describe these emitted distri�
butions as slices of the kernel� we must take
this one step further� the initial light is con�
centrated on a single ray y�� � y�� which is
scattered into the distribution at y�� by the
�rst bounce�
For each eye step our algorithm will de�ne

an associated weighting function Wi� where
W� �WP � Similarly each light step introduces
a new emitted radiance function Lj where
L� � Le� The algorithm works by estimating
a sequence of inner products hWi�SLji� start�
ing with the original problem hWP �SLei� The
sequence of functions Wi and Li will always
have the following form �i � ���

Wi��x� � KR��xi� �x� ����

Li��y� � KR��y� �yi�

where �yi � yi�� � yi and �xi � xi � xi��

�Fig� ��� Thus each Wi is a �slice� of the ker�
nel KR that weights incoming rays x�xi ac�
cording to how much light they re
ect along
the outgoing ray xi�xi��� and similarly for
Li� Property ���� is an important invariant
maintained by the following algorithm�

A�� The Eye Step

To estimate hWi�SLji� we �rst apply the iden�
tity S � I � T S �see �����

hWi�SLji � hWi� Lji� hWi� T SLji �

We now need to estimate each of the two
terms� By the assumption of ����� hWi� Lji
can be evaluated exactly� In fact Wi and Lj
can interact along only a single ray �Fig� ����

hWi� Lji

�

Z
R

KR��xi� �x�KR��x� �yj� d���x�

� fr�yj�xi�xi���fr�yj���yj�xi�

�V �yj�xi�
cos��� cos����

kyj � xik�
����
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from light

to eye

y

L

W

xi

i

j

j

Fig� �
� The inner product hWi� Lji

where � and �� are the angles between the ray
yj�xi and the surface normals at yj and xi
respectively� All terms in ���� can easily be
evaluated�
To evaluate the second term hWi� T SLji�

we use Monte Carlo sampling� SinceWi is zero
except on rays of the form x�xi� we choose
a probability distribution pi which gives pos�
itive weight to rays of this form� �In practice�
pi is a distribution on the set of directions out
of xi� i�e� the possible directions to extend our
transport path�� As long as Wi��x��p��x� 
 �
for all �x� we have

hWi� T SLji � E

�
Wi��xi����T SLj���xi���

pi��xi���

�

����
where �xi�� is randomly distributed according
to pi� The new ray is xi���xi where xi�� is
�rst surface point intersected in the randomly
chosen direction �which we are following back�
wards relative to the direction that light trav�
els��
All that remains is to evaluate the parenthe�

sized expression in ����� which requires that
we estimate �T SLj���xi���� This is simply the
problem we started with� in disguise�

�T SLj���xi��� � hKR��xi��� ���SLji

� hWi���SLji �

We have a new weighting function Wi���
whose form is the same �slice� ofKR ���� that
we assumed forWi� The eye step is illustrated
in Fig� ���

to eye

from light

y L

W

W
x

x

i

i+1

i+1

i
j

j

Fig� ��� The eye step replaces Wi by a new emit�
ted importance function Wi��

We can apply this operation as many times
as we like� building a transport path extending
backward from the eye� We are actually build�
ing a family of transport paths� since each pre�
�x of the path contributes to the sample value�
At each step� the term hWi� Lji connects the
current pre�x and su x to build a complete
transport path from the light to the eye�

A�� The Light Step

To take a light step� we use the adjoint trans�
port operator �see Sect� ����� Rather than es�
timating hWP �SLei� we estimate hS

�WP � Lei�
where S� � ��I�T ����� � �I�T ����� To un�
derstand S�� consider the importance trans�
port equation W � WP � T �W � Its solu�
tion is the steady�state importance distribu�
tion W � S�WP � The value W ��x� is propor�
tional to the contribution that radiance emit�
ted along �x eventually makes to the �nal so�
lution hWP �SLei� Thus we have two choices�
we can either solve for the steady�state ra�
diance L and compute hWP � Li� or solve for
the steady�state importance W and compute
hW�Lei� In fact we have more choices� since
we can choose whether to propagate light or
importance at each step of building a trans�
port path� It is this observation that leads to
k estimators for paths of length k�
We are now ready to describe a light step�

Again we want to estimate hWi�SLji� but this
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to eye

from light

y L

L
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W
x

j j

j+1 i
i

j+1

Fig� ��� The light step replaces Lj by a new emit�
ted radiance function Lj��

time we apply the identity S� � I � T �S��

hS�Wi� Lji � hWi� Lji� hT
�S�Wi� Lji �

The term hWi� Lji is evaluated exactly as
before� For the other term� we have

hT �S�Wi� Lji�E

�
�T �S�Wi���yj���Lj��yj���

qj��yj���

�

����
where �yj�� is a ray chosen randomly accord�
ing to qj �a sampling distribution for the rays
contributing to Lj�� Finally we need to esti�
mate

�T �S�Wi���yj��� � hS�Wi�KR��� �yj���i

� hS�Wi� Lj��i

which has the same form we started with� ex�
cept for the new emitted radiance distribution
Lj��� The light step is illustrated in Fig� ���
Since both eye and light steps leave us with

an estimation problem of the same form� we
can apply some of each� A complete transport
path consists of a pre�x y��� � ��yn built by
taking light steps� a su x xm�� � ��x� built
by taking eye steps� and a segment yn� xm
that deterministically connects them�
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Plate �� This image was computed using a pure Monte Carlo method which generates transport
paths starting from the light sources� The scene contains a table� a desk lamp� and a shiny
�rough specular� slab of metal� The only light is a single point source in the lamp shade �the
�bulb �lament��� It was computed at a resolution of 	

 by ��
 using 

 samples per pixel�

pt�big�ps

Plate �� The same scene computed using standard Monte Carlo path tracing� which builds
transport paths starting from the eye� The scene is very noisy even with 

 samples per pixel�
because most light comes indirectly from small� bright surfaces� Many of the white pixels are
much brighter than could be displayed �which is why the image is darker��
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this is figure 4a (plate1)
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this is figure5 a-f


