
1 1

EPSRC Individual Grant Review Report

GR/M88068/01

PRODUCTION OF MULTIMEDIA CONTENT FOR THREE
DIMENSIONAL ENVIRONMENTS DISTRIBUTED OVER

NETWORKS (PROMETHEUS)

PROMETHEUS Cloth Simulation
www.cs.ucl.ac.uk/research/vr/Projects/Prometheus

Lee Bull, Mel Slater, B. Buxton

Virtual Environments & Computer Graphics Group
Department of Computer Science,

University College London,
Gower Street

London WC1E 6BT
UK

Email P.Bull@cs.ucl.ac.uk, M.Slater@cs.ucl.ac.uk mailto:B.Buxton@cs.ucl.ac.uk

http://www.cs.ucl.ac.uk/research/vr

2 2

1 Introduction

The Prometheus consortium, lead by BBC research and development, aimed to investigate the feasibility of end-to-end content creation
and delivery of 3D media through the design and development of a prototype system. Our contribution, presented here, has been to
research, develop and integrate a Cloth Simulation Server system to provide dynamic 3D clothing for virtual human characters. This
document will provide an overview of the project architecture as a whole and where the cloth server system sits within it in section 3.
Research performed on the cloth simulation system will then be reviewed in section 4. Results of testing are given in section 5, with
future work and conclusions given in Section 6.

2 Background

Virtual studio systems have been in use for a number of years, based primarily on chromakey, camera tracking systems such as that of
Thomas and colleagues [12] and 3D rendering technologies. The Prometheus project aimed to extend these concepts to incorporate
virtual characters, with motion from live actors, tracked in real-time. We are not aware of any systems specifically of this nature that
have incorporated cloth simulation system for live use, though commercial systems for real-time performance have been developed1. A
discussion of future virtual production methods can be found in Thomas and Storey [13]. Cloth simulation systems have been researched
substantially, with notable systems being those of Volino an Thalmann [16] using a Runge Kutta solver, Provot [11] using an Euler
solver and more recently, the most stable, implicitly solved system of Baraff and Whitkin [2]. Although finite element methods and
other techniques have been researched, by far the most common method is mass spring models.

Typical collision detection problems have intrinsic complexity O(nm) where n and m are the number of discrete surface elements in an
object pair. This complexity does not lend itself well to interactive systems. Various solutions have been discussed in the literature to
alleviate this problem, generally based on hierarchical, polygonal solutions. Examples can be found in [2] and [4]. In particular, cloth
self collision is has also been addressed [10], [15], [18]. Image based methods have also been developed [14]. The use of voxels for
collision detection has also been investigated by Zhang and Yuen [18] to reduce local searches for geometrical collision tests.

3 Overview of the Prometheus Architecture

A summary of the project can be found in Thomas et al. [9]. Figure 1 shows the flow of information between server side modules in the
simplest configuration of the Prometheus architecture. The system is distributed over a network using OMG CORBA to spread the
processing load. The system is also scalable in that multiple motion capture or cloth simulation servers can be set up to handle
increasing numbers of actors/virtual characters in the scene, network bandwidth permitting. Many small buffer servers can be set up
across the system. Each server module that produces data, such as facial, body motion capture systems and cloth simulators, all produce
data that must be consumed by one or more clients. The system provides a buffer server for each data broadcaster, to which its output is
streamed and buffered. Clients that need to receive particular data streams can then connect to these intermediate buffering servers and
consume data at their own rate.

Face Broadcast
Server

Body Broadcast
Server

Face Buffer
Server

MPEG4 DecoderBody Buffer
Server

Cloth Broadcast
Server

Studio Platform

Cloth Buffer
Server

Studio
Buffer
Server

MPEG4
Encoder

Rendering Engine - High Level (VRML97 / H-Anim / Custom)

Animation Engine

Graphical User
Interface

Cloth Simulation System

Runtime Console
User Interface

Integrated Interface Services

OpenGL Rendering Engine CAVELib Rendering Engine

Environment Modelling and Dynamics Services

Prometheus I/O External
Streaming Interface

VRML97/H-Anim
Interface

EGML Interface

CORBA
Networking APIOpenGL API CAVELib API

I/O Prometheus
Module (BBC)

Figure 1 Prometheus Architecture (Basic) Figure 2 Cloth server software layers

4 The Cloth Simulation Server

The cloth simulation module must receive real-time streams of motion capture data. Each stream pertains to each virtual character in the
scene, for which clothing is to be simulated. Using this data, the system internally animates its own segmented representation of each
clothed virtual character and performs simulation tasks for each item of clothing worn by each character. Finally it must stream
deformed clothing animation data to clients in the architecture. The cloth server has its own custom VRML97 compatible rendering
engine, along with an animation engine. The system works under Windows, Unix and UCL's Reactor (CAVE-like environment.) The
animation system uses a notion of Event Graphs, separate to the scene graphs, created either through the API or a simple script language
we have developed called EGML (Event Graph Markup Language.) The syntax of this language is similar to VRML97. The system can
execute in one of three test modes - animation server, cloth simulator and player, all of which run as separate clients and servers on a
network. This permits testing of the cloth simulation server independent of the Prometheus architecture, using the same communication
protocols.

Rather than research alternative methods for animating 3D clothing, a fairly conventional approach was taken to physically model the
clothing dynamics. Forces within the system are evaluated and advanced using an ordinary differential equation (ODE) solver, with
additional responses imposed by collisions between the clothing and the animating character. The most substantial contribution made by
this research lies in the area of quickly evaluating cloth-character collisions at runtime. Cloth-cloth collisions are currently ignored to aid
realization of real-time performance and are left for future research.

1 Havok’s SDK is of particular note http://www.havok.com

3 3

4.1 Overview of the Physical Simulation

This section will give a brief overview of the physical model chosen for use by the simulation. Our physical model is based strongly on
the work of Anderson [1], who has reformulated an approximation of a physical model by Volino and Thalmann [16].

Many cloth simulation methods such as [11] require a uniform polygonal grid representation to provide an expected geometry for the
formulation of force evaluation equations. These are typically mass-spring representations, where vertices of the mesh have associated
masses and polygon edges are notional springs which exert forces on connected mass points. Additional conceptual springs are
sometimes included, e.g. diagonally to penalize bending and sheering. It was considered that regular grid polygonal meshes were too
limiting for 3D clothing model designers. This is made possible by the work of Thalmann [16], but force evaluation equations required
were deemed too substantial for real-time performance. An approximation of [16] given by Anderson [1] was chosen for use. Non
uniform meshes can be used with this method, using attributes including density, thickness, Young's modulus and the Poisson
coefficient, known to material engineering. Vertex masses are calculated by distributing local mesh masses to local vertices. Spring
constants also vary across the cloth, calculated individually based on the local geometry of the material and its properties. In each
iteration, the system evaluates a number of types of force acting on each mass point. This forms an initial value ODE problem. Rather
than concentrate on complex solvers, we have opted to keep a simple Euler solver, allowing research to focus on collision detection.
Though Euler is known to require more iterations and offers less stability than others such as n’th order Runge Kutta [16] or Implicit
Euler [2], our tests show it to be acceptably stable for our current work. Future work will incorporate other solvers. The primary forces
that are evaluated at the start of each time step include tensional (tension, compression, shearing), flexional (bending) and frictional
(between surfaces). In addition, there are gravitational (normal earth gravity), viscous drag (air friction) and wind using a simple
constant model. Fixture constraints can be applied to any subset of a clothing item such that it is able to bind to the character. This is
needed for waist and cuff areas.

4.2 Overview of the Collision Detection Method

The primary focus of this research was to discover a fast and efficient cloth-avatar collision detection system, suitable for real-time
performance. Cloth self collision detection was not included to reduce overheads at runtime. Typically, the absence of cloth self
collisions is not particularly noticeable in dynamic scenes with single layered clothed avatars. Notable work on this subject has been
performed by Provot [10] and Thalmann [15].

The expense of full geometric cloth and avatar polygon collision detection was ruled out as this can be expensive unless very few
polygons can be determined to be candidates. Cloth mass point (vertex) collisions with the avatar were favored as intersection tests
between vertex motion paths and surfaces was considered more likely to achieve real-time performance. This problem is one of
detecting whether the desired motion of a mass point after a time step, as requested by the physical simulation, will collide with any
moving avatar body parts or other dynamic objects in the scene. This motion is only desired because the end state may be illegal if cloth
mass points penetrate the body during the time step. If collision tests are to be performed at each time step, the collision detection
system must be very efficient. Assuming a simple high frequency solver applied to an example with 30 time steps per frame at 25
frames per second, the system must run 750 times per second. Moreover, the processing time used for collision detection must itself be
short to allow additional time for the physical simulation and other overheads such as animation and rendering if required. The use of
vertex-surface collisions, rather than surface-surface collisions gives rise to potential intersections between cloth surface polygons and
the character’s surfaces, even though all vertices of the cloth may be outside the character’s volume. This is most likely to occur in
regions of high surface curvature or where cloth surfaces have a low sampling density, i.e. few polygons which is likely for interactive
systems. To alleviate this problem, collision detection is performed at a threshold distance from the character's surface, i.e. it must
collide with an offset surface of the body. This distance must be calibrated to the avatar and cloth polygon sizes.

The method presented here is based on a distance field representation for local body limb spatial partitioning. Non-hierarchical bounding
boxes are used to bound limb segments. Initially, spatial partitioning of the dynamic characters and scene was considered. There are
many ways in which this could be done, including Octrees, BSP trees, K-D Trees or bounding volume hierarchies. Partitioning could be
performed in local object or world coordinates. Hierarchical partitioning methods were rejected due to their need for reconstruction
resulting from changes and their O(n log a) performance for tests, where n is the number of vertices, and a the number of partitions.
Voxels were favored because they would potentially offer a system which tends towards O(n) complexity with decreasing time step size
for collision path tests as motion paths through the voxel space become smaller. Each limb segment in the avatar has a single distance
field volume. The system must carry out tests to determine which distance fields a mass point's motion may intersect. For this, a method
which simply lists collision candidate objects for each clothing item was chosen. Typically, a character's body has about 19 segments.
Each garment, e.g. shirt or skirt will generally only collide with a small subset of these. For example, a skirt generally only collides with
hips, thighs, shins and maybe hands. A hierarchy of bounding volumes of these objects would generally have a high degree of overlap
and will not have high depth, reducing hierarchical efficiencies. While a non-hierarchical method is not a good solution for large
environments, it is suitable for this small case where overlapping in hierarchical volumes is prevalent. Distance fields are in voxel space,
where each voxel contains information about the closest surface items, usually stated as a distance to them. Proximity information is
therefore readily available for offset surface and vertex proximity calculations. If this information is in the form of a reference to one or
more closest voxels, this forms Voronoi regions around the original surface voxels.

4.2.1 Distance Field Generation

Here, we present our method, the Discrete Voronoi Distance Propagation (DVDP) for simple, rapid generation of distance fields from a
discretized surface. Initially, the bounding box of an object is selected and used as a basis for the voxel space. The contained polygonal
boundary representation is then voxelized into the discretized voxel space using scan line based algorithms [8]. For purposes of
rendering, voxel occupancy data could be included to anti-alias the discretized surfaces. For the purposes of collision detection, we relax
this requirement and use a binary voxel space, where voxels are considered to be either inside or outside the volume described by the
object. Polygon normals are written into each voxel during the voxelization process, rather than inferring them later from the discretized
surface structure. Voxels that contain more than one polygon, e.g. on edges, vertices or multiple sub-sampled polygons, have their
normals listed in the voxel to permit multiple surface collision responses.

4 4

Naïve generation of the distance field, where the distance between each voxel is compared with every other voxel has a complexity of

)(6nO where n is the size of a cubic voxel space, which clearly does not scale well. To combat this problem, various Distance

Transform (DT) methods have appeared in the literature for calculating distance fields, the most basic being the Chamfer Distance
Transforms (CDT) and notably the recent Vector City Vector Distance Transform (VCVDT) by Satherley and colleagues [6], [7] that
use a vector form of the CDT. Distance shells are initialized with accurate vectors to closest polygonal surfaces. These vectors are then
propagated and modified based on inter-voxel transition directions using multiple pass applications of vector based kernels. A
hierarchical variant called an Adaptive Distance Field (ADF) has also been developed Frisken [5].

Our method is based on an incremental propagation of the initial voxel space surfaces, forming a Voronoi diagram of the discretized
surface. In particular, no explicit mathematical operators are required to calculate the Voronoi regions, other than those required for
simple voxel space data structure access. Accuracy is restricted to the binary, discretized surface unlike methods such as [6] that make
corrections based the original polygonal surface. A global Voronoi solution is determined by considering the aggregate spherical
expansions of all voxels in the voxel space, until all free space is filled. The expansion of each Voronoi cell will compete evenly if
expansion is sequential and uniform across the voxel space. To do this, we first consider the iterative expansion of a single voxel at the

center of a conceptual voxel space. At each iteration 1+i , the voxel is expanded by the least radius possible, such that the new

spherical shell oriented about the central voxel intersects the centers of new voxels that are not on the surface in the previous iteration i .
A 2D equivalent forms a sequence of incrementally expanding circles in the plane, centered at the expanding voxel. The 2D voxel space
can be reduced by symmetry to quadrants and then further to octants by diagonal symmetry. Within this triangular voxel space, the
expansion ordering for a maximal sized voxel space can be predetermined, as shown in Figure 3. Each iteration has an associated

Euclidian distance v from v . Note that each iteration value may add voxels at more than one location. Iterations 13 and 25 are

examples of this.

X

35

32 34

25 30 33

17 22 27 31

11 13 18 23 29

5 8 12 16 21 28

2 4 7 10 15 20 25

0 1 3 6 9 13 19 24

Z

Figure 3 2D Octant incremental expansion of voxel 0

The expansion is mirrored in each octant in the plane. This example would cater for a voxel space of maximum size 8, but can be

extended as required. An adjacency rule base can be formed, to locate the relative positions of new voxels 1+iV in iteration 1+i from

those iV already introduced in i . Adjacency rules are based on the type of connectivity between two voxels. In 2D, two types of 4-

connections are possible, through edges and corners. Each iteration i has a set of k associated action rules iA , such that each action

iAa ∈ introduces one new voxel iVv ∈ in this symmetrical subset of the voxel space. For example, 7A has only one action, but

13A and 25A have two. Each action has a source voxel sv and a destination voxel dv that is dependant on sv . To simplify action

rules and cater for lookup table symmetry through orientational invariance, a source voxel sv is expanded to all neighbouring voxels

svN with the same connectivity as it has with the destination voxel dv . The chosen sv must itself, be contained in the lookup table.

Care must be taken when choosing connectivity. For example, if 10vvd = as the iteration count has reached 10, 8v cannot be chosen

as sv based on a diagonal 4-connectivity due to 8v ’s potential expansion to 13v by the same adjacency type. To ensure correct

ordering in the expansion, a source voxel sv is chosen for each dv in an iteration, based on a chosen connectivity such that:

ds vv < (1)

dvv ≤ , vNv ∈∀ (2)

where vN is set of voxels neighbouring sv with the chosen connectivity. This guarantees that the chosen sv exists because it was

introduced in an earlier iteration. Secondly, it will not under any circumstances, expand to iterations higher than that of the destination

voxel due to orientational invariance. It can be shown through inequalities that for any dv that does not lie on the diagonal, a suitable

sv is the left edge 4-connected voxel as they satisfy (1) and (2), i.e. for),(zxvd = ,),1(zxvs −= . Similarly, for those

),(zxvd = that lie on the diagonal, it can also be shown through inequalities that the lower left diagonal can be used, i.e.

)1,1(−−= zxvs such that (1) and (2) are satisfied.

The 2D form of this rule base can be reinterpreted in 3D with a lookup table space in the shape of a tetrahedron bounded by the
following inequality:

5 5

xzy ≤≤ (3)

as shown in Figure 4. Other tetrahedral configurations would also be possible through symmetry. There is a 1/48th fold symmetry of the
tetrahedron in the voxel space, shown in . Each octant of the voxel space is subdivided into sextants, mappable through symmetry onto
the tetrahedron of Figure 4. Note that each of the sextant tetrahedrons share the same origin at the center of the voxel space, equivalent
to the voxel 0 origin of Figure 4. In the 3D case, there are three types, of voxel connectivity, 6-connection (face), 12-connection (edge)
and 8-connection (corner). Again, it can be shown through inequalities that the source voxels in Table 1 satisfy equations (1) and (2)

subject to sv being contained within (3) with selected connectivity such that sv still maps into the tetrahedron. Table 1 shows which

central voxels and connectivity are used for actions based on the position of),,(zyxvd = . It is possible to use other rules, such as 8

or 12 connected rules in place of 6-connected rules. However, it is advantageous to use a connectivity with the least number of adjacent
voxels as the expansion of each source voxel will address all adjacent voxels with the chosen connectivity. A number of these will be
redundant as some of the neighbours will belong to previous iterations. The voxel is initialized such that all transparent voxels are
tagged as unprocessed. The Voronoi distance field algorithm incrementally expands the area around each discretized voxel in equal
amounts at each iteration. Each expansion step is the smallest possible.

A set of voxel sets SSi ∈ stores references to voxels generated in each iteration. The initial surface set 0S is the initial voxelized

surface. When a set is completed, all its voxels are tagged as processed. Therefore, the initial surface is also considered processed before

iteration starts. Sets can be discarded to reduce memory overheads when there are no longer any dependant voxels. Each action in iA
specifies which set will be used as the source, the nature of the connectivity and the distance that will be assigned.

X

Z

Y

Figure 4 Extension of 2D to 3D Tetrahedral rule base Figure 5 Tetrahedral symmetry in voxel space

Each iteration has one or more actions. Each action is executed on the source set that it specifies. During a source voxel’s expansion, an
attempt is made to expand to all neighbours with the connectivity specified by the action. Due to (1) and (2), these voxels will either be
valid destinations for the current iteration, or they will have already been included in a previous iteration and will already be tagged as
processed. In this case, they are not included in the iteration. Several voxels may legally expand to the same destination voxel in a single
action, or during multiple actions of an iteration. In these cases, the distance and closest voxel information are passed on and
accumulated within the destination voxel allowing multiple Voronoi cell membership. Voxels of the original surface have an associated
Voronoi cell when completed. To reduce memory storage overheads, we limit the propagation of Voronoi references to a shell distance
around the initial surface. Voxels further in the Voronoi cell contain only distance information that could apply to multiple surfaces at
that distance. This is important as voxels in volumes within objects and concavities can belong to a large number of Voronoi cells if

equidistant to multiple voxels in 0S . Offset surface normals are currently derived from the normals associated with the Voronoi cell. A

number of methods have been developed in the literature for offset surface normal approximation [17], but we currently use the Voronoi
cell normals as they result in a collision response representing their closest surface voxels in a way that has shown to be acceptable.

Table 1 3D Tetrahedral rule base action connectivities Figure 6 Four offset surface collision model

),,(zyxvd),,(zyxvs Connectivity

x>z (x-1,y,z) 6-connected

x=z, y=0 (x-1,y,z-1) 8-connected

x=z, y>0 (x-1,y-1,z-1) 12-connected

S0

T0

T1

T2

T3

4.2.2 Collision Detection in the Distance Field

This section will look at how collision detection can be performed between a single mass point and a single distance field. During a time

step from t to ∆+t , both the mass point and the body segment will move, with a mass point’s relative starting position)(tp in the

previous time step to a relative end position)(∆+tp . The motion of the mass point relative to the distance field over the short time

step is treated as a linear approximation, to simplify collision calculations and attempt to provide a fast algorithm.

6 6

A cloth mass point can have one of three assigned states with respect to its position relative to the distance field volume and object

offset surfaces, { }OnSurfInsideVolOutsideVolpState ,,)(∈ . The first two possibilities are defined by the mass point's

containment status in the distance field volume. Whether the mass point is on the object surface or not is defined during the course of the
collision detection, though it must also be contained within the volume.

Each mass point has a data structure that records its current state with respect to each potential collidable object, also caching other data
such as its last position in the world, local and voxel coordinate systems. The initial state of all cloth mass points with respect to all
distance fields each is potentially collidable with, must be established before the simulation starts. At the start of a time step, the mass
point may be in any of these states. At the end of the time step, it may finish in any of these states, therefore resulting in 9 possible state
transitions. The relative linear motion of the mass point in the distance field is traced using an algorithm that is similar to that of plotting
a 3D line. Currently, we use a 3D Bresenham algorithm or alternatively, a potentially faster lookup table method. As the line trace
advances, the distance of the voxel is checked, relative to a number of offset surfaces that provide a response model.

State transitions from OutsideVolOutsideVol → do not require any tracing to be performed as this form of intersection is currently

ignored. Similarly, once a trace has exited a distance field volume, i.e. the transition is OutsideVolOnSurfInsideVol →}|{
it cannot re-enter due to the convex nature of the volume and thus requires no further processing during the time step.

A mass point that is entering the volume }|{ OnSurfInsideVolOutsideVol → needs to establish the voxel encountered upon entry

such that the trace can commence. This would be possible by calculating the face intersected, establishing the point of intersection and
transforming the position into the local integer coordinate system of the distance field. Rather than perform this potentially lengthy
calculation, the method simply traces the path in reverse until the trace exits the volume. In this case, it is not the first intersection
encountered that is of interest, but the last, which is in fact the first intersection as the trace is reversed.

During tracing it is necessary to establish whether the trace has exited the volume. Performed naively, this would require clipping or a
dimensions bounds test at each trace step, or knowledge of the number of steps until exit. To speed up this process, extra voxels are
placed on the outer border of the distance field that are tagged as being on the border. Each step of the trace can then perform a single,
fast exit test.

A four offset surface model is used to manage collisions and sliding with the distance field, shown in Figure 6. Offset surfaces can be
easily determined at runtime as the distance field already encodes surface proximity information for all voxels. References to normals of

surface cells are passed on through their Voronoi cell to a shell distance that contains the chosen outer threshold distance 3T .

Additional empty voxels are placed on the borders of the volume to cater for the offset surfaces, such that they are guaranteed to be
contained. Each offset surface performs a different function. Collisions are registered on impact at which is contained between
envelope surfaces and . This envelope allows for imprecision in the simulation’s collision response, e.g. due to inaccurate normals or
rounding errors. It also attempts to counter the problematic effects of sliding along jagged, voxel offset surfaces. If a cloth mass point
ventures below, a penalty force is applied to persuade the vertex to move away from the surface. If the mass point gets closer still, a
collision is registered at until later conditions allow forces to be applied that move it away from the surface.

5 Results

Test scenarios have been developed, primarily consisting of clothed avatars walking, to evaluate the system’s performance. Here, we
will present results of the walking sequence shown in Figure 7 for both distance field generation and runtime performance. The
character in sequence walks from (a) to (g) using a motion sequence of 203 frames. Image (h) shows a continuation of the sequence after
the test period. Hips, thighs and shins are set up as collision candidates and therefore require distance field representations. The cloth
consists of 480 triangles. The hardware used throughout is an Intel P4 2.8GHz system with an nVidia Quadro4 900XGL graphics card.

Times for distance field generation after voxelization for each collision candidate body part are shown in Table 2. The distance field is

calculated for the whole voxel space, but Voronoi cell membership references are only propagated up to the outer offset surface 3T =6

to conserve memory. Also included is the time required to generate the distance field without Voronoi references. Though the resulting
volume not used in the cloth simulation, it serves as a comparison.

Table 2 Collision candidate distance field generation Table 3 Real-time performance for sequence

Character
Body Part

Voxel Space
Dimensions

& No. Voxels

Distance Field
(6) Generation

Time (s)

Distance Field
(0) Generation

Time (s)

Hips
109x99x107
(1,154,637)

2.765 2.422

Thigh
75x190x73
(1,467,750)

3.641 2.797

Shin
57x177x61
(615,429)

3.422 1.656

Sequence Performance Detail Value
Rendered Frame Rate (fps) 26.62
Sim. Frame Rate (No Rendering) (fps) 30.2
Average Collision Path Distance (Voxels) 0.166036
Total Collision Detection Time Percentage 17.1 %

The simulation was run at 33 time steps per frame. Runtime performance details for this animation sequence are given in Table 3. Here,
we have rendered just the character and cloth without a scene, to realize a frame rate of 26.62 fps. In a second test, rendering has been
disabled to show calculation time for the animation and cloth simulation, resulting in a frame rate of 30.2 fps.

7 7

The sequence uses 17.1% of its simulation time performing collision tests, disregarding rendering, animation and animation
interpolation. Reduced frequency collision tests have been shown to work well, e.g. performing 10 collision test cycles per second, with
multiple time steps in between, though some accuracy will be lost and the resulting simulation differs.

6 Conclusion and Future Work

We have developed a real-time cloth simulation sever, integrated into a distributed network architecture for 3D multi-media content
creation and delivery. Real-time, interactive frame rates have been achieved on low cost equipment, suitable for multiple cloth server
implementations. We have introduced the DVDP algorithm as a fast and simple method for the generation of Voronoi geometry of
volumetric object representations. A fast collision detection method has been developed, based on the results of the DVDP. The system
uses a four offset surface collision response model, which has also been shown to function at real-time rates, with very low percentage
overhead in comparison to the physical simulation time. Future work could focus on:

• General stability issues and compatibility with lower frequency solvers, such as Runge Kutta [16] and Implicit methods [2].
• Compression of volume data and its use in real-time
• Application of distance field collision detection to seamless avatars.

Figure 7 Basic character walking animation sequence

References

1. J. Anderson. Fast physical simulation of virtual cloth based on
multilevel approximation strategies. Ph.D. 1998. Thesis,
University of Edinburgh

2. D. Baraff, A. Whitkin/ Large steps in cloth simulation,
Proceedings of SIGGRAPH 1998, pp 43-54

3. B. Baumgart. Winged edge polyhedron representation,
Technical report AIM-179 (CS-TR-74-320) 1972, Computer
science department, Standford University

4. R. Bridson, R. Fedkiw, J. Anderson. Robust treatment of
collisions, contact and friction for cloth animation, Proceedings
of SIGGRAPH 2002, pp 594-603

5. S. F. Frisken, R. N. Perry, A. P. Rockwood, T. R. Jones
Adaptively sampled distance fields: a general representation
of Shape for Computer Graphics
ACM SIGGRAPH Proceedings July 2000, pp 249-254

6. M. Jones, R. Satherley. Using distance fields for object
representation and rendering.
Eurographics UK 19’th Conference Proceedings, pp 37-44

7. M. Jones, R. Satherley. Voxelization: Modelling for volume
graphics vision, modeling, and visualization 2000, pp 319-326

8. A. Kaufman. An algorithm for 3D scan-conversion of polygons.
Proceedings of Eurographics, August 1987, pp 197-208

9. M. Price, J. Chandaria, O. Grau, G. Thomas, D. Chatting, J.
Thorne, G. Milnthorpe, P. Woodward, L. Bull, E-J. Ong, A.
Hilton, J. Mitchelson, J. Starck Real-time production and
delivery of 3D media roceedings of the International
Broadcasting Convention (IBC) 2002

10. X. Provot.. Collision and self-collision handling in cloth model
dedicated to design garments
Graphics Interface 1997, pp 177-189

11. X. Provot. Deformation constraints in a mass-spring model to
describe rigid cloth behavior
Graphics Interface 1995, pp 147-155

12. G. Thomas, J. Jin, T. Nibblet, Urquhatr . A versatile camera
position measurement system for virtual reality TV production
Proceedings of the International Broadcasting Convention(IBC),
pp 284-289

13. G. Thomas, R. Storey. TV production in the year 2005
Montreux Symposium 1999, pp 234-238

14. T. I. Vassilev, B. Spanlang, Y. Chrysanthou. Efficient cloth
model and collision detection for dressing virtual people.
Proceedings of GeTech Hong Kong 2001

15. P. Volino, M. Courchesne, N. Thalmann
Versatile and efficient techniques for simulating cloth and other
deformable objects
Proceedings of SIGGRAPH 1995., pp 137-144

16. P. Volino, N. Thalmann
Developing simulation techniques for an interactive clothing
system, IEEE International Conference on Virtual Systems and
Multimedia, September 1997, pp 109-118

17. R. Yagel, D. Cohen, A. Kaufman, Normal estimation in 3D
discrete space, The Visual Computer, Vol. 8, No. 5-6,
June 1992, pp 278-29

18. D. Zhang, M. Yuen, Collision detection for clothed human
animation, Proceedings of Pacific Graphics 2000, pp. 328-337

