EPSRC Individual Grant Review Report

GR/M 88068/01

PRODUCTION OF MULTIMEDIA CONTENT FOR THREE
DIMENSIONAL ENVIRONMENTS DISTRIBUTED OVER
NETWORKS (PROMETHEUS)

PROMETHEUS Cloth Simulation
www.cs.ucl.ac.uk/r esear ch/vr /Pr o] ects/Prometheus

LeeBull, Mel Slater, B. Buxton

Virtud Environments & Computer Graphics Group
Department of Computer Science,
University College London,

Gower Street
London WCI1E 6BT
UK

Email P.Bull@cs.ucl.ac.uk, M.Sater@cs.ucl.ac.uk mailto:B.Buxton@cs.ucl.ac.uk

http://www.cs.ucl.ac.uk/research/vr

1 Introduction

The Prometheus consortium, lead by BBC research and devel opment, aimed to investigate the feasibility of end-to-end content creation
and delivery of 3D media through the design and development of a prototype system. Our contribution, presented here, has been to
research, develop and integrate a Cloth Simulation Server system to provide dynamic 3D clothing for virtua human characters. This
document will provide an overview of the project architecture as a whole and where the cloth server system sits within it in section 3.
Research performed on the cloth simulation system will then be reviewed in section 4. Results of testing are given in section 5, with
future work and conclusions given in Section 6.

2 Background

Virtud studio systems have been in use for a number of years, based primarily on chromakey, camera tracking systems such as that of
Thomas and colleagues [12] and 3D rendering technologies. The Prometheus project amed to extend these concepts to incorporate
virtual characters, with motion from live actors, tracked in real-time. We are not aware of any systems specificaly of this nature that
have incorporated cloth simulation system for live use, though commercial systems for real-time performance have been developed. A
discussion of future virtua production methods can be found in Thomas and Storey [13]. Cloth simulation systems have been researched
substantialy, with notable systems being those of Volino an Thalmann [16] using a Runge Kutta solver, Provot [11] using an Euler
solver and more recently, the most stable, implicitly solved system of Baraff and Whitkin [2]. Although finite element methods and
other techniques have been researched, by far the most common method is mass spring models.

Typical collision detection problems have intrinsic complexity O(nm) where n and m are the number of discrete surface elementsin an
object pair. This complexity does not lend itsef well to interactive systems. Various solutions have been discussed in the literature to
alleviate this problem, generally based on hierarchical, polygona solutions. Examples can be found in [2] and [4]. In particular, cloth
self collision is has also been addressed [10], [15], [18]. Image based methods have also been developed [14]. The use of voxels for
callision detection has also been investigated by Zhang and Y uen [18] to reduce local searches for geometrical collision tests.

3 Overview of the Prometheus Architecture

A summary of the project can be found in Thomas et al. [9]. Figure 1 shows the flow of information between server sde modulesin the
simplest configuration of the Prometheus architecture. The system is distributed over a network using OMG CORBA to spread the
processing load. The system is aso scalable in that multiple motion capture or cloth simulation servers can be set up to handle
increasing numbers of actors/virtual characters in the scene, network bandwidth permitting. Many small buffer servers can be set up
across the system. Each server module that produces data, such as facial, body motion capture systems and cloth simulators, al produce
data that must be consumed by one or more clients. The system provides a buffer server for each data broadcaster, to which its output is
streamed and buffered. Clients that need to receive particular data streams can then connect to these intermediate buffering servers and
consume data at their own rate.

Face Broadcast \—'\ Face Buffer 1
Server ’—/ server | —
Graphical User EGML Interface Prometheys 1/0 External
N Interface Streaming Interface
Y
f a Integrated Interface Services
Body Broad \—'\BodEﬁe Sy \—\ MPEG4
e = Server i,—« o (M| (R Animation Engine
9 Environment Modelling and Dynamics Services 1O Prometheus
Rendering Engine - High Level (VRML97 /H-Anim /Custom) Module (BBC)
Cloth Broadcast _« Cloth Buffer ——————— J OpenGL Rendering Engine
Server Server
OpenGL API CAVELib API Net\l\(/:g"?(IBr:\g API
Figure 1 Prometheus Ar chitectur e (Basic) Figure 2 Cloth server softwarelayers

4 The Cloth Simulation Server

The cloth simulation module must receive red-time streams of motion capture data. Each stream pertains to each virtual character in the
scene, for which clothing is to be smulated. Using this data, the system internally animates its own segmented representation of each
clothed virtual character and performs simulation tasks for each item of clothing worn by each character. Findly it must stream
deformed clothing animation data to clients in the architecture. The cloth server has its own custom VRML97 compatible rendering
engine, dong with an animation engine. The system works under Windows, Unix and UCL's Reactor (CAVE-like environment.) The
animation system uses a notion of Event Graphs, separate to the scene graphs, created either through the API or a simple script language
we have developed called EGML (Event Graph Markup Language.) The syntax of thislanguage is similar to VRML97. The system can
execute in one of three test modes - animation server, cloth smulator and player, dl of which run as separate clients and servers on a
network. This permits testing of the cloth simulation server independent of the Prometheus architecture, using the same communication
protocols.

Rather than research alternative methods for animating 3D clothing, a fairly conventiona approach was taken to physically model the
clothing dynamics. Forces within the system are evaluated and advanced using an ordinary differential equation (ODE) solver, with
additional responses imposed by collisions between the clothing and the animating character. The most substantial contribution made by
thisresearch liesin the area of quickly evaluating cloth-character collisions at runtime. Cloth-cloth collisions are currently ignored to aid
realization of rea-time performance and are left for future research.

! Havok’s SDK is of particular note http://www.havok.com

4.1 Overview of the Physical Simulation

This section will give a brief overview of the physical model chosen for use by the simulation. Our physical model is based strongly on
thework of Anderson [1], who has reformulated an approximation of a physical model by Volino and Thalmann [16].

Many cloth simulation methods such as [11] require a uniform polygonal grid representation to provide an expected geometry for the
formulation of force evaluation equations. These are typically mass-spring representations, where vertices of the mesh have associated
masses and polygon edges are notiona springs which exert forces on connected mass points. Additional conceptua springs are
sometimes included, e.g. diagonally to penalize bending and sheering. It was considered that regular grid polygonal meshes were too
limiting for 3D clothing model designers. This is made possible by the work of Thamann [16], but force evaluation equations required
were deemed too substantia for real-time performance. An approximation of [16] given by Anderson [1] was chosen for use. Non
uniform meshes can be used with this method, using attributes including density, thickness, Young's modulus and the Poisson
coefficient, known to material engineering. Vertex masses are calculated by distributing local mesh masses to local vertices. Spring
constants also vary across the cloth, calculated individually based on the local geometry of the materia and its properties. In each
iteration, the system evaluates a number of types of force acting on each mass point. This forms an initia value ODE problem. Rather
than concentrate on complex solvers, we have opted to keep a smple Euler solver, dlowing research to focus on collison detection.
Though Euler is known to require more iterations and offers less stability than others such as n’th order Runge Kutta [16] or Implicit
Euler [2], our tests show it to be acceptably stable for our current work. Future work will incorporate other solvers. The primary forces
that are evaluated at the start of each time step include tensional (tension, compression, shearing), flexional (bending) and frictional
(between surfaces). In addition, there are gravitational (normal earth gravity), viscous drag (air friction) and wind using a smple
constant model. Fixture constraints can be applied to any subset of a clothing item such that it is able to bind to the character. Thisis
needed for waist and cuff areas.

4.2 Overview of the Collision Detection Method

The primary focus of this research was to discover a fast and efficient cloth-avatar collison detection system, suitable for rea-time
performance. Cloth self collision detection was not included to reduce overheads at runtime. Typically, the absence of cloth self
callisions is not particularly noticeable in dynamic scenes with single layered clothed avatars. Notable work on this subject has been
performed by Provot [10] and Thalmann [15].

The expense of full geometric cloth and avatar polygon collision detection was ruled out as this can be expensive unless very few
polygons can be determined to be candidates. Cloth mass point (vertex) collisions with the avatar were favored as intersection tests
between vertex motion paths and surfaces was considered more likely to achieve rea-time performance. This problem is one of
detecting whether the desired motion of a mass point after a time step, as requested by the physical smulation, will collide with any
moving avatar body parts or other dynamic objectsin the scene. This motion is only desired because the end state may beillegd if cloth
mass points penetrate the body during the time step. If collison tests are to be performed at each time step, the collison detection
system must be very efficient. Assuming a simple high frequency solver applied to an example with 30 time steps per frame at 25
frames per second, the system must run 750 times per second. Moreover, the processing time used for collision detection must itself be
short to allow additiona time for the physical smulation and other overheads such as animation and rendering if required. The use of
vertex-surface collisions, rather than surface-surface collisions gives rise to potential intersections between cloth surface polygons and
the character’s surfaces, even though all vertices of the cloth may be outside the character’s volume. This is most likely to occur in
regions of high surface curvature or where cloth surfaces have alow sampling density, i.e. few polygons which is likely for interactive
systems. To dleviate this problem, collison detection is performed at a threshold distance from the character's surface, i.e. it must
collide with an offset surface of the body. This distance must be calibrated to the avatar and cloth polygon sizes.

The method presented here is based on a distance field representation for local body limb spatia partitioning. Non-hierarchical bounding
boxes are used to bound limb segments. Initialy, spatid partitioning of the dynamic characters and scene was considered. There are
many ways in which this could be done, including Octrees, BSP trees, K-D Trees or bounding volume hierarchies. Partitioning could be
performed in local object or world coordinates. Hierarchical partitioning methods were rejected due to their need for reconstruction
resulting from changes and their O(n log a) performance for tests, where n is the number of vertices, and a the number of partitions.
Voxels were favored because they would potentialy offer a system which tends towards O(n) complexity with decreasing time step size
for collision path tests as maotion paths through the voxel space become smaller. Each limb segment in the avatar has a single distance
field volume. The system must carry out tests to determine which distance fields a mass point's motion may intersect. For this, a method
which smply lists collison candidate objects for each clothing item was chosen. Typically, a character's body has about 19 segments.
Each garment, e.g. shirt or skirt will generdly only collide with asmall subset of these. For example, a skirt generally only collides with
hips, thighs, shins and maybe hands. A hierarchy of bounding volumes of these objects would generally have a high degree of overlap
and will not have high depth, reducing hierarchical efficiencies. While a non-hierarchical method is not a good solution for large
environments, it is suitable for this small case where overlapping in hierarchical volumesis prevalent. Distance fields are in voxel space,
where each voxel contains information about the closest surface items, usualy stated as a distance to them. Proximity information is
therefore readily available for offset surface and vertex proximity calculations. If thisinformation isin the form of areference to one or
more closest voxels, thisforms VVoronoi regions around the origina surface voxels.

4.2.1 Distance Field Generation

Here, we present our method, the Discrete Voronoi Distance Propagation (DVDP) for smple, rapid generation of distance fields from a
discretized surface. Initialy, the bounding box of an object is selected and used as a basis for the voxel space. The contained polygonal
boundary representation is then voxelized into the discretized voxel space using scan line based algorithms [8]. For purposes of
rendering, voxel occupancy data could be included to anti-alias the discretized surfaces. For the purposes of collision detection, we relax
this requirement and use a binary voxel space, where voxels are considered to be either inside or outside the volume described by the
object. Polygon normals are written into each voxel during the voxelization process, rather than inferring them later from the discretized
surface structure. Voxes that contain more than one polygon, e.g. on edges, vertices or multiple sub-sampled polygons, have their
normals listed in the voxel to permit multiple surface collision responses.

Naive generation of the distance field, where the distance between each voxel is compared with every other voxel has a complexity of

O(n6) where n is the size of a cubic voxel space, which clearly does not scale well. To combat this problem, various Distance

Transform (DT) methods have appeared in the literature for calculating distance fields, the most basic being the Chamfer Distance
Transforms (CDT) and notably the recent Vector City Vector Distance Transform (VCVDT) by Satherley and colleagues [6], [7] that
use a vector form of the CDT. Distance shells are initialized with accurate vectors to closest polygonal surfaces. These vectors are then
propagated and modified based on inter-voxel transition directions using multiple pass applications of vector based kernels. A
hierarchical variant called an Adaptive Distance Field (ADF) has aso been devel oped Frisken [5].

Our method is based on an incrementa propagation of the initid voxel space surfaces, forming a Voronoi diagram of the discretized
surface. In particular, no explicit mathematical operators are required to calculate the Voronoi regions, other than those required for
simple voxel space data structure access. Accuracy is restricted to the binary, discretized surface unlike methods such as [6] that make
corrections based the original polygonal surface. A global Voronoi solution is determined by considering the aggregate spherical
expansions of al voxels in the voxel space, until al free space is filled. The expansion of each Voronoi cell will compete evenly if
expansion is sequential and uniform across the voxel space. To do this, we first consider the iterative expansion of a single voxel at the

center of a conceptual voxel space. At each iteration | +1, the voxel is expanded by the least radius possible, such that the new
spherical shell oriented about the central voxel intersects the centers of new voxels that are not on the surface in the previousiteration | .
A 2D equivalent forms a sequence of incrementally expanding circles in the plane, centered at the expanding voxel. The 2D voxel space

can be reduced by symmetry to quadrants and then further to octants by diagonal symmetry. Within this triangular voxel space, the
expansion ordering for a maxima sized voxel space can be predetermined, as shown in Figure 3. Each iteration has an associated

Euclidian distance ||V|| from V. Note tha each iteration value may add voxels a more than one location. Iterations 13 and 25 are
examples of this.

35

32|34

2513033

17)22|27|31

11118 |18 | 23|29

5|8|12|16|21|28

2| 4|7]10|15|20|25

‘o 1]3|6|9(13]10]24

Figure 3 2D Octant incremental expansion of voxel 0

The expansion is mirrored in each octant in the plane. This example would cater for a voxel space of maximum size 8, but can be
extended as required. An adjacency rule base can be formed, to locate the relative positions of new voxels Vi+1 initeration | +1 from

those VI already introduced in 1 . Adjacency rules are based on the type of connectivity between two voxels. In 2D, two types of 4-
connections are possible, through edges and corners. Each iteration | hasaset of K associated action rules A, , such that each action
all A introduces one new voxel VLIV, in this symmetrical subset of the voxel space. For example, A, has only one action, but
A13 and A25 have two. Each action has a source voxel V. and a destination voxel V that is dependant on V. To simplify action
rules and cater for lookup table symmetry through orientational invariance, a source voxel V, is expanded to al neighbouring voxels
NVS with the same connectivity as it has with the destination voxel V. The chosen V, must itself, be contained in the lookup table.
Care must be taken when choosing connectivity. For example, if V; =V, astheiteration count has reached 10, Vg cannot be chosen

as V, based on a diagonal 4-connectivity due to Vg's potentiad expansion to V,5; by the same adjacency type. To ensure correct

ordering in the expansion, asource voxel V is chosen for each V; in an iteration, based on achosen connectivity such that:
]| < vl M
M < |vo| . OVON, @

where NV is set of voxels neighbouring V, with the chosen connectivity. This guarantees that the chosen V. exists because it was
introduced in an earlier iteration. Secondly, it will not under any circumstances, expand to iterations higher than that of the destination
voxel due to orientationa invariance. It can be shown through inequalities that for any V,, that does not lie on the diagonal, a sLitable

V, is the left edge 4-connected voxel as they satisfy (1) and (2), i.e. forVy =(X,2), V, = (X—1,2). Smilarly, for those

S
Vy = (X, Z) that lie on the diagond, it can aso be shown through inequalities that the lower left diagonal can be used, i.e.
V, = (X—1,z-1) suchthat (1) and (2) are satisfied.

The 2D form of this rule base can be reinterpreted in 3D with a lookup table space in the shape of a tetrahedron bounded by the
following inequality:

y<z<Xx ©)

as shown in Figure 4. Other tetrahedra configurations would aso be possible through symmetry. Thereis a 1/48th fold symmetry of the
tetrahedron in the voxel space, shownin . Each octant of the voxd space is subdivided into sextants, mappable through symmetry onto
the tetrahedron of Figure 4. Note that each of the sextant tetrahedrons share the same origin at the center of the voxel space, equivalent
to the voxel O origin of Figure 4. In the 3D case, there are three types, of voxel connectivity, 6-connection (face), 12-connection (edge)
and 8-connection (corner). Again, it can be shown through inequalities that the source voxels in Table 1 satisfy equations (1) and (2)

subject to V, being contained within (3) with selected connectivity such that V, still maps into the tetrahedron. Table 1 shows which

central voxels and connectivity are used for actions based on the position of V; = (X,Y,2) . Itispossibleto use other rules, such as 8

or 12 connected rulesin place of 6-connected rules. However, it is advantageous to use a connectivity with the least number of adjacent
voxels as the expansion of each source voxel will address all adjacent voxels with the chosen connectivity. A number of these will be
redundant as some of the neighbours will belong to previous iterations. The voxel is initialized such that all transparent voxels are
tagged as unprocessed. The Voronoi distance field algorithm incrementally expands the area around each discretized voxel in equal
amounts a each iteration. Each expansion stepisthe smallest possible.

A set of voxel sets S [Sstores references to voxels generated in each iteration. The initiad surface set S is the initial voxelized
surface. When a set is completed, all its voxels are tagged as processed. Therefore, the initial surface is also considered processed before
iteration starts. Sets can be discarded to reduce memory overheads when there are no longer any dependant voxels. Each action in A
specifies which set will be used as the source, the nature of the connectivity and the distance that will be assigned.

Figure 4 Extension of 2D to 3D Tetrahedral rule base Figure 5 Tetrahedral symmetry in voxel space

Each iteration has one or more actions. Each action is executed on the source set that it specifies. During a source voxel’ s expansion, an
attempt is made to expand to all neighbours with the connectivity specified by the action. Due to (1) and (2), these voxels will either be
valid destinations for the current iteration, or they will have aready been included in a previous iteration and will aready be tagged as
processed. In this case, they are not included in theiteration. Severa voxels may legally expand to the same destination voxel in asingle
action, or during multiple actions of an iteration. In these cases, the distance and closest voxel information are passed on and
accumulated within the destination voxel allowing multiple Voronoi cell membership. VVoxels of the original surface have an associated
Voronoi cell when completed. To reduce memory storage overheads, we limit the propagation of Voronoi references to a shell distance
around the initial surface. Voxds further in the Voronoi cell contain only distance information that could apply to multiple surfaces at
that distance. Thisis important as voxels in volumes within objects and concavities can belong to a large number of Voronoi cells if

equidistant to multiple voxelsin So . Offset surface normals are currently derived from the normals associated with the Voronoi cell. A

number of methods have been devel oped in the literature for offset surface norma approximation [17], but we currently use the Voronoi
cell normals as they result in a collision response representing their closest surface voxelsin away that has shown to be acceptable.

Table 1 3D Tetrahedral rule base action connectivities Figure 6 Four offset surface collision model
Vd (X, y’ Z) VS (X, y' Z) Connectivity T3
----------------------- T,
x>z (x-1,y,2) 6-connected T
x=z, y=0 (x-1,y,z-1) 8-connected T,
x=z, y>0 (x-1,y-1,z-1) 12-connected V A S,

4.2.2 Collision Detection in the Distance Field

This section will look a how collision detection can be performed between a single mass point and a single distance field. During atime
stepfrom t to t + A, both the mass point and the body segment will move, with a mass paint’s relative starting position p(t) inthe

previous time step to a relative end position p(t + A) . The motion of the mass point relative to the distance field over the short time
step istreated as alinear gpproximation, to simplify collision ca culations and attempt to provide a fast agorithm.

A cloth mass point can have one of three assigned states with respect to its position relative to the distance field volume and object
offset surfaces, State(p) I{OutsideVol , InsideVol,OnSurf} . The first two possibilities are defined by the mass point's

containment status in the distance field volume. Whether the mass point is on the object surface or not is defined during the course of the
callision detection, though it must also be contained within the volume.

Each mass point has a data structure that records its current state with respect to each potential collidable object, also caching other data
such as its last position in the world, local and voxel coordinate systems. The initial state of all cloth mass points with respect to al
distance fields each is potentialy collidable with, must be established before the smulation starts. At the start of atime step, the mass
point may be in any of these states. At the end of the time step, it may finish in any of these states, therefore resulting in 9 possible state
transitions. The relative linear motion of the mass point in the distance field is traced using an algorithm that is similar to that of plotting
a 3D line. Currently, we use a 3D Bresenham agorithm or alternatively, a potentially faster lookup table method. As the line trace
advances, the distance of the voxel is checked, relative to a number of offset surfaces that provide aresponse model.

State transitions fromQutsideVol — OutsideVol do not require any tracing to be performed as this form of intersection is currently
ignored. Similarly, once a trace has exited a distance field volume, i.e. the transition is { InSideVol |OnSurf} - OutsideVol
it cannot re-enter due to the convex nature of the volume and thus requires no further processing during the time step.

A mass point that is entering the volume QutsideVol - {InsideVol |OnSurf} needs to establish the voxel encountered upon entry

such that the trace can commence. This would be possible by calculaing the face intersected, establishing the point of intersection and
transforming the position into the local integer coordinate system of the distance field. Rather than perform this potentially lengthy
calculation, the method simply traces the path in reverse until the trace exits the volume. In this case, it is not the first intersection
encountered that is of interest, but the last, which isin fact the first intersection as the trace is reversed.

During tracing it is necessary to establish whether the trace has exited the volume. Performed naively, this would require clipping or a
dimensions bounds test a each trace step, or knowledge of the number of steps until exit. To speed up this process, extra voxels are
placed on the outer border of the distance field that are tagged as being on the border. Each step of the trace can then perform a single,
fast exit test.

A four offset surface model is used to manage collisions and sliding with the distance field, shown in Figure 6. Offset surfaces can be
easly determined at runtime as the distance field already encodes surface proximity information for all voxels. References to normals of

surface cells are passed on through their Voronoi cell to a shell distance that contains the chosen outer threshold distance T3 .

Additional empty voxels are placed on the borders of the volume to cater for the offset surfaces, such that they are guaranteed to be
contained. Each offset surface performs a different function. Collisons are registered on impact at which is contained between
envelope surfaces and . This envelope alows for imprecision in the smulation’s collision response, e.g. due to inaccurate normals or
rounding errors. It also atempts to counter the problematic effects of sliding along jagged, voxel offset surfaces. If a cloth mass point
ventures below, a penalty force is applied to persuade the vertex to move away from the surface. If the mass point gets closer still, a
callisionisregistered a until later conditions alow forces to be applied that move it away from the surface.

5 Results

Test scenarios have been developed, primarily consisting of clothed avatars walking, to evaluate the system’s performance. Here, we
will present results of the walking sequence shown in Figure 7 for both distance field generation and runtime performance. The
character in sequence walks from (a) to (g) using a motion sequence of 203 frames. Image (h) shows a continuation of the sequence after
the test period. Hips, thighs and shins are set up as collision candidates and therefore require distance field representations. The cloth
consists of 480 triangles. The hardware used throughout is an Intel P4 2.8GHz system with an nVidia Quadro4 900XGL graphics card.

Times for distance field generation after voxelization for each collision candidate body part are shown in Table 2. The distance field is
calculated for the whole voxel space, but VVoronoi cell membership references are only propagated up to the outer offset surface T3 =6

to conserve memory. Also included is the time required to generate the distance field without VVoronoi references. Though the resulting
volume not used in the cloth Smulation, it serves as a compari son.

Table 2 Collision candidate distance field generation Table 3 Real-time performance for sequence
- - & s e] Sim. Frame Rate (No Rendering) (fps) 30.2
Hips 109x99x107 2765 2422 Average Collision Peth Distance (Voxels) 0.166036
(1,154,637) Total Collision Detection Time Percentage 17.1%
, 75x190x73
Thigh (1.467.750) 3.641 2.797
, 57x177x61
Shin (615.429) 3422 1.656

The smulation was run at 33 time steps per frame. Runtime performance details for this animation sequence are given in Table 3. Here,
we have rendered just the character and cloth without a scene, to realize a frame rate of 26.62 fps. In a second test, rendering has been
disabled to show calculation time for the animation and cloth simulation, resulting in a frame rate of 30.2 fps.

The sequence uses 17.1% of its smulation time performing collision tests, disregarding rendering, animation and animation
interpol ation. Reduced frequency collision tests have been shown to work well, e.g. performing 10 collision test cycles per second, with
multiple time stepsin between, though some accuracy will be lost and the resulting simulation differs.

6 Conclusion and Future Work

We have developed a rea-time cloth smulation sever, integrated into a distributed network architecture for 3D multi-media content
creation and delivery. Rea-time, interactive frame rates have been achieved on low cost equipment, suitable for multiple cloth server
implementations. We have introduced the DVDP agorithm as a fast and ssmple method for the generation of Voronoi geometry of
volumetric object representations. A fast collision detection method has been devel oped, based on the results of the DVDP. The system
uses a four offset surface collision response model, which has aso been shown to function at rea-time rates, with very low percentage
overhead in comparison to the physical simulation time. Future work could focus on:

e Genera stability issues and compatibility with lower frequency solvers, such as Runge Kutta[16] and Implicit methods [2].
¢ Compression of volume data and its use in real-time
¢ Application of distance field collision detection to seamless avatars.

iai H:Il il (L1 r

Figure 7 Basic character walking animation sequence

Refer ences

1. J. Anderson. Fast physical s mulation of virtual cloth based on 10. X. Provot.. Callision and self-collision handling in cloth model
multilevel approximation strategies. Ph.D. 1998. Thes's, dedicated to design garments
Univerdty of Edinburgh Graphics Interface 1997, pp 177-189

2. D.Baraff, A. Whitkin/ Large stepsin cloth smulation, 11. X. Provot. Deformation congtraints in a mass-spring model to
Proceedings of SIGGRAPH 1998, pp 43-54 describerigid cloth behavior

3. B.Baumgart. Winged edge polyhedron representation, Graphics Interface 1995, pp 147-155
Technical report AIM-179 (CS-TR-74-320) 1972, Computer 12. G.Thomas, J. Jin, T. Nibblet, Urquhatr . A versatile camera
science department, Standford University position measurement system for virtual reality TV production

4. R Bridson, R. Fedkiw, J. Anderson. Robust treatment of Protzzgidlzré%sof the International Broadcasting Convention(IBC),
collisons, contact and friction for cloth animation, Proceedings pp 264-
of SIGGRAPH 2002, pp 594-603 13. G.Thomas, R. Storey. TV production in the year 2005

5. S.F.Frisken, R. N. Perry, A. P. Rockwood, T. R. Jones Montreux Symposium 1999, pp 234-238
Adaptively sampled distance fields: a general representation 14. T.l.Vasslev, B. Spanlang, Y. Chrysanthou. Efficient cloth
of Shape for Computer Graphics model and collision detection for dressing virtual people.
ACM SIGGRAPH Proceedings July 2000, pp 249-254 Proceedings of GeTech Hong Kong 2001

6. M. Jones, R. Satherley. Using distance fields for object 15. P.Volino, M. Courchesne, N. Thalmann
representation and rendering. Versatile and efficient techniques for simulating cloth and other
Eurographics UK 19'th Conference Proceedings, pp 37-44 deformabl e objects

7. M. Jones, R. Satherley. Voxdization: Moddling for volume Proceedings of SIGGRAPH 1995., pp 137-144

graphics vison, modeling, and visualization 2000, pp 319-326 16. P.Volino, N. Thalmann
Developing simulation techniques for an interactive clothing
system, | EEE International Conference on Virtual Systemsand
Multimedia, September 1997, pp 109-118

17. R.Yagd, D. Cohen, A. Kaufman, Normal estimation in 3D

8. A. Kaufman. An algorithm for 3D scan-conversion of polygons.
Proceedings of Eurographics, August 1987, pp 197-208

9. M. Price, J. Chandaria, O. Grau, G. Thomas, D. Chatting, J.
Thorne, G. Milnthorpe, P. Woodward, L. Bull, E-J. Ong, A. : ;
Hilton, J. Mitchelson, J. Starck Real-time production and g' scr?ggs;ace,z‘l;gez\g sual Computer, Vol. 8, No. 5-6,
delivery of 3D media roceedings of the | nternational une PP 2fe
Broadcasting Convention (IBC) 2002 18. D. Zhang, M. Y uen, Collision detection for clothed human

animation, Proceedings of Pacific Graphics 2000, pp. 328-337

