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Introduction

Creating realistic looking images is the goal of image synthesis in computer graphics.
This document addresses several important issues regarding image synthesis for complex
scenes. It pays particular attention to the “direct lighting computation”, where the bright-
ness of an object that is due to light that comes directly from the source (without reflection)

is calculated as in Figure 1.1.

Generating an image involves three major steps. The initial step, scene specification,
defines geometry, material, lighting, texture, movement, camera, etc. This step sets up a
complete scene in a virtual space. The second step, rendering, produces numerical values for
physical quantities that a viewer can sense. This step usually is accomplished by simulating

light transport within the scene. The final step, scaling, transforms the rendered image so
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Figure 1.1: Direct lighting, indirect lighting and emitted lighting.

that it can be displayed on a device such as a cathode ray tube (CRT). This step creates
an image on the CRT which gives an impression similar to the rendered image displayed on

an ideal CRT with an infinite dynamic range’.

This document focuses on the rendering process. Specifically it covers new sample
point generation methods [8], new warping schemes that transform samples to various two

dimensional luminaire domains [77], and a complete supersampling framework.

Given an accurate scene database, lighting is the key issue in realistic rendering. The
earliest lighting simulation used local illumination [21], which only considers the luminaire?

and the object whose color is being calculated. Although local illumination gives a more

vivid shading variation than constant shading, it fails to mimic shadows which are an

!Dynamic range is the ratio between the maximum and minimum intensities.
2A luminaire is an object that products light. In this document, a luminaire doesn’t include the sur-
rounding fixtures.



extremely important visual cue in a realistic image [48].

Global illumination [84, 15, 25, 51], on the other hand, accounts for interreflection among
objects. Not surprisingly, global illumination takes much more computation time than local
illumination. One major speed up strategy for global illumination is to treat direct lighting
and indirect lighting® differently [51, 36, 82, 60, 58]. In general, the direct lighting can cause
rapid shading change and is simulated by ray tracing [84, 23], which starts from the eye or
the camera film and reversely traces photons back to the luminaire as shown in Figure 1.2.
The indirect lighting in a diffuse environment produces smooth shading variation due to
multiple and recursive interactions among objects, and is commonly solved by zonal methods
with a discretized environment [25, 63, 29, 6, 72] or ray tracing with cached indirect lighting
[82] as discussed in Chapter 2. In a scene with specular or transparent objects, the situation
gets complicated because indirect lighting can also produce rapid shading variation [31, 6].

It is also possible to solve direct and indirect lighting all at once [69].

In a natural scene, it is estimated that 80 million polygons are required to give a realistic
look [74]. In real examples, Ward used over 3 million surfaces (mostly cones) to generate
tens of pine tress over a field of snow [81], and Snyder and Barr used 2 billion objects to
generate a scene with hundreds of trees over a grass field [21]. Due to such high scene
complexities, we choose to handle direct lighting and indirect lighting separately in order

to avoid the further tessellation required to capture the rapid radiance change caused by

3Direct lighting is the light from a luminaire to the observer after exactly one bounce off an object while
indirect lighting is the light after more than one bounce.
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Figure 1.2: Ray Tracing with a Camera Model.

direct lighting. In our implementation, distribution ray tracing is used for the direct lighting
computation and the geometric simplification method of Rushmeier et al. [58] is used for
the indirect lighting computation. Rushmeier’s method is a modified zonal method which
stores the radiant intensity at a resolution lower than the resolution of the objects/surfaces.
This reduces the memory requirements as well as the calculation time for energy exchange.
This method can also prevent complete expansion of a procedural geometric object, where

a function generates the object instead of storing the explicit geometry of the object.

In Chapter 2, we introduce some basic radiometric and photometric quantities and then
give a mathematical formulation and explanation of the integrals we need to solve. Finally,

we address several numerical solution methods for this integral.

In Chapter 3, we discuss Monte Carlo methods for the direct lighting computation. The
key issue with Monte Carlo methods is the choice of a probability density function or p.d.f.,
which decides the distribution of the samples. We will apply four different p.d.f.s to various

4



luminaire geometries. One of the newly proposed p.d.f.s can give the optimal sampling
distribution in a diffuse environment if the whole luminaire is unblocked [77]. This method
gives the analytical solution when the whole luminaire is visible. When the luminaire is
blocked, it can generate stochastic samples according to the direct lighting contribution
from an non-occluded luminaire. The other new p.d.f. has the samples evenly distributed

within the solid angle* covered by the luminaire [76].

The direct lighting from more than one luminaire is the sum of the combined direct
lighting. The straightforward summation gives a valid result [15, 14|, but it requires con-
sulting all luminaires, including those dim and far away. It can be time consuming when
the number of luminaires is over a few tens. Culling methods [39, 78, 81], consult all lumi-
naires, although they calculate contributions only from dominant luminaires. Unlike culling
methods, the Monte Carlo methods in Chapter 4 will give an unbiased estimate and has a

lower time complexity than current culling methods [65, 60, 61].

Sample point generation is a key issue in Monte Carlo methods, and is addressed in
Chapter 5. Traditional Monte Carlo methods with random samples are inefficient because
the samples are not evenly distributed® within the domain. Quasi-Monte Carlo methods
with quasi-random samples are usually used [15, 14, 62, 60, 44]. Commonly used quasi-

random samples include jittered samples, Poisson disk samples, and N-rooks samples. Two

*A two dimensional angle is the covered arc length of a unit circle whereas a three dimensional angle or
solid angle is the covered area over a unit sphere.

®Ideal evenly distributed samples means the fraction of the samples covered in a subdomain equals the
fraction of the domain size covered by the subdomain.



dimensional, jittered samples and Poisson disk samples are nearly equidistributed on the
two dimensional domain whereas N-rooks samples are equidistributed in all one dimensional
sub-domains. However it is currently difficult to predict the behavior of quasi-random
samples. Although mathematicians have studied quasi-random samples and related them
to equidistribution and its measure [1, 28, 71, 83, 50, 4] the application of these mathematical
results in computer graphics is still limited. In this chapter, we also generalize the idea of
equidistribution and propose a new multi-jittered sampling method [7], whose samples are
equidistributed in any sub-domain. In a two dimensional square domain, the multi-jittered
sampling method superimposes the jittered cells and N-rooks cells, and generate the samples
that are jittered as well as N-rooks in order to have equidistribution in two dimensions and
in either of the single dimensions. The complete seven-dimensional integral, which computes
the pixel color, will be revisited in Chapter 5 to show the importance of equidistribution in
dimensions higher than two and the motivation for multi-jittered sampling methods. The
number of samples used to estimate the integral is another major efficiency consideration.
Although adaptive supersampling, which uses more than one sample within a pixel for
antialiasing, has often been proposed, the prediction of the number of samples needed is
still a challenging topic. Methods based on criteria from statistics [43], signal processing
[18], or perceptual models [44] have been suggested, but the justification of the criteria
involves the not fully understood relationship between the estimation error of the pixel
color, the display algorithm, and the human perceptual system. Without incorporating
this missing information, all the proposed methods are limited in one way or the other.

Instead we suggest a more complete supersampling method architecture based on the human



perceptual system.

The new results in the document include:

e Two new sampling strategies for direct lighting from single luminaire (Chapter 3).

e A new sampling strategy with spatial subdivision for direct lighting from multiple

luminaires (Section 4.4).

A new multi-jittered sampling scheme (Section 5.2.3 and Section 5.2.5).

e A new numerical method to determine the number of initial samples (Section 5.3.2).

A new adaptive supersampling framework (Section 5.3).



Global Illumination Problem

Formulation and Solution Methods

In global illumination we compute the spectral radiance of each pixel, which can be
represented as an integral in eight dimensions, Wavelength x Pizel x Lens x Time X
Luminaire x Direction. In some parts of the solution, the Direction is replaced by the set

of all surfaces points. Both sets are two dimensional ((6, ¢) and (u,v)).

This integral is too complicated to solve analytically, and is difficult to approximate
numerically because of its high dimension. Quasi-Monte Carlo integration methods, which

are designed for high dimension problems, are suitable for estimating the pixel color.

In this chapter, we give an intuitive explanation and show the exact formula of the



energy/light transportation equation, which is then expanded into an integral for the pixel
color and an integral for direct lighting. In the second half of this chapter we discuss the

numerical solutions for global illumination, with a special focus on Monte Carlo methods.

2.1 Rendering Equation

Radiance is a quantity that is closely related to the color perceived by the human visual
system. It is defined as the radiant power transferred per unit area per unit projected solid
angle. The definitions of radiance, power, solid angle, many other common radiometric

quantities and the corresponding photometric quantities are given in Appendix A.

One way to characterize energy transport is to relate the incident radiance and the
outgoing radiance change at a point = on a surface, i.e. dLyyt < L;n, as in radiative heat
transfer [68]. This relation also involves the bidirectional reflectance-distribution function
fr to account for the material property and a cosine term to account for the projected area
of the incident light beam, e.g. the projected area is minimal if the light is perpendicular
to the surface, and increases as the light goes down to the horizon [21]. The complete
form is dLoyt, = fr(in, out,) cos(N,in)Li,, where N is the normal vector at z. Note that
the transmission is omitted here for notational convenience, but it can be mechanically

incorporated into the formula because it is simply dLsy;, = fi(in, outy) cos(N, in) Ly, .

The rendering equation which expresses the outgoing radiance in terms of all incident



Figure 2.1: Rendering Equation

radiance is commonly represented in one of two different forms. The first one shows that the
outgoing radiance toward dw is the sum of the emitted radiance and the reflected radiance
coming from every possible direction 4’ as in Figure 2.1, and in Equation 2.1 (from Immel)
[34]:

L,\($>¢) = E)\(CC,’lp) +/V’ fTA($7¢>¢,)LA($7¢I) COos 0dw¢/ (21)

W EQy
where F(z,1) is the emitted radiance in direction v at =, L(z,’) the radiance from direc-

tion 7' incident at z, dw' is the differential solid angle subtended by 1.

The second form of the rendering equation shows that the outgoing radiance is the sum
of the emitted radiance and the radiance from all visible surfaces, which is an integral over

10



all surfaces (as used by Kajiya [36]):

AI /!
Ly(z,%) = Ex(z,9) + 9(@,0") fra (6, 9V I (8 cos 0900 (9.9)
Vz!€Q, 2" — ||

where g(z,z') is the geometry term, which is zero if there is an obstruction between z and

z', and one otherwise.

The rendering equation represents only geometric optics and does not consider the light’s
properties in terms of the electromagnetic waves [30, 49]. This simplification ignores the
effects of polarization, interference, and diffraction; but this is a minor limitation for most

applications since these phenomena are not very noticeable in most scenes.

The rendering equations in Equation 2.1 and Equation 2.2 show the radiance toward
one direction 1 only. To represent the pixel color, we need to integrate all the radiance
toward the pixel of interest, or sometimes also the nearby pixels, within a time interval, and

over the visible spectrum. The complete integral becomes :

L(i,j)=/ / w(Ap)/ / Ly(z, %) dt dA; dA, dX (2.3)
W avelength J Pixels Lens JTime

where (4,j) is the index of the pixel of interest. w(A,) is the weight function (filter) on
the pixel space and Pizels is the support (nonzero domain) of w(Ay). Lens is the area
of the lens and T%me is the time interval over which the camera shutter is open. For ease

of discussion, we assume a box filter of unit width, i.e. @w(A4,) = 1, thus we use Pizel

11



instead of Pizels. For animation, a non-uniform weight function would be used to avoid

the regualrity in error, i.e. aliasing.

For efficiency, Wavelength is generally treated using traditional quadrature and L(%, j)

becomes:

Ly(i,j) = / / / Ln(z, %) dt dA; dA, (2.4)
Pizel J Lens JTime

This modification means that a ray which carries a spectrum does not spatially diverge
even when the ray enters an object such as a prism. This is not physically correct because
the color dispersion! [30, 49] is not simulated, but this is not a severe limitation for most
applications. If dispersion effects are needed, the integral should be retained in the form of

Equation 2.3.

2.1.1 Direct Lighting

The rendering equation can also be cast as multiple terms, with each term representing

a certain number of reflections between the emission and the exposure:

direc indirect

where the superscript means the number of bounces contained in the corresponding term.

!Dispersion is the separation of light into its constituent wavelengths, by refraction or diffraction with
formation of a spectrum.

12



To derive Lgirect and Ljpgirect; We expand the recursive rendering equations in Equa-
tion 2.1 and Equation 2.2. If we replace Ly(z,%') at the right hand side of Equation 2.1 by

the same equation with Ly (z, ") at the left hand side, we have,

Lares = [ o Ir@tpd)Ba(o o cos o (25)

else, when Lgjrec is derived from Equation 2.2, we have,

dA' cos @'
Ldiv‘ect = g(.’l),.’I,‘I)fT)‘(.’L',lﬁ,iﬁ’)E/\(x,lﬁl) cos f-——

2.6
o o =P (2.6)

Since non-emitting surfaces do not contribute to Lg;rect, the integration domain €2, can be

simplified to the directions toward luminaires only and €2, to the surfaces of luminaires.

Lgirect 18 not a recursive function. It contains the details of the scene. On the other
hand, L;pgirect is a recursive function with a few details (an exception is caustics caused
by focusing effects). The separation of Lgirect and Lingirect gives the opportunity to solve
these two integrals with different numerical methods and different precisions. Chapter 3 is
devoted to the direct lighting computation from one luminaire and the whole of Chapter 4

is devoted to the direct lighting calculation from multiple luminaires.

13



2.1.2 Indirect Lighting

Indirect lighting is commonly solved by zonal methods (finite element methods). In
these methods objects are tessellated into elements or patches. Each element of the tessel-
lation is assumed small enough that it can be characterized by one bidirectional reflectance-
distribution function f.(z,,%') [63, 6, 29, 69, 72]. Then energy is transported among
elements and patches. In the shooting approach, a patch distributes its energy to the visible
elements while in the gathering approach, an element collects its energy from all the other
patches and elements. Common zonal methods require storage of the energy information
on each element. This is overkill in a complex environment because most objects have little

contribution to the image and do not need high accuracy.

In our implementation, the indirect lighting is computed by geometry simplification
[68], where the energy is distributed over a coarsely tessellated environment. After the
reflected energy of every element is calculated in the zonal phase, we treat the tessellated
environment as luminaires with zero reflectivity. Then in the viewing phase the reflected
ray is used to compute the indirect lighting in a manner similar to collecting direct lighting.
If the reflected ray hits an object very close by, the ray is further reflected to avoid error

amplification due to the large solid angle covered by the nearby object.

Indirect lighting can also be solved by ray tracing as is done by Ward [82], where the
radiance values at points in three dimensional space is stored instead of on objects. Existing
information is reused if the radiance at a nearby point with similar normal vector is already

14



stored. Storing the radiance at points in space can avoid the length computation time in
path tracing, and the meshing problems of the zonal methods. The only major concern in
this approach is the density of the samples. In a complex environment, coherence exists
only within a very small volume and hence we need many samples. On the other hand,
since the number of viewing rays increases, the importance of each ray is decreased, and

this in turn increases the tolerance for coarser estimation of indirect lighting.

Although having the full solution for indirect lighting is commonly thought of as the
ultimate goal, there are reasons to believe that full solution might be an overkill. One
reason is that a fast but coarse approximation can produce an image without a significant
degradation of quality [58]. The other reasons relate to the non-linear transformation of a
real-world image to a screen image which only allows a small intensity range [73, 7]. The
non-linear transformation of Tumblin and Rushmeier suggests that the full intensity range
of the screen image should be a nonlinear function to the actual intensity range of the
real-world image, i.e. a real-world image is mapped only to a portion of the intensity range
on the screen. The benefit of this method is the ability to distinguish different lighting
conditions, for example two rooms with the same geometry setting but one with a 60 watt
lamp and the other with a 200 watt lamp. However, this transformation further limits the
intensity resolution. The other non-linear transformation by Chiu et al. [7] suggests that
a real-world radiance can be mapped to a range of screen intensities instead of a single
intensity as long as the relative contrast is maintained. Both transformations decrease the

accuracy of the real-world image and can make the smooth transition of radiance from

15



Lindirect €ven less noticeable.

If the full solution for indirect lighting is not necessary, the ambient light? might be
sufficient to give a reasonable approximation [10, 60]. To make the ambient light a good
approximation of indirect lighting, we still need to consult the lighting condition and the
environment. For example in an empty room with a 100 watt luminaire and reflectance 0.5
on the walls, a good guess of the ambient light can be made from the knowledge that the total
energy is cut in half after each bounce, i.e. the ambient light = (0.5+0.5% +0.5% 4 -+) x 100
watts = 100 watts. Images using ambient light usually look somewhat flat, so there is some

indication that the indirect lighting should be computed, but not with an extreme accuracy.

2.2 Numerical Integration over A Finite Interval

Lgirect and L(3, j) can be approximated by many numerical methods [5, 17|, which fall
into four categories: traditional quadrature, Monte Carlo methods [37, 9, 57], weighted
Monte Carlo methods [24], and quasi-Monte Carlo methods [71, 62, 19]. This classification
emphasizes various Monte Carlo methods because their important properties which have

made them a practical choice for computer graphics:

2 Ambient light is a simple model which produces constant illumination on all surfaces regardless of their
position or orientation.

16



1. Unlike some traditional quadrature methods, the number of samples is not propor-

tional to 2¢ for d-dimensional problems.

2. Their stochastic nature makes the estimation error appear as noise, which is more

visually acceptable than aliasing artifacts created by deterministic process [15, 14].

3. The simplicity of the solution makes implementation fairly painless.

2.2.1 Traditional Quadrature Formulas

The basic idea of numerical quadrature, which approximates a definite integral by a

weighted sum of finite samples, can be expressed in the following equation:

flz)dz = z”: f(z)dz = iwzf(azz)
/Q i=1 /Ql i=1

This formula uses w; to estimate [ dz and f(z;) to estimate f(z) within ;. In order to
Q;
have a good approximation, f(z;) should be representative of f(z) in ©; and this is true if

f(z) is smooth in w;, which is generally true when 2; is compact and small.

There are three common methods used to generate the w; and z; [20]. Gaussian quadra-
ture uses deterministic w; and z;. Monte Carlo methods and quasi-Monte Carlo methods
start with a partition of the domain and the weight of each cell, and then a sample is as-
signed in each cell. Weighted Monte Carlo methods assign samples before constructing the
partition and computing the weights.
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2.2.2 Monte Carlo Methods

Monte Carlo methods represent an integral as a statistical expected value, which is then

approximated by an average [33, 57, 38, 89]:

_ F@) oy du(e
/ _ F@du(@) = / e P @n(z)

(2.7)

2
=
™=

where X is a random variable having a probability density function p(z) (denoted X ~ p),

i.e. p(x) > 0 when f(z) # 0, and / p(z)dp(x) = 1. du(x) is the differential measure of
VzeS

f(=:)

p(zi)

the average of primary estimates is the secondary estimate.

point z, and z; is a sample chosen according to p(x). is called the primary estimate,

Monte Carlo methods involve two steps [57]. The first step is the choice of a valid p(z).

In general, the more similar p(z) is to f(z), the smaller the error is [60]. If p(z) o< f(z),
(i)
p(:)

equations in Equation 2.1 and Equation 2.2, and Equation 2.4 are so complicated that

for any z; such that f(z;) > 0. However, the rendering

then /VzES f(z)du(z) =

p(z) o< f(z) is still impossible. The second step is to find z;, which is distributed according

to p(z). In one dimension, suppose that P(z) is the probability distribution function of
X
p(z), i.e. P(z) = / p(z)dz, then z; = P~ 1(¢) where ¢ is a random number in [0,1]. When

a

the analytical form of P~!(z) does not exist, numerical inversion should be used. If p(z) is
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non-uniform, then the sampling strategy of finding z; is called importance sampling.

The main drawback of Monte Carlo methods is slow convergence. The variance of the

N
1 ; 1 ;
estimate is var[ﬁ E f(wZ)] or —var[f(xz)]. Since the estimation error behaves similar

= pl@) N p(w)

to the square root of the variance, we need to quadruple the samples in order to halve the

€rror.

2.2.3 Weighted Monte Carlo Methods

Weighted Monte Carlo methods first select samples at random locations, and then con-
struct a partition which is used to decide the weights for the samples. A special advantage
of the weighted Monte Carlo methods is that samples can be placed where they are most
needed. This requires some knowledge of the function which is possible in many, but not

all, instances.

In a two dimensional domain, Glassner used the Voronoi diagram as the partition and
the area covered by each cell as the weight [24]. The Voronoi cell is a good choice because
it is compact and has the sample near the center of each cell. The process of generating a

Voronoi diagram is illustrated in Figure 2.2.

Weighted Monte Carlo methods become less attractive as the dimension goes up because
of the dimensional effect, where the number of partition cells increases at the same order
as the dimension of the domain [17].
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Figure 2.2: Voronoi Diagram Construction. Left: given samples. Middle: drawing the
perpendicular line at the middle of the line segment connecting every pair of samples.
Right: defining each Voronoi cell by the perpendicular lines related to the sample.

2.2.4 Quasi-Monte Carlo Methods

Quasi-Monte Carlo methods are Monte Carlo methods with quasi-random samples,

which have some, but not all, properties of random samples [62, 44, 47, 45].

Number theory has been used to study quasi-Monte Carlo methods for many years, and
has yielded some interesting results. In Chapter 5, we will discuss these results, and relate

them to computer graphics.

2.3 Summary

Global illumination can be mapped to an integration problem, which is extremely dif-
ficult to compute because of recursion, high dimension, and the continuity and the shape
of the integration domain. Quasi-Monte Carlo methods are attractive for approximating
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this integral. The sampling issue is the major concern in quasi-Monte Carlo methods and
knowledge about sampling from both number theory and computer graphics may be useful

in speeding up the calculation of this approximation.
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Direct Lighting from One Luminaire

In this chapter we present four sampling methods which can be used with quasi-Monte

Carlo methods to compute direct lighting, Lg;rect in Equation 2.5 or Equation 2.6 [77].

It is possible to apply methods other than Monte Carlo methods to estimate L gjrect-
One possible method is to simply combine Lg;rect With Li,girect and solve everything via
naive zonal methods [25, 75]. However, this approach requires an extremely fine mesh
size to capture rapid radiance changes caused by shadowing, projected solid angle of the
luminaire, the intensity distribution of the luminaire, and reflectivity. The second method
discretizes the luminaire into point luminaires at specific positions [42], but unfortunately
the regularity of luminaire positions might cause aliasing artifacts. The third method first

calculates the visible boundary and then uses the exact formula of Lgjye; from a perfectly
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diffuse polygonal luminaire [51]. The limitation of this method is that only polygonal or
polyhedral objects are allowed in the environment. The fourth method is to divide the
(rectangular) luminaire into quadtree cells of various sizes, and estimate Lgject from each
piece of the luminaire by Monte Carlo methods [81]. The problem with this approach is

that the artificial division may result in more samples than actually needed.

The quasi-Monte Carlo methods we present in this chapter do not have the restrictions
and limitations of the other methods, do not subdivide the luminaire, and most importantly
they are extremely effective for computing direct lighting on diffuse objects. If an object
is perfectly specular like a mirror, one reflected ray is all we need to compute the direct
lighting and indirect lighting, and calculating Lg;re: independently is unnecessary. If a
surface is not perfectly specular, it is unclear which calculation method converges more

rapidly [66].

3.1 Luminaire Sampling Strategies for Diffuse Environment

The full integral of L ;¢ can be written in two forms. First, expanding the Equation 2.5

using spherical coordinates :

Lairect = / A / C Foa(@, ) E(a', —') cos Oduwyy sin ddddd (3.1)
VheQ, Ve
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where 6 is the angle between Z axis and 1)’ (;3 is the angle from the X Z plane to 9 in a

counterclockwise direction. Second, Lgjret can be derived from Equation 2.6 :

cos )

Lg; :/ / 0, ) Ex(2!, =) cos dwy ———— dud 3.2
direct = | o Jrueq, TAEDVIENE, =) cos bdwy o pdude - (3.2)

The application of the Monte Carlo methods presented in Section C to Lg;pect is straightfor-
ward when the integration domain can be analytically defined. This Chapter applies four
different probability density functions, that we consider to be of increasing desirability in
a diffuse environment, to luminaires with a simple geometry. Each p.d.f. will provide a
valid estimate for any BRDF and will provide a low or zero variance estimate in a diffuse
environment. Lg;rec¢+ can be computed using either Equation 3.1 or Equation 3.2, but often
only one of them gives a natural coordinate system or parameterized integration boundary
to work with. For example, while sampling a polygon, it is usually easier to perform calcu-
lations on the surface of the polygon, but while sampling a sphere spherical coordinates is

a more convenient calculation space.
: / . ! . .
In this chapter, ' means a point and 7" means a direction.

1
Case 1: pi(z') = T where A’ is the total area of the luminaire.

p1(z') = e is easy to use and can give a quick estimate. This p.d.f. is particular useful

for debugging, but it requires many samples to render realistic image because of its poten-

tially high variance. The primary estimate is L(z, ) ~ g(z,z") f(x, ¢, ¢ ) E(z', ") cos 0 A’
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cos @'

[

1
Case 2: py(z') = — where A" is the visible area on the luminaire when seen from z.

A

Due to the difficulty of parameterizing the intersection of the luminaire and the tangent
plane at z, A” reduces to the region not blocked by the luminaire itself. The only situation

where case 1 and case 2 can be different is when the luminaire has curved surfaces.

This case can be much more efficient than case 1 which wastes some samples in the
invisible region. In the situation of a spherical luminaire or a cylindrical luminaire, case
1 will produce points that are invisible more than half the time while case 2 will always

produce visible points.

!
The primary estimate is L(x,v) = g(z,z') f-(z,%,¢")E(z', ") cos OLHHQA"

|z' — =

1
Case 3: p3(¢y') = — where o' is the solid angle covered by the luminaire seen from z'.
w

9'dA
The primary estimate is L(z,%) ~ f.(z,%,%")L(z',4") cos § w'. Since dw' = LQ,
|z" — ||
, 1 . . , cos ¢’ . .
p3(¢') = — is equivalent to p3(z') = 5 - So the primary estimate can also be
W' w'|z" — =z

L(z,4) = g(z,2') fr(z,9,9") L(z", ) cos 0 cos ¢’ '

varen, ||z’ — z||?

Deciding between the use of p3(¢') or p3(z') depends on which domain can define the
solid angle more easily. Naturally p3(¢') is good for spherical luminaires, whereas p3(z') is

good for planar luminaires.
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This case improves case 2 by putting more samples at the region with larger solid angle.

The difference between case 3 and case 2 is most obvious if z is close to the luminaire.

Case 4: py(1') o cos @ when the whole luminaire is above the tangent plane at z’.

If any part of the luminaire is below the tangent plane at z’, then ps(¢') is not a valid
p.d.f. since cos @ is negative. To avoid invalid p4(7)'), in these situations we can switch to

the methods from case 1, case 2, or case 3.

The primary estimate is L(z,v) ~ f.(z, v,y )E(z',v") / cos fdw' and again py(¢)')
V'lﬁ’EQw/
. . ,  cosfcost
o< cos § is equivalent to ps(z’) ox ———= or
" — |
cosfcos b’

- cos )’ '
fVI’EQEI COS emdA

and the primary estimate of L(z,%) can also be L(z,v) =~ g(z,z')fr(z,¥,¥")E(z',4")
0/

/ cos 0&2dA'.

Va'€Q, ||z' — x|

Case 4 is an improvement over case 3 in a diffuse environment because cos # can char-
acterize the integrand in Lg;..; very well. Case 4 can also be worse than any other case in
an environment with non-diffuse objects or luminaires if p4 happens to have higher values

in the unimportant regions.

To use Monte Carlo methods, we need to know either p() and the sampled direction

1ﬁ, or p(%) and the sampled position & where £ is the intersection of the luminaire with qp
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| Luminaire || pi(a’) = 1/A" | pa(a’) = 1/A" [ ps(¢') = 1/w" | pa(¢") ox cos b |

Sphere Yes Yes Yes Num.
Rectangle Yes N.A. Num. Num.
Triangle Yes N.A. Approx. Num.
Polygon Yes N.A. Approx. Num.
Disk Yes N.A. Approx. Approx.
Cylinder Yes Yes Approx. Approx.

Table 3.1: Results of applying four sampling methods in a single luminaire environment.
N.A. means doesn’t exist, Num. means numeric function inversion is needed in the solution,
and Approx. means an approximation is presented.

cos ¢
—
|z — |

that varies in complexity for different sampling methods and luminaire geometries. We have

and p(&) = p(v) . Finding such a p.d.f. is a geometric, or an algebraic problem
tried spheres, rectangles, triangles, polygons, disks, cylinders, and the results are shown in
Table 3.1 after applying the four p.d.f.’s to various luminaires. The specifics of calculating

these p.d.f.’s is dealt with in Section 3.1.1 through Section 3.1.6.

The coordinate systems used in the following sections are chosen specifically to simplify
the derivation. This does not effect the generality of these methods, but implies some

computational expense for coordinate transformation.

3.1.1 Spherical Luminaires

Suppose the luminaire with radius r is centered at the origin and z is at (0,0, d).
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Case 1: pi(z') = 1/A" = 1/(4xr?), choose & = (r,0, ¢) :
z = (r,arccos(1l — 2&1), 2m€9)

in the local spherical coordinate system centered at (0,0, d).

1 1

Case 2: pole') = 7 = gra 1y
d

z = (r,arccos(1 — & + fl%)a 2mé)

where % is in spherical coordinates.

The next two cases use the coordinate system UVW as in Fig. 3.1. W is from
to the center of the luminaire. V is W x N and U is V x W. «z is at the origin. The
luminaire centers at (0,0,d) and has radius 7. N = (N,,0,N,,) is a constant vector. If

N =W =(0,0,1), V can be any vector perpendicular to W.

1 1
Case 3 : p3(¢') = = - m).
Ty

4 is a unit vector from the origin to (1,9,(/3) in spherical coordinates. § = arccos(1 —

&1+ & 7"12(142) and ¢ = 27, as derived in [76].

0
Case 4 : py(v') = €08 , where
Ptotal
DPtotal = / cos fdw’
Vi eQ,,
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Figure 3.1: Spherical Luminaire

Omax 27 A
- / / cos 0 sin Odbdd
0 0
Omaz 2w N ~ N N ~ A A A
= / / N - (sinf cos ¢, sin 0 sin ¢, cos 6) sin Odpdb
0 0
Hmam ’N N ’S
= / 27Ny, sin 6 cos 6d0
0

= 7Ny sin? Omep

where 0,,,, = arcsin % The angle zp = (1, é, d)) can be computed by the numerical inversion

from the following two formulas:

i
&L = /Op(e)de
- /09 /Ozﬁp(é,q%)dédé
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- ] ’ [ o) sindagai

1 6 ror R
- / / cos 0sin ddpdo
0 0

Dtotal

1 b .
= / 21Ny, cos 8 sin 6df
Ptotal J0O

1 .
= 7Ny, sin? @
DPtotal

: . 1Ptotal . .
So, # = arcsin E1Piota = arcsin /&1 sin gz
TNw

¢ .. .
& = /0 p($|6)dd
5 p(6, $)dd

(@

J§ v(0, 9)dd

0" p(6, $)d

féi’ N - (sin @ cos ¢, sin @ sin ¢, cos ) d¢
OQW N - (sin @ cos ¢, sin @ sin ¢, cos ) d¢
foé N, sinf cos  + Ny, cos 0d
fOZW N, sinf cos ¢ + Ny, cos 8d
N, sinésinc;‘S + Nwécosé

27 Ny, cos 6

We need the numerical inversion to find out (/5

Figure 3.2 has one viewing ray for each of the 200% pixels. The average execution time

and the fraction of the time taken compared to case 1 from 10 trials are in Table 3.1.1.

For the same test scene, a visual comparison shows that case 1 needs 81 jittered samples

to achieve shading as smooth as case 4, case 2 needs 36 jittered samples, and case 3 needs 9
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1
Figure 3.2: Sampling a spherical luminaire with 1 sample per pixel. Top left: p;(z') = —.

!

1 1 0
Top right: py(z') = — . Bottom left: p3(y') = —. Bottom right: ps(y') = €08
A w Dtotal
‘ Spherical Luminaire H Case 1 ‘ Case 2 ‘ Case 3 ‘ Case 4 ‘
Time (sec) 149.08 | 156.16 | 162.96 | 173.74
Time / Time(Case 1) 1.00 1.05 1.09 1.16
. . . . Time
Table 3.2: Execution time of spherical luminaire and ———.
Time(Casel)
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Figure 3.3: Rectangular Luminaire

jittered samples. Note that we only perform the test with N? jittered samples where N is a
positive integer, because jittered samples work best at N2. The jittered sampling method

will be discussed in Chapter 5.

3.1.2 Rectangular Luminaires

Consider the coordinate system UV W in Figure 3.3, where the luminaire lies on the UV
plane within the range (0 < 4 < Uz, 0 < v < Vpnaz), and z = (c1,¢2,¢3), T’ = (u,v,0),
N = (Ny, Ny, Ny), N' =(0,0,1). The vector from z to z’ is (u — ¢1,v — ¢g, —c3).
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1 1
Case 1: pi(2') = — =

; .
A UmazrUmazx

T = (§1umam; §2Vmaz; 0)

cos @’ .
r__
Case 3 : p3(z') = lle' el
Dtotal
cos &'
Dtotal = / 2 2dA’
vzren, ||z — x|

/”w /m N —(u—c,v—cy-es)
= uav
|

3
" —

Umazx Umazx

= / / “ T dudv
(w—e1)?+ (v —c9)? +c)

Umazx — Umaz —C1
= / / ° +dudv

—c2 —c1 (u2 + 92 + 02) 2

uv Umaz —C1 |V=VUmaz —C2

|u_—cl v=—cCo
czy/u? + v? + ¢

%z = (u,7,0) can be computed by the numerical inversion of the following two formulas.

= arctan

&= /Oép(@)dy

v Umaz
= / / p(u, v)dudv
= / / . z")dudv

Umax — c3
= / / T dudv
DPtotal J—c2 u2 + 02 + 02) 2
wUv _ ey —
= arctan g tmazCLPTY €2

/ U=—°C1 v=—C2
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& = /Odp(u‘i))du

_ fo p(u, v)du
p(v)

fo u,0)du

o p(u,v)du

f’d—cl c3

—a (u2+(v—c2)2+ 2)%

— 2)2+c3

Umaz—C1 c3 .

A (u24(—c2)2+c2) ¥

c3U u=u—Cc1

_ _(@aP+e)Va—aP+(@—c)’+dq T
B cau U=Umaz—C1

((a—c1)?+e3)y/(i—c1)>+(5—c2)?+3 M=~

mer'
I
Case 4 : py(2') = ' —=”
Dtotal
cos @’ ,
DPtotal / C ; dA
Va'eQ, ||:1: — (EH

(u—c1,v—co,—c3))(N'- —(u — c1,v — ¢, —¢3))

Umaz Umax
/ 2 dudv
° " — =]

(N
Umaz /uma:c (Ny(u — 1) + Ny(v — ¢3) — Nyc3)es
0 ((u—c1)?+ (v—c2)® + c§)2
Ymaz €2 [UmasTCl (U'Nu + UNU - C3Nw)C
e /—Cl (u2 + 0% + c3)?
(c3 Ny + ulNy,) arctan

2y/u? + 3

(csN, + vN,) arctan

dudv

3 dudwv

[l
—_— S S

2+2

u
~/v2 2
vites U=Umaz —C1 | V=Umaz —C2

u=-—cC1 v=—cC2
24/v? + ¢}

z(= (4,v,0)) can be computed by the numerical inversion of the following two formulas.

& = /Oq)p(v)dv
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1

Figure 3.4: Sampling a rectangular luminaire with 1 sample per pixel. Left: p;(z') = —.

AI
cos §’ 5 cos f cos 2«9’
Middle: p3(z') = I’ ~=ll” Right: p4(z') = N =al”
ptotal ptotal

3

/ / - dud’u

Dtotal

1

(c3 Ny + ulNy,) arctan

v
Vul+cl B

Umaz —C1 UN =+ ’UN C3Nw)c3
/ / 55 dudv
e (u? +v2 + ¢3)

(csNy + vN,,) arctan ——2—

ptotal{ 2 /u2 + c%

/011 p(u|v)du

fo u, 0)du
p(v)
fo u, 0)du

Umaz

0 p(u,0)du
u—ci (uNu+(1)—C2)Nv—63Nw)63du
—c1 (u?+(v—c2)?+c3)?
fumaz_cl (UNu+(7.)_C2)Nv_CSNw)CS du
—c1 (u2+(9—c2)2+c3)?

—cgNu —c%uNw +cau(v—ca2)Ny—c3 (b—cz)zNu

Vv +63 }|u Umaz —C1 |[V=D—C2

u=—ci v=—co
24/v? + ¢}

c3(—c3 Nyw+(9—c2)Ny) arctan

u
V0—e2)2 4l y—i—cy

(02 + )W+ (0 e P+

2(({)*62)2‘{'6%)1'5 u=-a

—c3Nu —cSuNw +ezu(v—c2)Ny—c3(0—c2)2 Ny

¢3(—c3Ny+(0—c2) Ny ) arctan

+

- w
/(% 2 2
(0—c2) +e3 ju=tmaz—c1

2((0—c2)2+c2)(u2+(v—ca)2+¢32)

2((9—c2)2+c2)"° u=-a

Figure 3.4 has one viewing ray for each of the 2002 pixels. The average execution time and
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‘ Rectangular Luminaire H Case 1 ‘ Case 3 ‘ Case 4 ‘

Time (sec) 133.82 | 218.6 | 246.04
Time / Time(Case 1) 1.00 1.63 1.84

Time

Table 3.3: Execution time of rectangular luminaire and W.

the time as a fraction of the time taken by case 1 from 10 trials are in Table 3.1.2.

To achieve the same visual smoothness as case 4, case 1 seems to require more than 100

jittered samples and case 3 needs 9 jittered samples.

3.1.3 Triangular Luminaires

Consider the coordinate system UVW as in Fig. 3.3. Suppose the triangular luminaire
is bounded by u = 0 at bottom, u = av at left, and uw = cv + d at right. Also, v = av and

ad  5nd Vmaz = _a_

u = cv + d meet at (Umaz, Vmaz,0) Where umaz = ;2% P

1 1
Case 1: pl(-’El) = A ~ Umazd®

z = (1 % 1- fl)(d,0,0) +£2 V 1- gl(umamavmamyo)

where 7 is in vector form.

cos 6§’

12
Case 3 : p3(z') = llz’ =l
Ptotal
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We have not been able to compute case 3 exactly, so instead the solid angle covered by
the triangle luminaire, it is approximated by a triangle whose vertices are the intersections
of the unit sphere centered at = and the three lines connecting = and the actual luminaire

vertices [76].

cosecosg’
I
Case 4 : py(z') = L]
Dtotal
cos @'
DPtotal = / dAI
V' €9, ||x — |2

) dudv

/'Umam
- 2" — x*

B Vmaz cv—|—d Ny(u — 1) + Ny(v — c2) — Nycs)es
N / ((u—e1)? + (v — e2)? + c3)?
B VUmaz—C2 re(vtea)+d—ct (ulNy + Ny — c3Ny)cs
B / /a(v—|—02) c1 (’11,2 + %+ C§)2

+v+a v
3N, — acsN, + (acy — ¢1)N,,) arctan —2acz=c1)
(e3Nu 3Ny + (aca — c1)Ny) N arei

2\/0, A+ &+ (aca —c1)?

_ _ c(d+cea— cl)—l—v—i—c v
(c3Ny — ccsNy + (d + ceo c1)Nw)arctan\/2 v pr— N

2\/c2 + 2+ (d+cey — c1)?

(cs Ny + vNy,) arctan alvter)—cr (c3Ny + vNy,) arctan cvtea)td—cy

2 2 2 2
m _ \/,lTCS V=Umazxz —C2

24/v? + ¢ 2¢/v? 4+ c3 e

z(= (4,v,0)) can be computed by the numerical inversion of the following two formulas.

o

/C“+d “(u—c1,v—co,—¢3))(N' - —(u —¢1,v — ¢9, —c3
/ dudv

o

dudv

& o= /OU p(v)dv

v pcvtd
= / / p(u, v)dudv
0 Jav
v pcvtd
= / / p(z')dudv
0 Jav
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(ulNy, + vN,

— csNu)es dudv

/ /c(v+02)+d c1
—c2 (v+c2)—c1

Ptotal

(u? + v2 + c3)?

a(a02—cl)+v+a21)

(e e (oo eV arctan _flenates
Dtotal 2v/a’c + ¢ + (acs — ¢1)?
2
(c3Ny — cc3N, + (d + cca — ¢1)Ny,) arctan c(d+cca—c1)+v+cv

\/c2cz+c§+(d+ccg —c1)? n

2\/02 +ck+
(esN, + vNy,) arctan alvtea)—er

(cs Ny + vN,,) arctan

d + cco — 61)2

c(vtea)+d—c1

24/v? +c3

&9 (u|v)du

[ov
f(fv p(u,v)du
p(v)

U .
Jow P(u, 0)du
fc’lH—d
av
fu;cl (uNy+(0—c2)Ny—c3 Ny )c3 du
av—cy (u24(d—c2)2+c2)?
fcv—f—d c1 (uNy+(0—c2)Ny— 63Nw)03du
av—cy (u2+(v—c2)2+c2)?

p(u,v)du

—c%Nu —c%uNw +egu(d—co) Ny —cz(9—c2)2 Ny,

2¢/v? +c3

¢3(—c3Ny+(0—c2) Ny ) arctan

}|v:1’1—02
v=—c2

w
vV (1'1*02)24'0:25 u=u—ci

(0P + )W H(T )2+

+

2((9—c2)2+¢3)"®

u=av—c1

—(:3Nu —csuNw +csu(v—c2)Ny—c3(v—c2)2 Ny

+

c3(—c3 Ny ~+(0—c2) Ny) arctan ——2—o—
A/ (o— 02)2+c

2((v—c2)2+c2)(u2+(v—c2)2+c2)

2((6—c2)?+c)"®

u=cv+d—c1
u=av—ci

Figure 3.5 has one viewing ray for each of the 2002 pixels. The average execution time and

the time as a fraction of the time taken by case 1 from 10 trials are in Table 3.1.3.

38



Figure 3.5: Sampling a triangular luminaire with 1 sample per pixel. Left: pi(z’)
cos f cos §’

112
Right: py(z') = e
Ptotal

‘ Triangular Luminaire H Case 1 ‘ Case 4 ‘

Time (sec) 153.64 | 276.84
Time / Time(Case 1) | 1.00 1.8

Time

Table 3.4: Execution time of triangular luminaire and ——.
Time(Casel)
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3.1.4 Polygonal Luminaires

Suppose a polygon is combined of n triangles, T1,...,T;,.

1
Case 1: pi(z') = T

n
A = Z AIT,- or if the polygon has been projected onto XY plane, then

i=1
1 n n ] )
A = 3 (Z Ti Y(i+1 mod i) — Zyi T(i+1 mod 4)), Where (zi,¥i), i +1,...,n is the counter-
i=1 i=1

clockwise enumeration of the vertices of P [56].

Finding # with a given random number pair (£1,£2) is equivalent to finding 7; such that
1 i—1 1 i
o Z A'Ti <& < Y Z A'Ti and then finding a point on triangle 7; with &, as discussed
k=1 k=1
in Section 3.1.3.

cos @'
7

) = Iw—al
DPtotal

Case 3 : p3(z

First we find a rectangle R, that contains the polygon and is as small as possible. Choose
a sample on R as discussed in Section 3.1.2. If the sample is outside the polygon, then the
sample is a waste. Note that throwing away redundant samples is cheap because a shadow

ray is not sent unless the sample is inside the polygon.

cos §cos 8’
Nt 2
||z’ —=]|

Case 4 : py(2') =
Protal

Ptotar 18 the sum of the pyyyq from T1,...,T;, as discussed in Section 3.1.3. A better way
to compute piotq is in [51, 3]. Suppose the polygonal luminaire has n vertices, pi,...,p, in
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clockwise enumeration as seen in z in Figure 3.3,
1 1
Piotar = 5 Zej(N : Nj) (3'4)
=1

where 6; is the angle in radians, between the two vectors z to p; and z t0 p(j41 mod iy- Nj 18

the unit normal vector of the triangle p;p(;41 mod ) - the cross product of the two vectors,

z to pj and T 0 P(j 41 mod i)-

Finding & with a given random number pair (£;,&2) can be accomplished in two steps.

Ptotal Of Tl)"')T'i—l < Ptotal Of Tl)"')cri

The first step is to choose T; such that .
P § Piotar of the polygon — ! Piotar of the polygon

Piotar of T1,.. ., 15 can be incrementally computed by Equation 3.4 when Ti,...,7; form a
convex polygon. Note if T1,...,7; form a concave polygon, then Equation 3.4 can’t be used
because Py, might be negative. The second step is to choose a point on 7; with random

number ;.

3.1.5 Disk Luminaires

Suppose the disk luminaire with radius  is centered at the origin and that N' = (0,0, 1).

Case1: pi(z') = — = —.

i = (rv&,21€2,0)

where % is in the local spherical coordinate system centered at the disk. The disk luminaire
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Figure 3.6: Sampling a disk luminaire with 1 sample per pixel. p1(z') = —.

e
[T

Figure 3.7: Decomposition of a Disk Luminaire

sampled by case 1 is shown in Figure 3.6.

Case 3 and case 4 : decomposition of the visible region A”.

The disk can be constructed as Figure 3.7 and instead of sampling a disk, we sample the
square as discussed in Section 3.1.2. Although the samples outside the disk are wasted, the
computation cause by these redundant samples is relatively cheap since the shadow ray is
guaranteed to miss the luminaire and hence can save the expensive computation of shadow
ray intersection.
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Figure 3.8: Cylindrical Luminaire

3.1.6 Cylindrical Luminaires

Consider the cylindrical coordinate system UVW as in Fig. 3.8. The cylinder can be
defined by (0 < 9 < 27,0 < w < W, ) in cylindrical coordinate system and the visible

region is (0 < ¥ < Ymaz, 0 < w < Winag, 7).

1 1
Case 1: pl(.fﬂl) = E = W
max

T = (271'61, wmaw§2, 7')

where £ is in cylindrical coordinate system.
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I
B
A Cc
U + - SN/

Figure 3.9: Decomposition of Cylindrical Luminaire

1 1
. I_ —
Case 2.t pofa’) = g7 = 7——.

T = ('(/Jma:célawma:cfbr)

Case 3 and case 4 : decomposition of the visible region A”.

The visible region of a cylindrical luminaire in Figure 3.9 can only be A+(B-C) or
A+B+C. If (B-C), we just sample B and waste the sample when it is in C. Note that the
shadow ray to a sample in C is not necessary because we know in advance the ray will miss

the luminaire.

A and C are regions within a disk bounded by —v! < 1 < 4! Assume the disk

maxr mazx-*
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with radius 7 is on UV, centered at the origin. Then A is bounded by cos;,,, < u <1

and —vr? — u? < vv/r? —u2. To sample A, we can use pi(z') = 4,

VirZ—u?
A = / / dvdu
oS P! an 4 —VIZI—u?

U
_ 2 _ .2 2 s u=1
= uVr?—u?+r°arcsin ; lu=cos ! ..

z(= (i,v,0)) can be computed by the numerical inversion of the following two formulas.

6 = [ s

08 wmam

VrZ—u?
= / / p(u,v)dvdu
cos ! VrZ—u?

max

VrZ—u?
= / / Ndvdu
cos ! rz—u

mazx

—  _urSr2 g2 2 i
= A’u r? —u? + r®arcsin — |u Coswmw

¢ Iy o
2 fm g

VrZ—a?

o+ Vr?—a?
2v/72 — 42

% can be solved by the numerical inversion and 0 = (22 — 1)v/r? — 2.

Figure 3.10 has one viewing ray for each of the 2002 pixels. The average execution time

and the time as a fraction of the time taken by case 1 from 10 trials are in Table 3.1.6.
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Figure 3.10: Sampling a cylindrical luminaire with 1 sample per pixel.

1 . 1 1
pi(z’) = i T —— Right: pso(z') =

= an = .
2T Wimaz A VmazT Wmaz

‘ Cylindrical Luminaire H Case 1 ‘ Case 2 ‘

Time (sec) 162.8 | 174.32
Time / Time(Case 1) 1.00 1.07
. . S .. Time
Table 3.5: Execution time of cylindrical luminaire and —————.
Time(Casel)

3.1.7 Tabular Luminaires

Left:

A TV screen can not always be treated as one big rectangular luminaire since the color

change has an impact on the nearby object. Similarly, a clear sky dome, with maximum

radiance contrast over 30 [53], should not be simulated as a luminaire with constant radiance.

When computing the direct lighting, a TV screen can be treated as a collection of pixel

luminaires while a clear sky can be discretized and treated as a group of luminaires, but

obviously this is not efficient because the coherence among individual luminaires is not

considered.

A better approach is to construct a hierarchy such as a Mip map [85] or a summed-area
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table [16], and use the coarsest representation whenever possible. Note that the solid angle
and the projected solid angle from a rectangular luminaire can be analytically computed
as in Section 3.1.2, which makes possible of close estimate of the direct lighting from each

Mip map cell for a TV screen.

3.2 Sampling Strategies for Non-diffuse Environments

If fra(z,,9") is the only dominant term in f,)(z,%, %" )Ex(z', —v') cos 6 and it is rep-
resented by a Phong BRDF [41, 66] or a Gaussian Model [78], then an effective p(¢') ~

fT)\('Ta ?ﬁ, szl) can be derived.

If only one term dominates each time, the weighted quasi-Monte Carlo methods in
Section 2.2.3 can choose samples from each term in its local coordinate system. How-
ever, generally in a non-diffuse environment choosing a p(¢') with fast convergence rate is
very difficult because the different local coordinate systems make the combined behavior of
fralz, ¥, ") Ex(z', —9") cos dwyy hard to predict [66].
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Figure 3.11: Polar graph of luminous intensity.

3.3 Luminaires and Imposters

Due to complexity and efficiency considerations, objects are sometimes modified and
often simplified. The simplified object can be thought of as an “imposter”. An example of
an imposter is an object with zero reflectivity that is shaped like the original object and
emits light in exactly the same distribution and intensity as is reflected from the original
non-emitting object [67]. This light emitting imposter would be indistinguishable from
the original light reflecting object. The application of imposter objects appears frequently
in computer graphics as special cases but the use of imposters have not been formally
justified. In this section, we present several examples of imposters, paying special attention

to imposter objects for luminaires.

A luminaire is often specified by its shape and luminous intensity (which defines the
luminous flux per unit solid angle as explained in Appendix A) [52, 35, 32]. The luminous
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intensity of a luminaire can be represented as a polar graph (luminous intensity distribution
curve), which shows a typical distribution curve of a point on the luminaire at a particular

plane, in Figure 3.11.

In this section we discuss imposter objects for luminaires which are used to make direct

and indirect lighting computations more efficient.

3.3.1 Imposters with Simplified Luminaire Specification

In computer graphics the lighting computation often assumes the luminaire has a simple
geometry such as a point, a sphere, a rectangle, and has a luminous intensity distribution
similar to a Phong distribution: kcos”™ @, where k is a constant and  is as illustrated in
Figure 3.11. If N = 1, the luminaire is perfectly diffuse [74, 67, 66]. These luminaire
imposters can sometimes be very different from a real luminaire, but their use has been
widely accepted in realistic rendering. Figure 3.12 replaces a luminaire with two emitting
cylinders and fixtures by a rectangular luminaire imposter in the lighting computation. In
the geometry simplification method suggested by Rushmeimer et al. [58], groups of objects

are replaced by a box.

The luminaire imposter helps speed up the lighting calculation, but the luminaire dis-
played in the image must be in its original representation. For example, if a incandescent
lamp is in an image, the lamp should be seen in its true shape with the filament in order
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Figure 3.12: An imposter of rectangular luminaire for lighting computation.
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to be realistic. In an object-oriented design, this is achieved by associating two intersection
tests with a luminaire, one for the viewing ray and the other for the shadow ray [79]. How-
ever, the shading on the fixtures in this approach would be wrong because the imposter can
result in noticeable shading difference on nearby objects. To fix this, we ask the shadow
ray to see the true luminaire when an object is close to the luminaire. This is similar to
Rushmeier’s strategy of not using the simple environment inside a threshold radius [58].
This method can be generalized to incorporate multiple representation for an object. For
example, the hierarchy suggested for a TV screen or the sky in Section 3.1.7. In zonal
methods, combining (energy-receiving) elments and (energy-releasing) patches is a typical
example of two-level representation [13, 12] while the hierarchical algorithm is an example

of multiple resolution [29, 26, 2].

To compute the color change due to an imposter at a point or in a pixel is difficult since
it involves the computation of the difference between two high dimensional integrals with
different domains (the shape of the luminaire) and integrands (the luminous intensity of the
luminaire). Yet, to decide the accuracy of an imposter is more complicated than computing
the color difference, because human visual system does not see the absolute radiance [40, 7).
Furthermore, since images are not compared side-by-side, the “accuracy” of an imposter
depends on how humans interpret the visual cues to verify the validity of an image. Because
of this complexity in human perception, an effective objective measure of the validity of an

imposter will be difficult to derive.

Modification schemes similar to luminaire imposters are widely used in image synthesis,
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for example objects with simplified reflectance functions and objects stored at multiple
levels of resolution [21, 27, 80]. Another typical imposter example is to change the physical
behavior. For example, non-emitting objects in zonal methods can emit the same amount

of light as they would reflect [25, 63, 29].

3.3.2 Imposters with Extra Information

In a daytime indoor scene, the dominant luminaire would be the sun (assuming it is
visible). Without predetermined knowledge of visibility in the environment, the direct
lighting is carried out by sending shadow rays to the sun. Instead, if we use the luminaire
imposter which includes the sun and the knowledge of the window frame, we can screen an
object to avoid sending shadow rays if the object cannot see the sun through the window. A
similar example is a luminaire imposter for a lamp with built-in knowledge of its surrounding
lamp shade as in [59]. This extra information in an environment with multiple luminaires
can help to derive a p.d.f. whose samples converge faster since a luminaire, which is invisible

to the object of interest, will not be selected.

3.3.3 Imposters on a virtual domain

In lighting computation, a new geometric shape in a luminaire imposter corresponds to
a new domain in surface area. Similarly, the modification can be performed on the domain
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Figure 3.13: Nusselt analogy - the projected solid angle of an object is equal to the area
being projected on the plane perpendicular to the normal vector at the illuminated point.

of solid angle, i.e. /Q f(z)dx =~ Z f(x). A special subdivision scheme to transform the
Q

curved surface of solid angle into planes is the hemicube [11], i.e. replacing a unit sphere

by a unit box. An element in a hemicube is the smallest unit in approximation; if the

projected luminaire covers the center of a element, the whole element is assumed to be

covered; otherwise, the element is assumed to be totally uncovered.

The third integration domain in lighting computation is integrated over cosfdw. One
special subdivision scheme which can transform this non-intuitive integration domain into
a plane is the rectangular grid suggested by Sillion [70]. In this subdivision, the projected
solid angle /Q cos fdw of a luminaire is approximated by the product of the number of

elements and %, where N is the total number of elements.

A different subdivision scheme for cosfdw is to apply Nusselt analogy [68, 11], i.e.
cos fdw equals the projected area of dw on the plane P perpendicular to the normal vector
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_ bounding rectangle
bounding box

luminaire

Figure 3.14: Subdivision Scheme for the domain over cos fdw.

at the illuminated point as shown in Figure 3.13. Note the projected area can never exceed
the unit circle. The subdivision scheme for this plane is illustrated in Figure 3.14 and is as

follows.

1. Give a bounding box of the luminaire. The bounding box can be a volume for a 3D

luminaire or a 2D shape for a planar luminaire.

2. Project the bounding box onto the plane P.

3. Compute the axis-aligning bounding rectangle of the projected bounding box.

4. Divide the bounding rectangle into square grids and treat each grid cell as the smallest

element in the approximation.

Lighting estimation in the integration domain over cosfdw is effective in a diffuse envi-
ronment because of the dominant term cosf. The subdivision over the plane P is also
suitable for specular surfaces because adaptive subdivision in a square cell is straightfor-
ward and the corresponding bidirectional reflectance-distribution function f, on P can be
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computed quickly, f,(8;, ¢i; 0r, dr) = (05, i;cos™ /1 — 22 — 2, tan™" %) To compute the

corresponding incident radiance from a luminaire requires sending rays from the illuminated

point toward (6,, ¢,,1) in spherical coordinations.

3.4 Summary

The major contribution of this chapter is a thorough discussion of direct lighting compu-
tation in a diffuse environment. The shapes of real-world luminaires are more complicated
than the simple geometries discussed here, but the shading caused by these simplified lu-
minaires is often indistinguishable from the real ones. So, it is plausible to accelerate the
direct lighting computation by replacing the real luminaires by simplified ones (imposters).

Note that the viewing ray should still see the complicated luminaire.

The most complicated integrals in Section 3.1.2 and Section 3.1.3 were solved using
the symbolic algebra package Mathematica[87]. We also tried to apply the same sampling
strategy in case 3 and case 4 to other types of luminaires, but the integrals were too difficult
for Mathematica, so we have chosen approximation schemes. The implementation of these
methods requires special caution, especially when the implementation of a formula takes
tens of lines. Our experience tells that a typing error in this sort of code is easy to make,

and difficult to find.

Which sampling strategy among the four discussed in this chapter should be used? In
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cosf

general, the case 4 with p(¢') = is the best in a diffuse environment because of its

Ptotal
fast convergence rate and small overhead, i.e. ray intersection becomes more expensive.
In a non-diffuse environment, the sampling methods suggested here are valid but can be
inappropriate because they can cause high variance and require many samples. However,

finding a p ~ fea(z,v,%")Ex(z',—1") cos 8 for general environment is very difficult and

remains a research topic.

In path tracing [36], a viewing ray generates one shadow ray for direct lighting and
one reflected/transmitted ray for indirect lighting. In a diffuse environment, this becomes

very inefficient because the number of shadow rays needed dramatically decreases when

cos

1
p(¥'") = = or, when p(¢') = , while the number of reflected /transmitted rays needed
w

Dtotal

remains the same. This suggests a flexible branching scheme, with an uneven number
of shadow rays and reflected/transmitted rays. Such a branching scheme opens two new
questions. The first one is how to predict two numbers n and m - one for shadow rays and

the other for viewing rays. The second question is how to choose m well-distributed rays

among n viewing rays (assuming m < n).

Luminaire imposters which simplify the geometry shape or the luminous intensity dis-
tribution of the replaced luminaire can speed up the lighting computation while still gen-
erating convincing images. The simple luminaires discussed in Section 3.1 are examples of

imposters.
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Direct Lighting from Multiple

Luminaires

The direct lighting from multiple luminaires is the sum of the direct lighting from each

(2]

direct- 11 traditional ray tracing programs the direct

individual luminaire, i.e. Lgjpect = Z L
=1
lighting computation is carried out by explicit summation [15], which requires one shadow

ray for each luminaire. This approach can be computationally expensive because too many

shadow rays are sent to unimportant luminaires which have little contribution.

One possible improvement over the straightforward summation is to predict the contri-
bution from each luminaire, then send shadow rays to the dominant luminaires, and finally

add together the direct lighting from the dominant luminaires and a guessed direct lighting
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from the unimportant luminaires [78]. Predicting the importance of a luminaire in a non-
diffuse environment can be complicated because it should account for the luminaire intensity,
reflectance of the illuminated surface, solid angle of the luminaire, and the visibility [39]. In
this chapter we formalize an approach of designating important/unimportant luminaires,
and present three specific methods that follow this approach [65, 66, 77]. These methods
are aimed not only at efficiently classifying luminaires, but also at efficiently calculating the

contribution from each luminaire.

4.1 Monte Carlo Methods for Multiple Luminaires

The direct lighting from multiple luminaires is the sum of the direct lighting from each
luminaire as in Equation 4.1. The Monte Carlo methods that are used to approximate an
integral can also be applied to approximate summations. A formal argument is given in the

Appendix B to verify the Monte Carlo summation

i L
Lairect = Z Ldi'rect ~ dz'r'ect (4'1)
=1 p]

(2]

where L, ..

is the direct lighting from the ¢th luminaire and can be approximated by
the methods in Chapter 3. p; is the probability of choosing the jth luminaire, and hence

N 3
Zpizlandpj>0ifL5]

irect
i=1

> 0.
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Equation 4.1 means that the primary estimate of the direct lighting from multiple lu-
minaires only needs one shadow ray. This gives us the ability to easily manage the number

of shadow rays and thus to compute the direct lighting to any desired precision.

Any valid p.d.f. can be used to approximate Lg;rot in Equation 4.1, but a good p.d.f.
should be inexpensive to compute and generate samples with fast convergence rate. An
ideal p.d.f. will have its distribution proportional to luminaires’ contribution, i.e. the
effort(number of samples) being put on each luminaire is proportional to its contribution.

In the remaining sections, we examine three different strategies for constructing a p.d.f.

4.2 Constant Method

1
The simplest p.d.f. is the constant one, with p; = N for all 4 € [0, N] [41]. Since this
method is both simple and fast, it is useful for debugging and testing, but its high variance

requires too many samples for rendering a realistic scene.

If we use stratified samples! in the constant method and send N shadow rays for each
viewing ray, then this special case of the constant method is equivalent to the approach of

sending one shadow ray to each luminaire in traditional ray tracing methods.

!Stratified sampling first divides the sampling domain and then chooses a sample from each subdomain
in order to guarantee equidistributed samples. Jittering is an example of stratified samples as discussed in
Section 5.2.2.
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4.3 Linear Method

To minimize the noise caused by a bad choice of p;, we can consult each luminaire to

get a good estimate of Ll forall i € [1, N]. We call this the linear method since its

direct

execution time is linearly proportional to the number of luminaires. This method of setting

p; was first used in [61], and was first theoretically justified in [65].

(2]

direct DY assuming the entire luminaire is

In a diffuse environment, we can estimate L
visible. For example if the luminaire a contributes L, and the luminaire b contributes

L
Ly when unblocked, then the probability of choosing the luminaire a is ﬁ whereas
a b

Ly

—. L Ly, luminai i h likely to b
Lo+ Iy o > Ly, luminaire a is much more likely to be

choosing the luminaire b is

chosen.

The linear method is similar to a generalized form of Ward’s method [78]. In Ward’s
method, separation of important and unimportant luminaires means using two summations
to approximate Lg;ect, and the important luminaires are equivalent to the luminaires with

large p.d.f.

Figure 4.1 has 100 rectangular luminaires sampled by the linear method, where the

direct lighting from a luminaire is estimated by f(x,v,¥")E(z',v") / cos fdw' as the
Vi €Qyy

case 4 in Section 3.1 and each pixel has between 3 and 10 samples in this case.

Implementing the linear p; code was trickier than we expected. We implemented a

(2]

direct

method for each type of luminaire that estimated L for a particular z and f,. If the
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Figure 4.1: A demonstration of the linear method.

entire luminaire is below the tangent plane at x, then the estimate for L([ﬁr cct Should be

zero. An easy mistake to make (which we made), is to set L([ﬁr cct t0 zero if the center of the
luminaire is below the horizon. This will make p; take the one value that is not allowed:
zero. Such a bug will become obvious in pictures of spheres illuminated by luminaires that
subtend large solid angles as in Figure 4.2, but in many scenes such errors are not noticeable

(the figures in [61] had this bug, but it was not noticeable).
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Figure 4.2: Demonstration of the artifact caused by incorrect p;. Left: correct image. Right:

wrong image with discontinuous shading transition due to p; = 0 when L([;z]mct > 0.

4.4 Spatial Subdivision Method

In the linear method, choosing a p.d.f. based on estimated contribution requires querying
every luminaire in the scene. This is acceptable for many scenes, but if NV is large (thousands
or millions), even that might be too slow. In such scenes at most a few hundred luminaires
(but usually only tens of them) will contribute significantly to the radiance at any particular

point.

A possible way to speed up the linear method, while still maintaining a good p.d.f. is
to estimate the contribution from unimportant luminaires coarsely. Suppose the luminaires
are already divided into two groups according to their potential contribution. Then the
estimated direct lighting from the more important group can be accurately approximated
by the linear method and that from the other by the constant method with a few queries
to estimate the average brightness of the group. Coarse estimation of the less important
group is sufficient because this group has little to contribute and the estimation error it can
introduce is limited.
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To decide which luminaires are important for a particular z is a difficult task. As pointed
out by Kok and Jansen [39], a luminaire that is more important to the color of z than most
other luminaires is likely to be more important to the neighboring points of z. This implies
we can use a spatial subdivision scheme to precompute a group of more important luminaires
for each spatial cell in the spatial subdivision structure. For a particular cell a luminaire
is put in the more important group if it might contribute more than a threshold average
spectral radiance to a diffuse surface within the cell. A conservative way to determine
whether the maximum potential contribution of a luminaire is above the threshold is to

evaluate Equation 3.1 or Equation 3.2 with g, and cos @ being set to one and f, to finez,

p max

which equals to in a diffuse environment where p,,4, is the maximum reflectance
among all objects and 0 < pier < 1. If fi4z is much above one as on a specular surface,
a more involved strategy would be needed. Figure 4.3 illustrates the basic idea with a set

of luminaires and their regions of importance. The stratification of the scene into boxes is

arbitrary.

An easy way to choose the subdivision cells is simply to use the leaf cells of the con-
ventional subdivision structure (e.g. the octree leaves of a Glassner style octree used for
ray intersection acceleration [22]), and maintain a separate important group at each leaf.
This is a finer than needed subdivision for scenes where the number of objects is much
greater than the number of luminaires. An advantage of this is that no luminaire lists
need to be constructed for empty cells, and that the characteristics of reflective objects can

be used to construct the lists. Instead, we have implemented a separate light octree that
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Figure 4.3: Subdivision of space. A luminaire is a member if it has the potential to con-
tribute to a region.

recursively subdivides itself until each leaf is at a maximum allowed depth or when the size
of the important group for that cell is below a specified limit. The depth and size limits
are similar to those in a conventional octree, and their values are even less well understood
so far. To avoid excessive subdivision, we check to see if the minimum contribution of an
important luminaire to a cell is above the threshold. If all important luminaires are thus
determined to be in the more important group for any possible descendant of that cell, we

do not subdivide.

Another difficulty in building the light octree is what to use for the average radiance
threshold. For our program, we assume that we know what spectral radiance distribution,
Lyhite, would map to white on the display device. We set the radiance threshold to be some

fraction of Lypite>. Because our display device has eight bits per channel, we usually make

% Lwhite should be chosen according to a perceptual viewer model, such as the model implemented by Tum-
blin and Rushmeier [73, 7]. Such models will become increasingly important as physically based rendering
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the threshold a few percent of L. Such a threshold will ensure that any luminaire that
can change the pixel color more than a few intensity steps will be included in important
group. If Lypite is chosen correctly, then the sum of contributions of luminaires should be
no more than Ly p;se, and thus the number of important luminaires should be less than one

hundred for most scenes.

To characterize important versus unimportant luminaires, we put a intensity bounding
box around each luminaire and compare the box against the cell; if the box overlaps with
the cell, then the luminaire is treated as an important luminaire. To avoid an important
luminaire being overlooked, the intensity bounding box must contains the isosurface defined
by / frLcos¥dw' = T where T is a predefined threshold. In the absence of any knowledge
of the material and viewing direction, we must assume f, = fyqz, cos?¥ = 1, and that the

Pmaz . . .
in a diffuse environment where

whole luminaire is visible as in the worst case. finqz iS
Pmaz 18 the maximum reflectance in the environment. In a non-diffuse environment, fi,.

is the maximum f, whose direct lighting is computed separatly from indirect lighting [66].

Figure 4.4 shows four pictures of a pair of sphereflakes. FEach sphereflake is composed
of 7381 spheres. In the three images with 7381 luminaires, the light octree was used. As
expected, the one sample case has a large variance, and the forty sample case is fairly
smooth. Notice that both of the 10 sample cases (with 1 and 7381 luminaires) have visible
noise. This implies that both cosine and visibility errors cause noise in the 7381 luminaire

case. The 7381 luminaire figure with ten samples took less than twice as long as the one

becomes more popular.
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Figure 4.4: Top left: One luminaire, 10 samples per pixel. Top right: 7381 luminaires,
1 sample. Bottom left: 7381 luminaires, 10 samples. Bottom right: 7381 luminaires, 40
samples.

luminaire case with ten samples. This means the overhead of choosing the ray using the
light octree does not swamp the cost of sending the shadow ray, even in this extreme case
where half of the objects are luminaires. In less pathological scenes, the light octree should

be smaller relative to the number of primitives, and performance should get even better.

4.4.1 Intensity Bounding Box Construction for Spherical Luminaires

The isosurface fr,qz / Ldw' = T from a perfectly diffuse spherical luminaire with radius

d2 — 2
d

r is a sphere with radius d as in Figure 4.5. d satisfies fpapL27(1 — ) =T and
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T
boundi ng sphere

Figure 4.5: Intensity bounding box of a spherical luminaire.

hus, d r’
thus = .
, 1 - (1 - 27TL7):ma:v )2

A perfectly diffuse luminaire has a constant radiance L (so radiant intensity L cos #') in
a direction ¢, where #' is the angle between the surface normal of the luminaire and ¢'. For
a non-diffuse luminaire, we have the radiant intensity I, and from which we can derive a
perfectly diffuse luminaire whose radiant intensity is larger or equal to I, i.e. I(¢") < Lcos#'.

Since I is smooth, continuous, and often symmetric, L can be approximated closely by the

1(¢)

maximum of ;
cos 0

at a small number of sample directions. This approach can effective

approximate the incandescent lamp, because which is generally not very directional.

4.4.2 Intensity Bounding Box Construction for Planar Luminaires

A planar luminaire can be diffuse like a typical flourescent ceiling light. Suppose

!
cost . . . Lo )
I E in Equation 3.2 is a constant, which is a reasonable assumption because the
T, —

K3
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Figure 4.6: Intensity bounding box of a planar luminaire which is centered at the origin
and facing X axis.

intensity bounding box is usually much larger than the luminaire, then the isosurface
FmazL / dw' =T becomes fqzLcosd’' A = Td?, where A is the area of the luminaire and
d? = ||zt — z|?>. Suppose the luminaire is centered at the origin and faces the positive X
axis as in Figure 4.6. We can construct a intensity bounding box defined by 0 < z < T4z

and —Ymar < Y, 2 < Ymaz that contains the isosurface.

LA LA
Since d = \/ fm%cos 0", Tynaz occurs when 6 = 0, and Ty = \/fm% Ymaz

occurs when dsin #' is maximum or

o1/ ImazlA cos 0! sin 0 = 0
1o, 3
\/M(—% cos™2 0'sin? 0" + cos2 ') = 0

0’ = tan—' /2

So, ' = 0.304 and v, = 0.2994/ M. If the luminaire is close to perfectly diffuse,
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Figure 4.7: Creating a new intensity bounding box after rotating and translating the original
intensity bounding box.

1(¢)

then L can be approximated by the maximum of o
cos

at some sample directions.

If the luminaire is not at the desired orientation, we rotate the eight corners of the
intensity bounding box such that the imaginary luminaire agrees with the real luminaire
and then create the actual intensity bounding box aligning with the coordinate system from

the rotated corners as in Figure 4.7.

A planar luminaire can also be directional like a car headlight. In this case we assume
that they are Phong luminaires, i.e. I = kcos™ ' (so L = kcos™¥149'), where k is a
constant. Again assume that the luminaire is small relative to the intensity bounding box

A / Ak
and the isosurface is defined by d = \/ fm%k cos™N @'. Then z,00 = fm# occurs when

2
#' = 0 and after the similar derivation as in the diffuse case, ymqz Occurs as §' = tan™! \/ N
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4.4.3 Intensity Bounding Box Construction for Cylindrical Luminaires

Suppose that the cylinder is defined by —y. < y < y. and radius r. Approximate the
cylinder by its cross section at £ = 0. Then x4, and ¥4, have the same formulas as for

the planar luminaire in the previous section, and zpya; = Tmaee because of the symmetry.

4.5 Summary

The basic rationale behind the direct lighting calculation methods in this chapter is that
direct lighting should not be calculated to a higher accuracy than necessary. This is very
similar in concept to Kajiya’s argument that we should not expend much work for deep
parts of the ray tree [36]. It is not always true that one shadow ray per viewing ray is
optimal. For example, the 100 luminaire case, one shadow ray is better than 100 shadow

rays, but two or three might be better still. This issue requires further investigation.

Equation 4.1 represents Lgjrec; with one summation, but this is not necessarily the
optimal solution. If luminaires are grouped together, it is desirable that they have visibility
coherence because the result from a shadow ray represents all of them. Since the visibility
is too expensive to precompute, the best we can probably do is to make the maximum
possible error in the estimation of a luminaire proportional to its potential contribution.
In the Section 4.3, Lgirect is divided into two integrals, one for important luminaires and,
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the other for unimportant luminaires - to avoid the large estimation error caused by the

unimportant luminaires.

We have presented techniques for constructing probability spaces on luminaire surfaces
for direct lighting calculations. We have found these techniques very useful for complicated
scenes. The major limitation of the work is that it does not take into account the geometry
term or the BRDF. Extending the methods to include these terms is possible, but is not

easy.

The linear and the light octree methods are useful only for scenes with a large number of
luminaires. Such scenes are becoming increasingly important. In outdoor scenes, especially
in urban settings, scenes with thousands and even hundreds of thousands of luminaires are
commonplace. In opera and theater applications, hundreds or thousands of luminaires are
typical [69]. In infrared scenes, almost all surfaces are luminaires, so something such as the
light octree is crucial. These methods also make it easy to use luminaires defined by many
polygons or parametric patches. No matter how many patches define a light bulb surface,

it will receive only one shadow ray.

The objects which have strong reflected light are suggested to be incorporated with lumi-
naires into direct lighting computation because they can also cause sharp radiance change
on other objects [39, 6]. The implementation is generally achieved by first categorizing
bright emitting luminaires and reflected objects as light sources, after the zonal methods

has computed indirect lighting. Then in the viewing phase, the direct lighting from the
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light sources are computed. The methods presented in this chapter are very helpful for this
approach because the number of light sources can easily go up to the range of hundreds or

thousands.
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Sample Point Generation Strategies

Distribution ray tracing is formalized as a high dimensional integral and solved by quasi-
Monte Carlo methods as discussed in Chapter 2. The number of quasi-random samples
required in distribution ray tracing to reduce the error to a visually acceptable level may
range from about ten to a few thousands per pixel depending on the complexity of the image.
In this chapter we discuss the sampling issues which are closely related to the efficiency of
quasi-Monte Carlo methods. These cover some applications of integration theory, existing
sampling methods, desired sample set properties, a new sampling scheme which can generate
samples equidistributed in any subdomain, and a supersampling framework which accounts
for the complexity of the pixel, the limited dynamic range of the display medium, and

human perception.
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5.1 Analysis of Sample Behavior

The effectiveness of a set of samples in estimating a pixel color depends on the spatial
distribution of the samples. For example, a pattern with samples that had several “clumps”
might provide a poor estimate because the clumps happen to occur in regions with values
far from the expected value. Since distribution ray tracing is computationally expensive,
reducing the number of samples needed for a target accuracy is desirable. Tools from
statistics, signal processing, and integration theory have contributed to the understanding
of what properties a set of sample would have. People in mathematics treat all the quasi-
random sample methods and their convergence as in the field of number theory. While each
of these tools has its unique value in adding to our understanding of sampling, none of them

makes this understanding complete.

5.1.1 Statistics and Sampling

The Monte Carlo methods in Section 2.2.2 transform an integral into a statistical ex-
pected value, which is then estimated using a finite number of random samples. Quasi-
Monte Carlo methods use the same formula as Monte Carlo methods but with quasi-random
samples. The behavior of Monte Carlo methods are well understood from statistics, but
statistics can not be straightforwardly applied to quasi-Monte Carlo methods because the
quasi-random samples are not random variables.
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5.1.2 Signal Processing and Sampling

Estimating the pixel color via quadrature formulas can also be realized as the reconstruc-
tion of an image signal via sampling. Theoretically, a continuous signal with band-limited
frequency can be properly reconstructed with a sample rate greater than twice the highest
frequency component in its spectrum [23]. In computer graphics, edge and texture can
make the pixel color a discrete continuous signal with unbounded frequency. The nature
of high frequency in image synthesis explains the occurrence of aliasing artifacts, such as
jaggies and Moire patterns [21, 23]. Signal processing also predicts that the aliasing can
be reduced by pushing the error into high frequencies as being used by stochastic samples
[15]. However, signal processing does not help us predict the absolute quality of estimation

to be expected from a given sampling pattern.

5.1.3 Discrepancy

Integration theory suggests that the convergence rate from a set of samples is closely
related to the discrepancy [71, 62, 19], which is a measure of equidistribution. Ideal equidis-
tribution means that the fraction of the samples in each subdomain is equal to the fractional
measure of that subdomain. With a finite number of samples, ideal equidistribution is im-

possible.

Quadrature formula shows that an integral over a domain equals to the integral over the
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n
sum of all the subdomains, i.e. / f(z)dz = Z / f(z)dz. If all samples have the same
Q =17
weight, then samples are equidistributed if there exist a subdivision such that all Q; are

1
compact and close to —. Otherwise, the samples are not equidistributed.
n

On the unit square, two widely used definitions of discrepancy [71, 19] are:

1. L*°-discrepancy Dy = maximum of |% — zy| for ¥(z,y) € [0,1]?

1 1
2. L2-discrepancy Ty = \//0 /0 |% — zy|2dzdy for Y(z,y) € [0,1]?

where N is the total number of samples and n is the number of samples inside the region
[0,z] x [0,y]. The term |% — zy| is called the local discrepancy at (z,y). The discrepancy,
which is within [0, 1], becomes smaller as the samples are more equidistributed. The axis-
aligned rectangle in local discrepancy test has been extended to disks [46] and random-edges
[19] in an effort to make discrepancy more valuable for graphics application. The local
discrepancy in random-edge discrepancy is the difference between the area of a unit square

above a random line and the fraction of sample points above the same line.

The estimation error from a set of samples has been shown to be bounded by a linear
combination of the discrepancy and the variation (defined below) of the estimated function
[17, 71, 1]. This suggests that discrepancy might be used to rate the quality of sample sets.

In one dimension, we have the following theorem:

Theorem 1 (Koksma) If f is a function of bounded (finite) variation V(f) on the unit
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interval I and x1,---,zN are points in I with L°°-discrepancy Dy, then

1 & L
¥ S~ [ S0 < V(7D (5.1)

N

where the variation V(f) is the least upper bound of Z | (&) — f(&—1)| for any partition
i=1

0,61, +,&Nn such that 0 =& < & < -+ <&y =1. Basically, the variation V(f) is the

maximum total (absolute) change of a function after being discretized into N + 2 different

points, including the end points.

In two dimensions, we have the following theorem:

Theorem 2 (Zaremba) If f is a function of two dimensional bounded variation Vx y (f)

and of one dimensional bounded variations Vx(fy=1) and Vy(fz=1) on the unit square I,

and (z1,91), -+, (TN, yN) are points in I with L*°-discrepancy Dy, then
1 X 1 rl
|N2f($iayi)_/0 /0 flu,v)dudv| < Vxy(f)Dnx,y + Vx(fy=1)Dnx + Vv (fz=1)Dn,y
i=1

(5.2)

where Dy xy is Dy in XY domain. Dy x and Dyy are Dy in X and Y, respectively.
N M

Vx,y (f) is the least upper bound of » ° > | f (i, m:) — f(&im1,m) — f (&, mim1) + F(Eim1,miz1)]

i=1j=1
among all possible partitions 0 =§) <& < - <&v=1land 0=ny<m <--- <7y =1.
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Similar formulas for both one dimension and two dimensions can also be established with

Tw [28].

Theorem 2 cannot be directly applied to predict error in image synthesis because the
image function in computer graphics contains edges and thus has unbounded variation
Vx,y in Equation 5.2. However, the discrepancy might still be helpful in predicting the
convergence behavior from a sample pattern [62]. Discrepancy gives an objective measure
of the ability of a sample set to calculate images with features similar to rectangles. This

gives motivation for Mitchell’s introduction of edge based discrepancy [46].

5.2 Sampling Methods

A sampling method should generate samples that estimate an integral with as small
an error as possible. Sampling methods from integration theory have developed different
numerical rules to generate sample sets of extremely low discrepancy [83, 89, 1], but these
rules create deterministic sample sets which are prone to aliasing artifacts when used in
image synthesis, because each pixel is sampled using the same pattern. On the other hand,

methods from computer graphics generate stochastic samples with higher discrepancy.

Theorem 2 shows that 1D discrepancy contributes to the upper bound of the estimation
error in two dimensions. This implies that perhaps a good 2D sample pattern should
also be effective in one dimension, and helps to explain the behavior of N-rooks samples as
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discussed in Section 5.2.2. A natural extension to higher dimension of the same idea suggests
the importance of the low discrepancy in any lower dimensional subset of the domain and

motivates us to the new multi-jittered sampling methods described in Section 5.2.3.

5.2.1 Methods from Integration Theory

Three representative sampling methods from integration theory are shown here. Since
the methods from integration theory are meant to approximate a function once, these

methods give only one sample pattern for a given number of samples.

Fibonacci Number Sequence : The Fibonacci sequence is defined as F; =1, Fy =1,

and F,,, = F;,_1 + F,_o for m > 3. In a square domain, the kth sample is

@y = (A (E Doy

where N is the total number of samples, 1 < k£ < N, and {s} is the fractional part of s.

Irrational Number Sequence : Suppose 61,---,8, are d irrational numbers that are
linearly independent over the rational numbers, i.e. @161 + --- + agbg # 0 for any rational

numbers «aj,- - -,a4. The kth sample over the hypercube 0 < z; <1, for all 7 € [1,d] is

(1'15 T >wd) = ({kal}’ T {ked})
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Figure 5.1: From left to right : Fibonacci number sequence, irrational number sequence,
Zaremba-Hammersley sequence.

01 = /2 and 6, = /3 are one possible choice in a square domain.

Zaremba-Hammersley sequence : The kth sample over the hypercube 0 < z; <1,

for all i € [1,d] is

k-1

(x1,-++,1q) = (T,?ﬁpl(k — 1), ,%p,_,(k—1))

where P; is the ith prime, e.g. P; =2 and P, = 3. If the representation of m base r is
m=a,r" + -+ a;r* + - -- + ag where a,, # 0, then

1 i 1 1
r(m) = (ap mod ’f’); + -+ ((a; + %) mod r)m + -+ ((ap + n) mod r)m

The numerical experiments have shown that the Zaremba-Hammersley sequence has the
lowest L2-discrepancy T among many commonly suggested methods from integration the-
ory, including the other two methods in this Section [83, 89, 1]. The sample patterns with

9 samples from each of these sampling methods are in Figure 5.1.

The major obstacle when repeatedly applying these methods is the aliasing artifact
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| Number of Samples | 5 | 18 | 55 | 144 | 610 | 1597 |
Fibonacci Sequence | 0.0701 | 0.0273 | 0.0052 | 0.0008 | 0.0006 | 0.0002
FS After Operations | 0.1121 | 0.0650 | 0.0484 | 0.0352 | 0.0432 | 0.0321

Table 5.1: Average L2-discrepancy from Fibonacci Sequence with and without geometry
operations from 100 trials.

caused by the deterministic samples. In order to eliminate aliasing, we introduced random-
ness into the existing patterns via simple geometry operations such as shifting, rotation, and
reflection. Ideally, these operations preserve low discrepancy from maintaining the relative
position among most samples. Unfortunately, experiments with the Fibonacci number se-
quence shows that although the aliasing is removed, the discrepancy increases many times,

as in Table 5.2.1.

It is also possible to randomly and repeatedly use a set of sample patterns which have
low discrepancy values, but to arrange these patterns in order to decrease the number of

patterns required rely on further research.

5.2.2 Previous Methods in Rectangular Domains

Sampling methods for square or rectangular domains, e.g. a pixel or a rectangular
luminaire, have been heavily studied in computer graphics [15, 44, 60, 8]. The most widely
used strategies are random sampling, regular sampling, jittered sampling, Poisson disk
sampling and N-rooks sampling as illustrated in Figure 5.2.
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Figure 5.2: Random samples, regular samples, jittered samples, Poisson disk samples, and

N-rooks samples with 4 samples.

The random sampling method randomly chooses a sample within the domain. Its sim-
plicity makes it theoretically interesting, but such samples have high variance because of

the possibility of random samples to clump together.

The regular sampling method places samples evenly in a regular grid pattern. The

regular samples are equidistributed in 2D, but its regularity can cause aliasing artifacts.

Jittered sampling divides the domain into a set of equal-size cells, and a point is ran-
domly chosen from each jittered cell [14]. The jittered samples are equidistributed in two

dimensions. but are not much better than random samples in one dimension projection.
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The Poisson disk sampling method places samples apart by, at least, a predefined dis-
tance r [15, 18]. To generate Poisson disk samples, we can sequentially create random
samples, and reject a sample if its distance to any previous sample is within . The Poisson
disk samples are designed to avoid clumping, which will improve equidistribution in two

dimensions.

The N-rooks sampling method randomly associates rows and columns such that each row
and each column have exactly one sample [62]. The N-rooks samples are evenly distributed

in both single dimensions separately.

5.2.3 Multi-jittered Sampling Methods in Rectangular Domains

Multi-jittered sampling methods attempt to minimize the discrepancy in every subdo-
main. In a square or a rectangular domain, the multi-jittered samples have one sample in
each bin (like N-rooks samples) and have one sample in each jittered cell (like jittered sam-
ples). An example with 4 multi-jittered samples is shown in Figure 5.3. The multi-jittered
samples can be generated using either of two schemes. One constrains jittered samples to

be N-rooks, and the other constrains N-rooks samples to be jittered.

5.2.8.1 Jittered Oriented Method. This method is capable of creating N by M multi-
jittered samples on a rectangular domain incrementally. It first divides the X domain into
N cells, each with M bins. Similarly it divides the Y domain into M cells, each with N
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Figure 5.3: Multi-jittered samples.

bins. This subdivision creates N by M cells and each cell has M by N bins. Sequentially
one sample is placed in each cell as in jittered sampling such that each bin on X, and each

bin on Y have exactly one sample.

A faster way to generate multi-jittered samples is to first permute bins in each cell, and
then for the (i,7) cell, we put the sample at the jth permuted bin inside the ith cell on X,

and the ith permuted bin inside the jth cell on Y [8].

5.2.8.2 N-rooks Oriented Method. To generate N N-rooks samples, we divide the
domain into N by N cells. Then we independently permute the list (1,2,---,N) twice
into Ly and Ly. The ith N-rooks sample is a random point inside the cell (Lq[i], Lo[i]),
where L;[i] is the ith element in the list L;. If the order of the samples doesn’t need to be

stochastic, then the ith cell can be simplified to (7, L1 [i]).

Multi-jittered samples are N-rooks samples with an extra constraint, i.e. a different
permutation scheme that makes them jittered. Suppose that N M samples are needed. We
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| Number of Samples | 16 | 64 | 100 | 400 | 1600 |

random samples 0.0828 | 0.0433 | 0.0361 | 0.0183 | 0.0086
regular samples 0.05678 | 0.0256 | 0.0234 | 0.0114 | 0.0051
N-rooks samples 0.0498 | 0.0201 | 0.0162 | 0.0083 | 0.0043
jittered samples 0.0497 | 0.0186 | 0.0127 | 0.0046 | 0.0016
multi-jittered samples | 0.0380 | 0.0146 | 0.0083 | 0.0030 | 0.0011

Table 5.2: 2D L%-discrepancy from the average of 100 trials. Each discrepancy needs 10,000
local discrepancy computations.

| Number of Samples | 16 | 64 | 100 | 400 | 1600 |
random samples 0.0863 | 0.0439 | 0.03470 | 0.01739 | 0.00886
regular samples 0.0301 | 0.0106 | 0.00766 | 0.00247 | 0.00055
N-rooks samples 0.0490 | 0.0237 | 0.01943 | 0.00946 | 0.00467
jittered samples 0.0445 | 0.0160 | 0.01144 | 0.00404 | 0.00142
multi-jittered samples | 0.0394 | 0.0146 | 0.01056 | 0.00384 | 0.00138

Table 5.3: 2D L? edge discrepancy from the average of 100 trials. Each discrepancy needs
10,000 local discrepancy computations.

first divide 1,...,NM into N lists, (1,...,M), -+, i+ 1,...,i + M), --- (N — 1)M +
1,...,NM). Choose one number from each list, permute them, and concatenate the new
list to the end of the list L. Continue the procedure until all numbers are exhausted. Then

the 7th multi-jittered sample is in the cell (7, L[i]).

The average L?-discrepancy values of 100 trials from various sample patterns are shown
in Table 5.2. Experiments show that the discrepancy has approximately one percent error
if the local discrepancy is computed at the 10,000 evenly spaced positions, and that this

number decreases as the number of samples increases.

The results in Table 5.2 and in Table 5.3 confirm that multi-jittered samples have
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‘ Sampling Methods ‘ random ‘ N-rooks ‘ jittered ‘ multi-jittered ‘

L*-discrepancy 0.0539/0.203 | 0.0333/0.0778 | 0.0375/0.0674 | 0.0318,0.0410
L? edge discrepancy | 0.0526/0.146 | 0.0378/0.0741 | 0.0384/0.0544 | 0.0352/0.0435

Table 5.4: The minimum and maximum discrepancy values for 16 samples.

low L%-discrepancy and L? edge discrepancy. The instability of discrepancy from regular
samples in these experiments can help to explain that although deterministic samples can be
equidistributed and are effective in approximating an image function, the aliasing artifact

can happen when the image function is correlated to the distribution of the samples.

Every entry in Table 5.2 and in Table 5.3 is an average of 100 trials. The values of
individual trials can vary. For example, in the case of 16 multi-jittered samples, the average
of L2-discrepancy is 0.038 but the actual values are in the range [0.0318,0.0410]. The ranges
from stochastic sampling methods in this section are in Table 5.4. A smaller range means
a sampling method is more stable, and this stability from the worst to the best is random,

N-rooks, jittered, multi-jittered.

In a square domain, the multi-jittered samples, like jittered samples, are most effective
when the number of samples is a perfect square, N2. In the case where the number of
samples z satisfies (N — 1) < z < N2, we can randomly choose x samples from a pattern
of N? samples. However, this can leave a hole in a sample pattern and produce poorly

distributed samples. Instead we decompose z into n? + --- 4+ n2, and use a combination of

2

-, samples. To compute n, ---, ny,, we first find the largest number

patterns with n2, ---, n
ny satisfying n? < z, i.e. ny = [/z], then the largest number ny satisfying n? + n3 < z,
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i.e. ng = [\/z —n?|, and continue the process until n? + --- +n?, = z.

5.2.4 Methods for Other Two Dimensional Domains

Domains other than the unit square appear frequently in distribution ray tracing. For
example, the circular lens and the spherical luminaire both need to be sampled. Simple
rejection methods can generate samples on these domains, but these can be inefficient

because some samples are wasted, and it is difficult to keep samples stratified.

An alternative method is to generate equidistributed samples on a unit square, and
then stretch the unit square to the desired shape/domain. This is sometimes called warping
[86, 64] and does not have the drawback of the rejection method. However, a compact
cell in the unit square might become a strip and the degree of equidistribution might not
be conserved after warping, although new samples may still be uniform. Whether samples
generated directly in the space they will be sampling can improve equidistribution properties

is still a research issue.

5.2.5 Methods for Three Dimensional Domains

In a 3D domain such as Pizel x Time, Cook associates jittered samples on Pixel with
jittered/stratified samples on Time [14]. Mitchell uses a jittered pattern on Pizel and
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then sequentially assign a time sample to each pixel sample such that the new time sample
has (nearly) the maximum distance to all the existing time samples [45]. Note these two

methods only guarantee equidistribution on Pizel and on Time.

In 3D, full multi-jittered samples would be jittered in 3D and projections in XY, Y Z,
XZ, X,Y, Z would also be jittered. Although full multi-jittered samples in three dimen-
sions is probably desirable, we have been able to create only sample sets which are partially
multi-jittered. Suppose that XY Z is the 3D domain of interest, for example, XY is Pizel
and Z is Tvme. Then the following method can generate the samples equidistributed on
X,Y,Z XY, XZ,YZ, but not equidistributed on XY Z. Suppose that N? samples are

required.

1. Generate N2 multi-jittered samples on XY . This gives samples equidistributed on X,

Y, and XY.

2. Divide Z into N cells and each of which into NV bins; place a sample in each bin and

achieve the equidistribution on Z.

3. Create a N by N table with X and Y axes. The integer in each cell represents the
corresponding Z cell. Initialize the table like the left most one in Figure 5.4. This
gives samples equidistributed on XZ and Y Z, because, for any given column or row,
the Z cells are all different. To create this table we start with the first row and shift
it toward the right hand side by one cell every time we move down a row.
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Figure 5.4: The initial table at left gives a set of nearly multi-jittered samples. The middle
table is the initial table after switching two rows whereas the right table is the middle table
after another switch.

‘ Number of Samples 16 256 1600
random samples 0.0716 | 0.01753 | 0.00733
regular samples 0.0757 | 0.02546 | 0.01390
jittered samples 0.0603 | 0.01136 | 0.00320
N-rooks samples 0.0480 | 0.01117 | 0.00444
Cook samples 0.0480 | 0.01051 | 0.00390
Mitchell samples 0.0473 | 0.00721 | 0.00235
multi-jittered samples | 0.0409 | 0.00630 | 0.00197

Table 5.5: 3D L?-discrepancy from the average of 100 trials.

4. Permute columns and rows. Note that the equidistribution is invariant under permu-

tation.

5. Assign a unique bin to the samples with the same Z cell.

The result in Table 5.5 shows that multi-jittered still has the lowest average 3D L? discrep-

1 1 g1
ancy, where Ty = \// / / |% — zyz|2dzdydz  for VY(z,y, z) € [0,1]3.
o Jo Jo

The N-rooks oriented approach can also be used to generate 3D multi-jittered samples.
Suppose N samples are needed. We start with a the sequence 1,---, N and make it into two
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lists L1 and Lo, where L is the same sequence being divided into groups of two numbers,
ie. (1,2),---,(4,i 4+ 1),---, and Lo is the same sequence being divided into groups of three
numbers, i.e. (1,2,3),---,(4,4 + 1,7 + 2),---. Choosing one number from each group in L,
permute them, and concatenate the new list to the end of L. Similarly we can get L), from
Ly and the ith multi-jittered sample would be in the cell (¢, L [é], L} [i]). Note that 2 and 3
are chosen because they are prime numbers. This method can be easily extended to higher

dimension, but it guarantees equidistribution only in one and two dimensions.

5.2.6 Samples in More Than Three Dimensions

In our implementation, the pixel color in Equation 2.4 is modified to:

/ / / . (E(,’C, ’l,b) + Lairect + Lindi’rect) dt dAl dAp
Pizel J Lens JTime

or in full expansion:

Luminaire

/ L(z, ") dwwu] dt dA; dA, (5.3)
Direction

where 1)’ is the direction to luminaire and 9" is the direction to the hemisphere above
x centered at the normal vector at z. Z means the direct lighting from multiple
Lumsinaire

luminaires is the sum of the direct lighting from each of them. Several terms in the integrand
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share the same outer integrals, which means that computationally they share the same

viewing ray.

The direct lighting computation needs 8D samples in Pizel X Lens xTvme X Luminairex
Direction whereas the indirect lighting computation needs 7D samples in Pizel X Lens X
Time x Direction. Traditionally, samples in different domains, Pizel, Lens, Time, and
Direction, are chosen independently, but this approach does not guarantee that samples

are equidistributed in any lower dimensional projection of the domain [14, 45].

Figure 5.5 shows three cases. Case 1 shows that the effectiveness in detecting a feature
boundary perpendicular to X relies on the sample equidistribution on X; case 2 shows
that the effectiveness in detecting a feature boundary parallel to X relies on the sample
equidistribution on Y; and case 3 shows that effectiveness in detecting a feature boundary
parallel to the diagonal relies on the sample equidistribution on XY. Here X and Y can
also be thought of as a multi-dimensional projection of domain. The following list gives

several practical examples to demonstrate this idea.

1. X = Pizel and Y = Lens

Case 1 happens when the object is in focus, case 2 happens when the size of the pixel

is relative small compared to the focal length, and case 3 happens otherwise.

2. X = Pizel x Lens and Y = Time

Case 1 happens when a pixel only covers stationary objects, and case 3 happens
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X Y XY

Figure 5.5: The projection of domain whose equidistribution is desired. Case 1 (left):
equidistribution in X is important for a feature boundary perpendicular to X. Case 2(Mid-
dle): equidistribution in Y is important for a feature boundary parallel to X. Case 3
(Right): equidistribution in XY is important for a feature boundary not parallel to X or
Y.

otherwise.

3. X = Luminaire and Y = Direction
Case 1 happens when luminaires cover a small solid angle, case 2 happens if there is
only one luminaire, and case 3 happens otherwise.

4. X = Luminaire and Y = Time

Case 1 happens when the lighting condition remains unchanged, case 2 happens when
there is only one small luminaire whose intensity changes over time, case 3 happens

otherwise.

5. X = Pizel x Lens and Y = Luminaire x Direction

Case 1 happens when all luminaires cover small solid angle and all are blocked or

unblocked, and case 3 happens otherwise.

In order to examine equidistribution in all projects of the domain, we choose samples
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from a five (emission) dimensional cube, a seven (indirect lighting) dimensional cube, and a
eight (direct lighting) dimensional cube, which are then warped to the actual domains. Note
that these three domains share the same five dimensional domain Pizel X Lens x Time.
Ideally we want to generate multi-jittered samples in these high dimensional domains, but
the number of constraints in multi-jittered sampling explode exponentially, i.e. the number
of constraints is 2 — 1 in n dimensions. Instead we can only make sure some particular
projections of subdomain have equidistribution by repeatedly applying the 2D and 3D

multi-jittered sampling methods.

5.3 Adaptive Supersampling

Supersampling means taking more than one sample within a pixel, and adaptive super-
sampling means taking extra samples based on the result from previous samples. Adaptive
supersampling methods can be with subdivision, which places extra samples only in regions
with high variance [84, 36, 54, 23, 24|, or without subdivision, which evenly distributes

extra samples over the pixel [43, 18, 55, 35, 44, 38].

In subdivision supersampling, if the variation of the estimates in a region is over a
predefined threshold, the region is further sampled. Subdivision supersampling methods are
effective if the initial samples can reliably detect regions that require extra sampling. On the
other hand, supersampling without subdivision uses the initial samples only to predict the
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overall pixel complexity, instead of subpixel complexity as in subdivision supersampling.
The conservative approach makes non-subdivision supersampling the choice in rendering
complex realistic scenes because the information delivered by a few samples is too sparse

to decide where to concentrate samples in the 5 — 8 dimensional space.

The prediction of the total number of samples relies on several factors, namely the pixel
complexity, the sample convergence rate, the nonlinear response of human vision, and the
limitation of the medium. All the existing methods are based on contrast or on the pixel
complexity such as variance or the absolute estimation error [43, 55, 18, 44]. In this section,
we discuss the existing non-adaptive supersampling methods and their weaknesses, and then

present a supersampling framework which can take all these factors into account.

5.3.1 Existing Adaptive Supersampling Methods

Statistical methods have been used to control adaptive supersampling. A radiance
returned from a viewing ray is an estimate of the pixel color. In statistics, the pixel color
is the expected value of a random variable X with a unique distribution formed by all

possible estimates within a pixel. If we use a sufficient number of viewing rays generated
n

from random samples, then L = — Z Ty is a good approximation of the pixel color, and
k=1

the standard derivation o is a good approximation of the estimation error (X — E[X]) if

n

1

X has a normal distribution, where 02 = = Z(m, — E[X])? and z; is an estimate of E[X]
"o

[33].
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1 n
Let s2 = p Xj(gr:Z — L)?. Then the Chi-square test [43]:

i=1

2
ns
p(" < xn—1) =6

can be used to predict N, the number of samples needed in supersampling, from n initial

samples. Similarly, the t-test [55] is suggested to compute N.

However, applying these statistical tests to supersampling has two weaknesses. The first
weakness is that the fundamental assumption of a normal distribution of sample values is
questionable. For example, if a pixel has only two constant colors, then X has a binomial
distribution, which can be very different from normal distribution when n is small, say less
than 30 [33]. The other weakness is that the quasi-random samples behave differently from

random samples [46], and the validity of using the same formulas is questionable.

Signal processing suggests that | X — E[X]| oc 8, where (3 is the sampling rate, which
changes with the number of samples as well as the sampling methods [18]. If we repeat
the estimation process twice at different number of samples, say 7 and j, then we have two

equations with two unknowns, E[X] and C:

i
|N}§1Xk — E[X]| = CB;

1 J
% X~ BIX]| = 05,
k=1

After solving for C, we can compute N from Oy by letting C8y = T where T is the
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maximum acceptable estimation error. A difficulty with this approach is selecting ¢ and j

such that they are small enough to be practical and large enough to give stable estimation.

Contrast is closely related to human perception and is the fundamental measure that

other other visual behaviors are derived from. One common form of luminance contrast,

Lmaw - L'rm’n

I T where L4 and Ly, are the maximum and minimum radiance respectively
maxr min

[35], is suggested to predict the number of samples, i.e. the number of samples taken is
proportional to the contrast [44]. This method is plausible because it considers the nonlinear
response of human perception; but it still has some weaknesses. The first problem is that
the contrast is measured within a pixel, but human eyes see the contrast from surrounding
pixels and the relationship between these two values is not clear. The second problem arises
when two very different pixels have the same contrast, for example one has fine texture which
may require hundreds of samples while the other has a simple edge which requires tens of

samples.

5.3.2 A Complete Adaptive Supersampling Framework

The framework below is based on the observation about sampling covered earlier in this

chapter.

1. Decide the number of initial samples, n, to be taken over each pixel.

2. Render the initial image with n initial samples.
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3. Transform the initial image into the displayable image for the media of choice. If
the media is a CRT, then a good transformation would be an extension combining

Tumblin [73] and Chiu [7].

4. Decide the accuracy function S(z,y), where S(i,7) is the accuracy requirement at
pixel (z,7). The accuracy function should be based on the transformed image and a
perceptual model because its value is proportional to the sensitivity of human eyes to

a displayed image.

5. Estimate the error caused by initial samples. This error can be approximated via
different measures, for instance the standard derivation or the estimated variation of
a function as defined in Theorem 2. The traditional estimation error is a function
of Ly, ---,L,. This should probably be extended to a function of all the available

information such as the object, the texture, the normal vector, etc.

6. Compute the effectiveness of the initial samples. Discrepancy relates to the effective-

ness.

7. Compute the number of samples required, N, which is a function of a predefined
tolerance, the required accuracy, the estimation error, the effectiveness, the expected
effectiveness of a sample pattern with /N samples, and probably a predefined confidence

index.

In this framework, there are many missing elements that require further research. We
present here a new supersampling method based on our partial understanding of the missing
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elements.

1. The number of initial samples in existing supersampling methods assume 4 to 9 sam-
ples without justification [43, 36, 44, 23]. Instead, we assume that the initial samples
are expected to detect the case of two features fully occupying a pixel when the pro-
jected area of either feature on the pixel is larger than 5% of the pixel size. Missing
a feature with projected area less than 5% generally introduces little error. To verify
if 5% is appropriate, we need to know the color difference AC of the two features
and the error tolerance T, i.e. checking 5% < T'AC. If the boundary is an edge, then
to successfully detect both features means the samples must fall on both sides of an
random edge. This can be done by slightly modifying Mitchell’s method for random
edge discrepancy [46]. Instead of counting the number of samples below a line, we
examine if all samples are below a line. Experiments show that to achieve 93% or 99%
successful rate, we need at least 9 multi-jittered samples or 16 multi-jittered samples,

respectively.
2. Render the initial image with 16 initial samples.

3. Transform the initial image by Chiu’s method [7].

|Lneighbor - L‘

4. Set € to be the maximum of
Lneighbor + L

, where neighbor means an adjacent pixel

and L is the radiance at the pixel of interest.

5. Compute the standard deviation o, which is the sum of the standard deviations from

each group, i.e. o= z o; where o; is as in the standard definition for standard
tEgroup
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deviation. The new variance definition separates samples into groups because the
standard variance is a good measure for continuous function, but not necessarily for
discrete function. When a group has only one sample, we approximate its standard
derivation by the average of other groups. If there are over 3 groups, then it is a
complex pixel and we will let NV to be the maximum number of samples allowed in a

pixel.

. Find N by solving oy = k ¢, where oy is the expected standard deviation with N
samples and k is a predefined constant for accuracy tuning. If the sampling strategy
has O(N~%) accuracy, then oy = o, (%)d. Random sampling has O(N_%) [46]; other

quasi-random samples which converge faster are likely to have d smaller than 0.5.

5.4 Summary

In this chapter, we emphasize the importance of equidistribution across projections of

subdomain and derived new multi-jittered sampling methods which have the lowest dis-

crepancy and the highest stability among the commonly used stochastic sampling methods.

As we take a global view of the sampling issue and hope to create samples in a 7 or 8

dimensional domain, we face two problems. The first one is explosion in the number of

samples when generalizing the existing methods; for example, two jittered cells in each do-

main would require at least 28 samples. The second problem is the explosion in the number

of constraints; for example, multi-jittered sampling methods need to simultaneously satisfy
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equidistribution in 2% — 1 projections of subdomain. How to get around these problems in

order to generate good samples is still a research topic.

Quasi-Monte Carlo methods approximate an integral via quasi-random samples, whose
behaviors have been studied in integration theory. However, the discontinuity and the
high frequency in an image limit the application of integration theory because the image
function is ill-conditioned and has extremely large bounded variation. The other charac-
teristic of image synthesis that makes applications of number theoretic methods difficult
is that instead of estimating one function with each sample pattern, we need to estimate
each image function with many sample patterns each of which estimates only a portion of
the image function. This introduces aliasing artifacts, which is a problem going across the

pixel(integral) boundary and is not addressed in integration theory.

Supersampling reduces error by taking more than one sample, but to predict the total
number of samples required is difficult. Existing methods solve this problem from the
view points of statistics, signal processing, and human vision individually. However, a
successful supersampling method requires the knowledge from all of them. In this chapter,
we presented a framework that accounts for the image complexity, sample convergence rate,
nonlinear response of human eyes, and the limitation of the media. Many elements in
this framework require further investigation, so a framework that is not as general but is

practical now is also presented.
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Conclusion

In this document, we formalized the pixel color in image synthesis to a sum of three
integrals which include the emitted lighting in a five dimensional integral, the direct lighting
in an eight dimensional integral, and the indirect lighting in a seven dimensional integral.
In distribution ray tracing, these integrals can be approximated by sequentially applying
quasi-Monte Carlo methods. The effectiveness of this method depends heavily on the spatial

distribution of samples, which is the major focus of this work.

When evaluating the lighting integrals, the equidistribution of samples across lower di-
mensional projections is also important, especially when the number of samples is small
as in the case of distribution ray tracing. To minimize the variance caused by the un-

desired sample correlation in different subdomains, we suggested multi-jittered sampling
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which generates samples that are equidistributed in any combination of subdomains. Our
experiments showed that the multi-jittered samples have the lowest discrepancy as well as
the smallest discrepancy variation among the most commonly used methods in computer
graphics. So far we can only generate multi-jittered sampling whose samples are equidis-
tributed in one dimensional domains and two dimensional domains, because the difficulty of
generating equidistributed samples increases with the dimension of the sampling space, so
the number of constraints in multi-jittered sampling increase exponentially. To effectively
generate multi-jittered samples in 7 and 8 dimensional domains is desirable, but relies on

further investigation.

Effectively predicting the total number of samples in adaptive supersampling can in-
crease the efficiency of a distribution ray tracing program. We proposed a supersampling
framework which takes into account the human visual system, the limited dynamic range
of media, the estimation error, and convergence rate of sampling method. However, almost
all of these elements are not well understood and require more research in human vision,
transformation schemes from a radiance image to a displayed image, statistics, signal pro-
cessing, and integration theory. Without such knowledge, supersampling methods can only

have limited success.

In computer graphics, the average discrepancy is often related to the convergence rate
of a particular sampling method. However, within one sampling method the discrepancy
can vary a great deal and can form a non-symmetric distribution, which opens the question

of whether average discrepancy is able to characterize a sampling method.
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Discrepancy is guaranteed to be a good and useful measure of sample equidistribution
only when applied to a function of bounded variation. Unfortunately, the image function
contains edge and textures that can cause discontinuity in the function and thus unbounded
variation. Also, the discrepancy can not predict the occurrence of aliasing artifact. Thus

the discrepancy must be modified to be helpful in image synthesis.

One of the major purposes of initial samples is feature detection. In this document we
assume that pixel has two features and the features are divided by a random edge. With
slight modification of Mitchell’s method for computing random edge discrepancy [46], we
are able to numerically justify that approximately 10 multi-jittered samples are sufficient
to detect both features if their projected areas are not smaller than 5% of the pixel area.
Missing a feature less than 5% of a pixel is generally acceptable unless the missing feature

is very bright while the other feature is not.

Lighting is computed at the innermost integral (rendering equation) of pixel color. Di-
rect lighting is separated from indirect lighting because of the sharp shading change direct
lighting can cause on other objects. In this document, we have investigated the single
luminaire environment by applying four different sampling strategies to six primitive lumi-
naires. Among these strategies, p ~ cos # gives the optimal estimation in a perfectly diffuse
environment; p ~ cosf and p ~ % generate samples with fast convergence rate in a diffuse
environment. None of these four strategies is suitable for a general environment with direc-
tional luminaires and specular surfaces. Future work is required to handle three different

local coordinate systems in order to develop a p.d.f. efficient for a general environment.
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Imposters which represent luminaires in simplified forms can reduce the rendering com-
plexity while still generating images that are “indistinguishable” from the image of the
original objects. The application of imposters is common in computer graphics, but each
application has been treated as special case. This document characterized the use of im-
posters into several categories: simplification of representation, extra information carriage,
summation in a different domain, and physical behavior simplification. The primitive lu-

minaires discussed in direct lighting are imposters of simplified representation.

Direct lighting from multiple luminaires is formalized as a Monte Carlo summation
which is a generalizated form of the previous methods. Using the same formula from Monte
Carlo summation with different p.d.f.s, we have derived three different schemes, each useful
in different situations. The constant method is useful for debugging. The linear method
is useful for domains with tens of luminaires. Spatial subdivision method is useful for

extremely large amount of luminaires.

The most important extension of this work that should be done is the generalization of
our sampling schemes to environments that are neither specular nor diffuse. This will not

improve our images, but will make some of them much faster to compute.
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Terms and Units for Radiometric and

Photometric Quantities

Terminologies for global illumination in computer graphics have been borrowed from
several different fields, such as photometry, radiometry, colorimetry, etc. To avoid unnec-
essary confusion, we will follow the definition from American National Standard and Ilu-
minating Engineering Society [35] as shown in Figure A.1, along with some supplementary

information from Wyszecki and Stiles [88].

A quantity with a subscript A means a spectral concentration, i.e. a quantity corre-
sponding to a narrow wavelength interval. A quantity with a A in parentheses means a
function of wavelength. The symbols for photometric quantities are the same as those for
the corresponding radiometric quantities. When it is necessary to differentiate them the

subscripts v for photometry and e for radiometry should be used.
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Figure A.1: Geometry for radiometric and photometric quantities.

A.1 Radiometric Quantities

Radiometry is the measurement of quantities associated with radiant energy.

radiant energy : @, joul.

Energy traveling in the form of electromagnetic waves.

radiant flux or radiant power : @, watt.

The radiant energy emitted, transferred, or received through a surface in unit time

d
interval, ie. @ — 92
dt
. . . . watl
radiant exitance or radiant emittance : M, —.
m

dd
The radiant flux per unit area of the energy-emitting surface, i.e. M = A In zonal
methods, this term is called radiosity and has the symbol B.
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watt

irradiance : E, —-.
m

ao

The radiant flux per unit area of the energy-receiving surface, i.e. £ = A

solid angle : w, steradian or sr.

Solid angle is the projected area of an object onto the unit sphere centered about
a point of interest. It combines into a single number the projected area and the

inverse-square law of illumination, £ =

ﬁ.
tt
radiant intensity : I, wa
ST
. . . . dd®
The radiant flux per unit solid angle, i.e. I = T
w
it
radiance : L, &2.
ST X m

a>®
dw X dA X cos @’

The radiant flux per unit solid angle per projected area, i.e. L =
Radiance behaves like color perceived by human eyes and is probably the most heavily

used term in global illumination.

A.2 Photometric Quantities

Photometry is the measurement of quantities associated with light.

light or luminous energy : Q, lumen — hour.

Light is the radiant energy which can excite the retina and produce a visual sensation.
The electromagnetic spectrum of visible wavelength are from about 380 to 770 nm
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where 1 nm = 1072 m.

l
spectral luminous efficacy of radiant flux : K(A), umen

watt

Spectral luminous efficacy defines the relationship between radiant flux and luminous

quA
ibeA

nous efficacy K, ( = 683

flux as K(\) = K ()) is commonly expressed as a product of maximum lumi-

lumen

att ), and spectral luminous efficiency function V' (),
which is normalized in [0,1]. K () basically corresponds to photopic vision, mediated
by the cones and similarly there is a relationship for scotopic vision or rod vision,
ie. K'(A) =K, V'()\). Unless otherwise indicated, photometric quantities relate to
photopic vision.

luminous flux or luminous power : @, lumen.

770 770
3, = B AK(N)dA = K, B\ V(N)dA
380 380

l
luminous intensity : I, candela (= umen

).

ST

ad® . . .
The luminous flux per unit solid angle, i.e. i Luminous intensity has been the
w
primary standard of light instead of luminous flux because it best serves the purpose in
early photometric practice when the visual matching is used to compare the brightness

of different luminaires. It is also the quantity to specify the distribution curve of a

luminaire.
l
luminous exitance or luminous emittance : M, footcandle (= %)
. . . - . ae
The luminous flux per unit area of the light-emitting surface, i.e. M = A"
l
illuminance or illumination : E, footcandle (= %)
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dd
The luminous flux per unit area of the energy-receiving surface, i.e. £ = —

dA’
candela
lumi : L tlambert (= ————).
uminance , footlambert ( p— ftz)
The radiant intensit jected ie. L a
e radiant intensi er projected area, i.e. L = ————.
Y ber proJ ’ dA x cosf

A.3 Material Properties

diffusing surface .

The surface scatters the incident flux in all directions. A perfectly diffusing surface
(Lambertian surface) uniformly scatters such that the radiance is the same in all

directions.

specular surface or regular surface .

The surface reflects the incident flux predominately at the specular angle or angle of

reflection [23].

reflectance : p, none.

d
The reflected flux per incident flux, i.e. p = QTT
i

bidirectional reflectance-distribution function : f.(6;, ¢;; 0., $,), st L.

The reflected radiance per unit irradiance, i.e.

i dL (0, ¢r) _ dL. (0, ¢r)
~ dEi(8i,¢i)  Li(0i, $;) cosfdw’

In a lambertian surface, f,(0;, ¢i; 0r, ¢r) = P
T

fr(0i7 ¢i; Or, ¢r)
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For the reason of simplicity, the direction of the incident angle (8;, ¢;) will be replaced
by 4 in this document whereas the direction of the reflected angle (6, ¢,) will be

replaced by 1/'.
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Monte Carlo Summation

The direct lighting from multiple luminaires is a sum of the direct lighting from each
luminaire, but the sum can be transformed to an integral which is approximated by the

quasi-Monte Carlo methods.

[N]
direct

TR 7 PR ;

direct

Ldiwect = L[l]

direct
1 7 . N
1 N
= / LEli]Tecth +-t / nglv‘ectd’r +--t / LEiir]ecth
0 1—1 N-1
Vo N N
= /0 Ldirectul(T)dT +eet /0 Ldirectui(T)dT +eeet /0 Ldi’rectuN(T)dT

N
= [ i)+ + I (e

where u;(7) =1 wheni—1 < 7 <4 and u;(7) = 0 otherwise. Now, we can apply the Monte

Carlo methods in Section 2.2.2 and Section 2.2.4 to this integral.

(1]
L direct

ui (7) + -+ L qun (1) _ Dl

) p(7) (B1)

Ldi’rect =

The ceiling function [7] = ¢ when ¢ —1 < 7 < i. The integrand L([ililectul(T) + -+

(V]

Ly ..;un(T) is a step function and thus it is reasonable to have the discrete probability
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density function p(7) equal to p([7]) for all 7, and Lgirect =
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Monte Carlo Methods for Double

Integrals

If a double integral has a separable integrand, the double integral can be written as a
product of two one dimensional integrals, which can be estimated by the Monte Carlo meth-
ods addressed in Section 2.2.2. If the integrand is not separable as Lgj e+ in Equation 2.5

or Equation 2.6, applying Monte Carlo methods becomes complicated.

Without loss of generality, assume Lgrect = / / f(u,v)dpdy and we can apply the
Q, /9,
Monte Carlo methods to the outer integral. First we need to choose a p.d.f. p(j,7), and

from which we can derive p,(v) = / p(p, nu)dp. Then after chosing a samplef to estimate
Q

v
the outer integral, we can use the conditional p.d.f. p,(p|P) = _ ) to estimate

~ Ja, pu(p, v)dp

the inner integral.

Liirect = /Qy ‘/Qu f(u,v)dudv
= //Q J@v) ) dpdy

. Pu(v)

1
pll(’)) Qu

Q

f(w, 0)dp
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1 J(p,v)
po(9) Jo, palulp)™
£ 1)
P (D)p, (i)
£ i, )
p(f, )

(klv)dp

Q

If given two random numbers &; and &; in [0, 1], then £ and © can be derived by inverting

the following two equations.

v

&=/ nwav=[ [ pv)duds (C.1)
Vmin Vmin I
() i) o, v)dp
. mzn(V) ’
5 :/ P 124 d - K B C'2
" imin() (i) Jo, P, v)dp (©2)

In order to implement this inversion, the antiderivative of p(u,v) with respect to p must

be known. If we must start with a function g(u,v) such that p(p,v) x g(p,v), then

g(p,v)
Ptotal

p(p,v) = where Piytal :/ / g9(p,v)dpudyr, and we must be able to compute
. Ja,

/ / 9(u,v)dudy analytically.
v Qu

So, if Equation C.1, Equation C.2, and P are known for any given p(ji, 7), then com-
.. N . .
1 . .
puting the primary estimate M, or the secondary estimate N Z M

- is straight-
p(it, v) = p(4i, Vi)

forward.
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