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Abstract— The self-paced (or asynchronous) control paradigm
enables users to operate Brain-Computer Interfaces (BCI) in a
more natural way: no longer the machine is in control of timing
and speed of communication, but the user. This is important to
enhance the usability, flexibility and response time of a BCI.

In this work, we show how subjects, after performing a cue-
based feedback training (smiley paradigm), learned to navigate
self-paced through the “freeSpace” Virtual Environment (VE).
Similar to computer games, subjects had the task of picking up
items within a limited time period using the following navigation
commands: rotate left, rotate right and move forward (3-classes).
Since the self-paced control paradigm allows subjects to make
voluntary decisions on time, type and duration of mental activity,
no cues or routing directives were presented. The BCI was
based on three bipolar electroencephalogram (EEG) channels and
operated by motor imagery. Eye movements (electrooculogram,
EOG) and electromyographic (EMG) artifacts were reduced
and detected on-line. Results of three able-bodied subjects are
reported and problems emerging from asynchronous control are
discussed.

Index Terms— Brain-Computer Interface (BCI), Electroen-
cephalogram (EEG), Motor imagery, Classification, Virtual Re-
ality (VR), asynchronous operation mode

I. I NTRODUCTION

FOR severely paralyzed people, or patients in a “locked-
in” state, direct brain-computer interaction represents one

possibility to reestablish communication. A Brain-Computer
Interface (BCI) recognizes voluntary changes in ongoing elec-
trophysiological signals and translates different brain states
into appropriate commands for communication and control.
For a review see [1], [2], [3]. In this work the BCI terminology
and definitions proposed in [4] were adopted.

Important aspects for BCI control paradigms are (i) the
temporal availability of the system for the user, either peri-
odically, requiring a cueing or synchronization mechanism, or
continuously and (ii) the ability to support “non-control”(NC)
[4]. NC, in contrast to intentional-control (IC), describes the
ability of the system not only to discriminate between several
voluntarily modulated brain patterns (IC), but also to detect
that the user does not require IC. Nowadays the majority
of BCI systems are operated using a synchronized (or cue-
based) paradigm. Timing and speed of communication are
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preset by the paradigm. The most natural way of human-
machine interaction is the self-paced mode. The BCI system
is continuously analyzing the ongoing brain activity and can
handle NC. Recently an increasing number of papers started to
address the issues of constantly-engaged and self-paced BCIs
[5], [6], [7], [8], [9], [10]. Another very important issue for
BCI control, especially in early training sessions [11], isthe
automatic removal or detection of artifacts. Signals with origin
other than in the central nervous system (e.g. muscle activity)
must not have any influence on the BCI output.

The Graz-BCI is based on the analysis and classification of
sensorimotor electroencephalogram (EEG) patterns generated
during imagination of specific movements (motor imagery, MI;
e.g. hand or foot) [12]. In this work we present the new two-
classifier based Graz-BCI designed for self-paced applications.
The first of the two classifiers, CFR1, is set-up to discriminate
between different MI tasks; the second classifier, CFR2, is
trained to detect any MI-related brain activity in the ongoing
EEG. By combining the results of both we create a system
able to discriminate between several MI-modulated mental
brain states (IC) and NC. As a first self-paced application
participants had to navigate through the ”freeSpace“ Virtual
Environment (VE) by using the following control commands:
Rotate left, rotate right and move forward. Participants were
placed into the ”freeSpace“ virtual park, presented in 2-D
on a conventional computer screen, with the task of picking
up items within a limited time. Results of three able-bodied
subjects are reported.

II. M ETHODS

A. From externally-paced (or cue-based) to self-paced opera-
tion protocol

Subjects and BCI were trained (mutually adapted) in a three-
step procedure. First, twenty-two monopolar EEG channels
were recorded while subjects were performing a 4-class MI
training without feedback (synchronized paradigm). Sinceone
philosophy (endeavor) of the Graz-group is to reduce the
number of channels, 3 bipolar channels were derived with
best discrimination power between three of the four MI tasks
(feature selection). CFR1 was trained with the obtained fea-
tures and 3-class feedback training was performed (synchro-
nized paradigm). Second, as soon as the 3-class classification
accuracy was higher than 75% for each subject, classifier
CFR2 was trained to classify between the enhanced MI brain
patterns and non-control (NC). NC consisted of recordings
were subjects were instructed to sit relaxed and perform ”non-
MI“ mental activities. To evaluate the performance of CFR2
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Fig. 1. EEG and EOG electrode placement. For both, referencewas placed on
the left and ground on the right mastoid. The arrows between EEG electrodes
show the analyzed bipolar derivations (⊕ → ⊖).

feedback training with longer inter-trial periods, representing
longer periods of NC, were made. The third and last step was
to train subjects to navigate self-paced through the ”freeSpace“
VE and to fine tune CFR2.

B. Subjects and data acquisition

Three healthy subjects (2 male, 1 female, right handed,
age 24.1±1.9 years) participated in this study. Prior to the
study presented in this work, subjects participated in prior
experiments [13] and learned to operate the 2-class basket
paradigm [14]. After 3 feedback training sessions the achieved
classification accuracies were 71.4% for subject v4, 82.8% for
v9 and 86.4% for x6.

Two different electrode arrangements were used. For the
training without feedback twenty-two monopolar EEG chan-
nels (Ag-AgCl electrodes, extended 10-20 system, reference
left mastoid, ground right mastoid) were recorded; Feedback
experiments were performed using three bipolar EEG channels
(ground position Fz) only. Additionally three electrooculo-
gram (EOG) channels were acquired (see Fig.1). The signals
were amplified, analog filtered between 0.5 and 100 Hz and
recorded with a sample rate of 250 Hz.

C. Signal processing

1) The Graz-BCI:The Graz-BCI (rtsBCI [15]) works on
a sample-by-sample basis. This means that feature extraction
and classification is performed with the same rate of the data
acquisition (250 Hz). This implies that the analysis performed
and the results reported in this work are sample-by-sample
based. The feedback is presented at a rate of 25 Hz (screen
update).

Band power (BP) features were estimated from the ongoing
EEG by digitally bandpass filtering (5th order Butterworth IIR
filter), squaring and averaging (moving average) the samples
over the 1-s just passed. Consequently for each subject the
only parameter to determine was the bandpass frequency
band for a selected number of BP features. For classification
Fishers linear discriminant analysis (LDA) was applied to the
logarithm of the BP estimates.

An automated correction method was used to reduce the
influence of EOG artifacts [16], [17]. It can be assumed that
the recorded EEGY is a superposition of the real EEG signal
S and three spatial EOG componentsN (horizontal, verti-
cal and radial) weighted by some coefficientb (accordingly
S = Y − N · b). The EOG was recorded with three
monopolar electrodes, from which two bipolar EOG channels
(covering the horizontal and the vertical EOG activity) were
derived (see Fig. 1). The weighting coefficients were computed
from a 1 minute recording where subjects were asked to
perform eye movements. This eye movement recording was
used to calculate the autocorrelation matrixCNN of the
bipolar EOG channels and the cross-correlationCNY between
recorded EEGY and EOGN . The correction coefficients were
obtained byb = C−1

NN
CNY (see [16] for more details).

We applied the method of inverse filtering [18] by estimat-
ing the autoregressive parameters of a 2-minute EEG segment
without artifacts to detect muscle activity [17]. If an EMG
artifact is superimposed to the EEG, the root-mean-square
(RMS) of the inversely filtered process increases. Each time
the increase exceeded the detection threshold of5·RMS from
artifact-free EEG, a warning message (marker) was presented
for 1s on the screen. Subjects were instructed to relax (loosen
the musculature) in order to make the warning disappear and
continue with their task.

At the beginning of each feedback session a recording of
approximately 4 minutes was performed (initial recording).
Two minutes of EEG/EOG with eyes open, 1-minute with
eyes closed and 1-minute with eye artifacts were recorded.
During the first three minutes subjects were instructed to sit
relaxed and to perform only a minimum of movements (eyes,
swallowing, ...). For the last minute subjects were instructed
to perform repetitively eye blinks, clockwise and counter-
clockwise rolling of the eyes, repetitively horizontal andrepet-
itively vertical eye movements for 15s respectively. The eyes
should circumscribe the whole filed of view without moving
the head. No limitations on the mental activity (thinking) was
imposed. Written instructions were presented to the subjects
on a computer screen for the duration of each individual task.
At the beginning and end of each task a low and high warning
tone was presented, respectively. The first two minutes were
used to compute the inverse-filter coefficients and segment
with the eye artifacts to set-up the EOG correction-coefficients.

2) Distinction Sensitive Learning Vector Quantization:For
the selection of the most informative BP features, bipolar
channel derivations and MI tasks, the Distinction Sensitive
Learning Vector Quantization (DSLVQ), an extended version
of Kohonens Learning Vector Quantization algorithm (LVQ),
was used [19]. LVQ uses a reduced number of codebook
vectors (labeled reference vectors) to approximate the optimal
Bayesian decision borders between different classes. Each
sample is classified to the label of its closest codebook vector
according to a distance function (e.g. Euclidean distance);
the influence of the features on the distance function is
equal. DSLVQ introduces a weighted distance function which
rates the influence of the features for classification: most
informative features are upgraded, features that contribute to
misclassification are discarded. The LVQ codebook splits the
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classification problem into sub-problems. By finding an opti-
mal linear approximation for the sub-problems, the relevance
of the features, which determines the correct classification,
is analyzed [20]. The major advantage of DSLVQ is that
it does not require expertise nor any a priori knowledge or
assumption about the distribution of the data. Furthermore,
not only relevant features, but also feature combinations,are
identified.

In order to obtain a reliable feature relevanceRTn [19], the
DSLVQ method was repeated 100 times (3 codebook per class,
type C training, 10.000 iterations, learning rate decreased from
α = 0.05 to α = 0.0 andα′(t) = 0.1 · α(t)). For each run
of DSLVQ classification randomly selected 50% of the BP
features were used for training and the remaining 50% were
kept to test the classifier.

D. Classifier CFR1: Design and Customization

The three class problem (number of classesNC = 3) was
solved by applying a majority voting to 3 pairwise trained
LDA discriminant functions (see [8] for more details). In
contrast to [8] only the sign of each LDA distance (classlabel
information) was considered (< 0 class one,≥ 0 class two)
and the LDA distance information was discarded. The class
with the highest frequency of occurrence (focc) within the past
subject-specific N samples (maximum N=75 or 250 ms) was
selected and a normalized distance (dn) was defined in the
following way:

dn = (focc −
N

NC
)/ (NC−1)·N

NC
∀ focc > N

NC
, or

dn = 0 ∀ focc ≤
N

NC
.

This normalization prevents quick changes of the classifica-
tion result and enables a smooth transition (”zero“ crossing)
between class-specific feedback. The disadvantage is the in-
troduction of an additional feedback delay.

1) Training without feedback:The twenty-two monopolar
EEG channel setup was used (Fig.1). Subjects were instructed
to perform continuous kinesthetic MI [21] according to the
instructions presented on the screen. The kind of movement
was chosen by the subject according his/her preferences (e.g.
playing a piano or swimming) and fixed before the recording
started. Two sessions were recorded for each subject on
different days. Each session consisted of 6 runs with 48 trials
each (12 trials per class per run). At t=0s of each trial a short
warning tone was presented and a fixation cross appeared in
the middle of the screen. From t=2.00s to t=3.25s an arrow
(cue) was shown, indicating the mental task to be performed
(start MI). An arrow pointing to the left, to the right, downward
or upward indicated the imagination of a left hand, right
hand, foot or tongue movement, respectively. The order of
appearance of the classes (cues) was randomized and at t=6s
the screen was blanked (stop MI). To avoid adaptation to the
timing a randomly selected inter-trial interval lasting between
1s and 2s was introduced after second 6.

2) Feature selection:For each subject individual 4-class
DSLVQ classifiers were trained with BP features extracted
with the same time lag (from t=0.0s to t=4.0s in steps of
∆t=0.5s) to the cue presentation at t=2.0s. For eacht and

each trial, 15 non-overlapping BP features between 6 - 36 Hz
with a bandwidth of 2 Hz were computed for each of the
examined 23 bipolar channel derivations (Fig.1). The selected
frequency range coversα and β bands, both relevant for the
classification of MI [22]. By selecting 2 Hz frequency bands
the resulting temporal delay (blur) and spectral resolution is
acceptable. At the same time the total number of features was
limited in order to avoid overfitting-effects.

The most relevant BP features were selected by evaluating
theRTn values (high value means important feature) from the
DSLVQ analysis att with the highest classification accuracy.
BP features were selected manually according to the following
criteria: (i) large meanRTn0 value and small variance (100
DSLVQ iterations) (ii) maximum number of bipolar chan-
nels = 3 (iii) maximum number of BP features = 6 (iv) sym-
metrically arrangement over sensorimotor areas (hemisphere).
Two adjacent BP features were combined to one 4-Hz BP
feature (e.g. 10-12 Hz and 12-14 Hz to 10-14 Hz).

With the identified features for each of the four 3-class
MI combinations an independent CFR1 was trained (10x10
cross-validation) and a sample-by-sample on-line simulation
was computed. The three MI tasks with the best classification
accuracies within the feedback period (t=2.0s to t=6.0s) were
selected and used for on-line experiments.

3) Feedback training:On-line feedback experiments were
realized using the 3 subject-depended bipolar EEG derivations.
Electrode position Fz served as ground.

Each session started (after the initial recording) with un-
guided practice (free training) lasting about 5 minutes. Dur-
ing this period subjects could test the classifier (continuous
feedback) and the smoothing parameter N needed fordn was
adjusted according to the subjects preference (slow or fast
reaction time). The feedback presented to the subjects was
a smiley (see Fig.2.A).

Five (subject v4 and x6) and seven (v9) feedback sessions
were recorded with at least 4 runs with 30 trials (10 per
class) each. At the beginning of each trial (t=0.0s) the gray-
colored smiley was positioned in the center of the screen. At
t=2.0s a warning tone was presented followed by the cue at
t=3.0s. From t=3.0s to t=7.5s subjects had the task to move
the smiley according to the cue to the left/right/down(up)
by performing left hand, right hand or foot (tongue) MI
respectively (Fig.2.A). During the feedback period (t=3.5s to
t=7.5s) the smiley changed to color green when moved to the
correct direction, otherwise the color was red. The position of
the smiley was set according to the classification result: The
classlabel indicated the direction anddn the distance to the
origin. Furthermoredn was mapped to the curvature of the
mouth causing the smiley to be happy (corner or the mouth
upwards) or sad (corner or the mouth downwards) according
to correct classification or misclassification (see Fig.2.A). At
t=7.5 s the screen was blanked and a random period between
1.5 s and 2.5 s was presented.

After each session feature selection was performed and
the classifier was updated. Each time the accuracy of the
updated classifier was higher than the on-line result, subjects
tested the new classifier during the unguided practice period
of the next session. When subjects achieved better BCI control
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Fig. 2. A: Feedback timing and scheme of the Smiley paradigm.B: Asyn-
chronous switch between intentional control (IC) and non-control (NC). Only
when the classifier output exceeded (texceed) or did fall below (tbelow) the
predefined threshold (THzero) a switch between NC and IC or IC and NC
was valid. C: First person view of the freeSpace virtual environment. A tree,
some hedges and a coin (to collect) is visible on the screen. The big arrow
represents the BCI classification result and indicates the navigation command
(here forward movement). During the non-control state the three arrows had
the same (small) size. On the upper left side the scoreboard and on the right
side the elapsed time was presented. For an easier navigation on the right side
a rotating bird-view map of the freeSpace was shown.

the updated classifier was used for feedback experiments,
otherwise the old one was maintained.

E. Classifier CFR2: Design and Customization

One single LDA function was trained to discriminate be-
tween IC (3 MI tasks merged) and NC.

1) Feature selection:In order to obtain a more detailed
spectral representation thirty-one overlapping (1 Hz) BP fea-
tures between 6 - 36 Hz with a bandwidth of 2 Hz were
extracted from each channel and analyzed by DSLVQ. The
six most relevant features were selected to set-up the LDA.

Two BP feature vectors were extracted from the feedback
interval (MI) around the best on-line classification accuracy
(e.g. best classification at t=5.5s; BP extracted att1=5.5s and
t2=6.5s) from each trial of the last feedback training session
(4 runs with 30 trial each). The resulting4 runs · 30 trials ·

2 BP = 240 BP samples were defined as IC. NC consisted
of 120 BP samples extracted equidistantly from the EEG
block of the baseline recording lasting 2 min with eyes open.
Furthermore 120 feature samples were extracted from each
trial at t=3.0s (before cue presentation). The latter time was

selected with the intention to detect only MI specific patterns
during feedback (after cue presentation) and not unspecific
activations (e.g expectation) induced by the appearance ofthe
fixation cross.

To make the CFR2 more robust and reliable, considering
the non-stationarity and inherent variability of brain signals,
one threshold (THzero) and two transition periods, one for
the state switch NC to IC (texceed) and one for IC to NC
(tbelow) were introduced. Each time the distance between the
BP features and the optimal LDA hyperplane (LDA distance)
was higher thanTHzero for texceed, the state IC was detected.
To get back to NC the LDA distance had to fall below
THzero for tbelow (see Fig.2.B). The system reaction time
was modified bytexceed and tbelow ; changingTHzero meant
moving the decision hyperplane towards IC or NC. The initial
THzero used for feedback experiment was determined by
Receiver Operator Characteristic (ROC) analysis. The value
which maximizes the number of TP detections within the
feedback period (t=3.5s to t=7.5s) and at the same time
minimizes the number of FP detections everywhere else was
selected (sample-by-sample).

By combining both, CFR1 and CFR2 we created a system
able to discriminate between 4 classes: (i) left hand, (ii) right
hand, (iii) foot (tongue) MI and (iv) non-control. The output
of CFR1 was triggered by CFR2. Each time IC was detected
the classification result of CFR1 was feed through. Otherwise
the output was ”zero”.

2) Feedback training with longer inter-trial intervals:
Two sessions with 5 feedback training runs (10 trial per
class) were performed. The first 2 runs consisted of feedback
training with CFR1 only (section II-D.3) to monitor the
subjects actual performance. Thereafter subjects underwent
an unguided practice lasting about 10 minutes to determine
THzero, texceed and tbelow . Depending on the statements of
the subjectsTHzero was gradually increased or decreased. The
criteria was that subjects were able to control the smiley, but at
the same time the number of FP detections was a minimum.
The transition times were set to 500ms and also gradually
adapted. A maximum period of 1s was chosen fortexceed and
tbelow. Subjects had to identify these values by themselves
empirically. The values found were fixated and not changed
during the remaining experiments of each session.

Training subjects to gain self-paced control, the feedback
smiley paradigm from section II-D.3 was modified. The feed-
back smiley was presented and reactive during the whole run.
Each run consisted of 30 trials (10 per class). From t=0.0s
to t=8.0s the cue was presented and subjects had the task to
stir the smiley to the indicated direction. After this period a
random inter-trial period between 7.0s and 17.0s was presented
(NC). At the beginning the gray smiley was positioned in the
middle of the screen. During the transition timestexceed or
tbelow the color of the smiley changed gradually from gray to
green or green to gray, respectively. Additionally the smiley
was moving according to CFR1 with the distance information
weighted by the normalized transition time (from 0 to 1). In
this way subjects were informed of a forthcoming state switch.

After the first session an additional DSLVQ analysis was
performed for CFR2. Subjects tried the new CFR2 during the
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unguided practice period of session two and if the performance
increased, the new classifier was used.

F. Evaluating self-paced control of CFR1 and CFR2

1) The ”freeSpace“ Virtual Environment:The Virtual Envi-
ronment (VE) was created using the 3-D modelling software
package Maya (Alias Wavefront, Toronto, Canada). Further-
more it was animated (collision detection) and visualized by
the Qt application framework (Trolltech, Oslo, Norway). Since
the VE was running on a separate personal computer, the
communication with the BCI was realized using the User
Data Protocoll (UDP) and updated 25 times per second. The
virtual park, size30 × 30 units, consisted of a flat meadow,
several hedges and a tree placed in the middle for orienta-
tion. Three items (coins) were positioned on fixed predefined
locations inside the park. Three navigation commands were
implemented: turn left, turn right (angular velocity45◦/s)
and move forward (speed 1 unit/s). With this control, each
part of the park could be reached. To help subjects not get
lost and facilitate locating the coins, a bird view map of
the VE, showing the actual position, was presented (see Fig.
2.C). Interaction with each of the existing virtual objectswas
possible. A sphere, representing the user in the VE, was used
for collision detection. Each time the surfaces of two objects
were intersecting an event was generated: Coins were collected
and hedges or the tree had to be bypassed.

2) Experimental paradigm:Two sessions were recorded on
two different days. Each session started with about 20 minutes
of unguided practice (free training). Subjects could get familiar
with the freeSpace VE and the navigation mechanism. In
regard to the non-stationarity and inherent variability ofEEG,
THzero was adapted and fixated.

The VE was presented to the subjects in the first-person-
view on a conventional computer screen (2-D). Subjects had
the task of picking up the 3 coins within 3 minutes. From a
randomly selected starting point (different positions foreach
run but same positions for all subjects), subjects could explore
the park in the following way: left/right hand MI resulted ina
rotation to the left/right whereas foot or tongue MI resulted in
a forward motion. Whenever NC was detected, consequently
no action was performed.

Six self-paced feedback training runs of 3 min each were
performed. The first three runs served as training, run four to
six were used to evaluate the performance.

For each subject the covered distance and resulting path
was depending on the individual routing strategy (e.g. pickup
order) and the ability to operate the BCI.

Since for this paradigm it was not possible to compute true
positive of false positive detections, at the end of each sessions
subjects were asked to self-report on the BCI performance.

III. R ESULTS

A. Muscular artifacts

By means of a 4 minute recording at the beginning of
each session the proposed EOG reduction and EMG detec-
tion algorithms were initialized. An independent investigation
revealed that 80% of EOG artefacts are removed by using

TABLE I

MOTOR IMAGERY (MI) TASKS (LEFT HAND, RIGHT HAND , FOOT OR

TONGUE), BIPOLAR CHANNEL SETUP(BIPOLAR), FREQUENCY

COMPONENTS(IN HZ) USED FOR THE DISCRIMINATION BETWEENMI

(CFR1)AND INTENTIONAL CONTROL VS. NON-CONTROL STATE(CFR2)

ARE SUMMARIZED FOR EACH SUBJECT(ID).

ID MI Bipolar CFR#1 (MI) CFR#2 (IC vs. NC)
v4 L,R,T +02-14 11-13, 25-27 12-14, 15-17, 20-22, 25-27

+04-16 - 9-11, 21-23
+06-18 11-13, 23-25 -

v9 L,R,F +02-08 11-13, 12-14 12-14, 19-21, 27-29
+04-16 11-13, 12-14 9-11, 11-13
+06-12 11-13 21-23

x6 L,R,F +02-08 10-12 8-10, 16-18
+04-10 9-11 8-10
+06-12 10-12, 19-23 15-17, 24-26

Synchronized Synchronized (longer inter-trial interval)
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Fig. 3. Feedback experiments (synchronized protocol). Thedark gray lines
indicates the interval of cue-presentation, the light grayareas the feedback
period. A: Three-class on-line classification performance. Four runs from 2
days were combined. Feedback was given from second 3.5 to 7.5. B: Mean
classification performance of the on-line feedback training with longer periods
without motor imagery. Subjects had the task from second 0.0to 8.0 to move
the feedback to the given direction.

the proposed method [16]. For each subject the percentage of
samples classified as EMG artifact, and consequently the time
of presentation of the warning message, was less than 0.9%.
Additionally power spectral densities were computed for each
channel and checked for muscle activity.

B. Classifier CFR1

The most discriminative bipolar channels, BP features and
MI tasks found by DSLVQ are summarized in Tab.I. As one
could expect,α and upperβ band of electrodes placed around
electrode position C3, Cz and C4 (international 10-20 system)
proved to substantially contribute to classification.

The on-line performance of the feedback training is shown
in Fig.3.A. The curves show the classification accuracy of the
4 runs recorded at the beginning of the 2 feedback training
sessions with longer inter-trial intervals (see section II-E.2).
Classification accuracies around 80% were reached for all
three subjects.

C. Classifier CFR2

Column CFR2 in Tab.I lists the BP features found by
DSLVQ which most discriminate between IC (left hand,
right hand and foot or tongue together) and NC. Off-line
classification accuracies (10x10 cross-validation) of 77%for
subject v4, 84% for v9 and 78% for x6 were computed.

The classification performance for CFR1 and CFR2 during
the feedback training with longer inter-trial intervals days are
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presented independently. The mean classification accuracyof
CFR1 during the active period is shown in Fig.3.B. Compared
with the results in Fig.3. A similar characteristics can be
observed. The mean latency from cue-presentation to a clas-
sification performance better than random was about 2s. For
subject v4 and x6 the mean classification accuracies were 75%
and 80%, respectively; for v9 the mean classification accuracy
was 60%.

As performance measures true positive (TP) and false
positive (FP) rates were computed (sample-by-sample) for
CFR2. The evaluation criteria for TP and FP were very strictly:
According to the feedback paradigm, samples from t=0.0s
to t=8.0s, the period of target presentation, were defined
as IC and consequently labeled as class 1. The remaining
samples were NC labeled as class 2. Since cognitive processes
(e.g. processing the visual cue, motor preparation, decision
making) as well as digital signal processing requires time,
and according to the time latency of about 2.0s, an additional
evaluation with TP defined from t=2.0s to t=10.0s was com-
puted. The TP/FP rates were computed by dividing the number
of correctly classified samples within the TP/FP intervals by
the total number of samples belonging to the TP/FP class.
Tab.II summarizes these results. Mean FP rates (over subjects
and sessions 2 hours NC and 1 hour IC) of 19.1% or 16.9%
could be achieved. The mean TP rates for the 8 second action
period were 25.1% or 28.4%. ColumnTIC in Tab.II shows
the number of transitions from NC to IC during the cue
presentation. Subjects succeeded in 18.6 of 30 trials during
the presentation of the cue (t=0.0 to t=8.0) to switch from NC
to IC. The last column of Tab.II shows the time in seconds of
NC for each run. The mean inter-trial interval was 12.5 s.

D. “freeSpace” paradigm

The summary of the freeSpace experiment performance is
given in Tab.III (best results are highlighted). The covered
distance, number of collected items and pick-up times are
shown for each of the 3 runs during the 2 sessions. Subject
v9 and x6 were able to collect the three items within the 3
minutes time limit. Subject v4 was able to collect only 2 out of
the 3 coins. While v4 and v9 could improve their performance
(distance and collected items), the results of session two for
x6 were poor compared to the first.

The routes (paths) of the best run for each subject are
presented in Fig.4.A. Best results were achieved from each
subject independently when starting from the same initial
position. The paths show that each subject choose a different
way to collect the coins. Fig.4.B shows the corresponding BCI
classifier output (navigation commands) sent to the VE. The
distribution of the BCI classification output is summarizedin
Tab.IV. Since it is not possible to report the percentage of
erroneous navigation control signals (lucky errors) detected
by the BCI which contribute to the collection of the coins,
a “random walk” navigation was simulated. When starting
from the position which is marked with “X” in Fig.4.A
and randomly selecting the MI-states we obtained a zig-zag
shaped route. The resulting course, however, is unidirectional.
Accordingly, it was impossible to collect all three coins within

TABLE II

TRAINING WITH LONGER INTER-TRIAL INTERVALS . FOR EACH SUBJECT

(ID), SESSION(S) AND RUN (R), THE DURATION OF THE RUN IN SECONDS

(DUR.), THE NUMBER OF TRANSITIONS FROMNC TO IC (TIC , MAXIMUM

30/RUN), THE TP/FPDETECTION RATES FOR THE2 INVESTIGATED TIME

PERIODS AND THE DURATION OF THE NON-CONTROL PERIOD IN SECONDS

(tNC ) ARE SHOWN. ADDITIONALLY THE THE SESSION MEANSµ1 AND µ2

ARE REPORTED FOR EACH SUBJECT.

0.0-8.0 2.0-10.0
ID S-R Dur. TIC TP FP TP FP tNC

v4 1-1 602 13 18.4 16.9 20.0 15.8 362
1-2 609 10 7.6 7.2 9.8 5.8 369
1-3 615 16 17.8 12.2 21.1 10.1 375
µ1 609 13 14.6 12.2 17.0 10.6 369
2-1 612 27 32.7 22.5 36.9 19.5 372
2-2 612 29 33.5 23.5 37.1 21.2 372
2-3 610 28 39.7 23.2 33.7 27.0 370
µ2 611 28 35.3 23.1 35.9 22.6 371

v9 1-1 608 20 24.1 16.6 32.9 10.8 368
1-2 603 21 32.3 31.4 38.4 27.3 363
1-3 636 21 23.4 8.8 31.6 3.8 396
µ1 616 21.7 26.6 18.9 34.3 20.0 376
2-1 611 13 16.8 14.8 22.8 11.0 371
2-2 620 20 38.7 24.5 43.1 21.7 380
2-3 617 18 36.9 32.5 42.1 29.1 377
µ2 616 17 30.8 23.9 36.0 20.6 376

x6 1-1 602 16 22.1 11.6 21.4 12.0 362
1-2 606 16 14.5 10.5 16.7 9.0 366
1-3 608 15 16.1 15.7 19.2 13.6 368
µ1 605 15.7 17.6 12.6 19.1 11.5 365
2-1 628 14 38.1 32.5 39.8 31.4 388
2-2 632 18 18.9 16.2 19.6 15.8 392
2-3 614 19 20.2 22.8 24.6 20.0 374
µ2 625 17 25.7 23.8 28.0 22.4 385

mean 613.6 18.6 25.1 19.1 28.4 16.9 373.6
std 9.9 5.3 9.8 8.0 10.0 8.2 9.9
median 611.5 18.0 22.8 16.8 28.1 15.8 371.5

the selected time limit without IC. The same results were
obtained by increasing the frequency of occurrence of foot MI.
For comparison also the shortest possible route was computed.
With 100% classification accuracy about 110s were necessary
to collect the three items.

The selected navigation strategy required that subjects were
able to control at least two mental states: Either left or
right for rotation and foot/tongue to move forward. The BCI
classification results in Fig.4.B and the distribution in Tab.IV,
however, show that all four classes occurred. Interviews with
the subjects confirmed that all four mental states were deliber-
ately used to navigate through the freeSpace. It was necessary
that no navigation command was sent to the VE during non-
MI related mental activity, like e.g. orientation or routing,
or whenever subjects needed a break. For subject v4 and
v9 the percentage of navigation commands increased from
session 1 to session 2. Although subject x6 was satisfied with
the achieved BCI control during the unguided practice period
of session 2, a clear bias towards NC is visible during the
evaluation.

IV. D ISCUSSION

Asynchronous control, dealing with artifacts, reliable clas-
sification or a fast setup are some of the key-issues which
contribute to make BCIs become a real alternative communi-
cation channel.
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TABLE III

PERFORMANCE OF THE FREESPACE EXPERIMENT. FOR EACH SUBJECT

(ID), RUN (R) AND SESSION, THE COVERED DISTANCE(DIST.) AND

NUMBER OF COLLECTED ITEMS WITH CORRESPONDING PICKUP-TIMES

[#ITEMS (TIME)] ARE SHOWN.

Session 1 Session 2
ID R Dist. #items (time) Dist. #items (time)
v4 1 317 0 1172 2 (0:46, 1:59)

2 544 1 (1:37) 523 0
3 234 0 963 2 (0:53, 2:59)

v9 1 1223 2 (0:58, 2:21) 1781 3 (0:16, 0:46, 2:33)
2 1573 1 (2:12) 1788 2 (1:10, 2:20)
3 1438 1 (0:53) 1478 2 (0:39, 2:00)

x6 1 1520 2 (1:49, 2:34) 544 1 (2:19)
2 1729 2 (0:41, 1:23) 807 1 (0:24)
3 1635 3 (0:20, 1:17, 2:26) 468 1 (0:55)

A

46 119

NC
L
R
F

46 153

NC
L
R
F

0 77 146

NC
L
R
F

180

B

v4

v9

x6

time

0

0

16

20

v9
v4

x6

Fig. 4. A. Map of the freeSpace virtual environment showing the best
performance (route) for each subject. The rectangles indicate hedges, the
circles the pickup areas (collision detection) and the ”x“ marks the starting
point. Subject v9 (continuous line) and x6 (dotted line) successfully collected
the 3 coins. Subject v4 (dashed line) succeeded in picking uponly 2 coins in
3 minutes. B. Classification output as function of time (L=left hand, R=right
hand, F=foot, NC=non-control).

TABLE IV

DISTRIBUTION OF THE CLASSIFICATION RESULTS OF THE FREESPACE

EXPERIMENT. FOR EACH SUBJECT(ID), RUN (R) AND SESSION THE

FREQUENCY OF OCCURRENCE IN PERCENT OF DETECTED LEFT HAND(L),

RIGHT HAND (R), FOOT OR TONGUE(F/T) MOTOR IMAGERY AND

NON-CONTROL (NC) IS REPORTED.

Session 1 Session 2
ID Rn L R F/T NC L R F/T NC
v4 1 18 18 6 58 14 19 21 46

2 14 17 10 59 14 20 15 51
3 7 4 4 85 16 22 18 44

v9 1 16 12 27 45 25 19 36 20
2 20 18 29 33 17 26 33 24
3 20 26 30 24 14 13 30 43

x6 1 30 24 39 7 4 8 10 78
2 27 23 43 7 5 6 14 75
3 20 22 38 20 4 4 9 83

Online EOG reduction and EMG detection was used for the
first time in our feedback experiments. The muscle detection
algorithm has been used to identify possible muscle activity
in realtime. Accordingly, it is possible to use this information
to avoid the classification of artifact data. A threshold value
can be used to modify the sensitivity and specificity of the
detector. An open and interesting issue is the discussion on
the desired system response. One can think e.g. of a ”system
freeze” or ”pause-mode”. In any case, this approach provides
new possibilities for patients which are unable to control their
own muscle activity (e.g. spasms).

The feedback training results show that 3 bipolar channel
contains enough information to control a 3-class BCI (synchro-
nized protocol) with an accuracy of 80%. Reducing the number
of EEG channels is important because of (i) an increase of
the usability (less time needed for electrode placement) and
(ii) a minimization of electrode failures (e.g. exact position
on the scalp, impedance, ...). Adaptation to subject-specific
parameters is crucial to obtain a reliable classification ina
short space of time. By default DSLVQ was applied to the
data after each session. In the future this part can be replaced
by a on-line adaptation method presented recently [23].

A new type of feedback was presented to subjects during
the feedback experiments. The smiley was introduced because
of the ”richer“ visual feedback (colors, position, shape ofthe
mouth) compared to the bargraph or basket feedback [12],
[14]. The expectation was a increased motivation for the
subjects resulting in an improved performance. Interviewswith
the subject confirmed that the motivation to make the smiley
laugh was high.

One very important issue for self-paced (asynchronous)
BCIs is the evaluation criteria or measure of performance.
We presented TP and FP rates computed on a sample-by-
sample basis from data collected using a synchronized protocol
with longer inter-trial intervals. For each subject the very first
attempts of self-paced control were used for evaluation. The
achieved average FP rates of 16.9%/19% (18.9/21.3 min out
of 112 min of NC) were to high and the mean TP rates of
28.4%/25.1% to low. During 18.6 out of 30 trials (62%), how-
ever, subjects suceeded in switching from NC to IC. One can
assume that longer feedback training period helps to increase
the performance. TP/FP rates, however, depend strongly on
the definition of the TP and FP intervals. The fact that MI-
induced changes in EEG activity are not time-locked (delay)
and have a variable duration make this definition difficult. One
problem emerging from the cue-based design might be the
expectation of the next cue to come. This expectation can
unintentionally induce subjects to change the brain activity
and produce FP. Nevertheless we are confident that sample-by-
sample based TP/FP rates are most suited to characterize self-
paced BCI performance. To compute the right TP/FP rates it is
necessary to access the subjects ”real“ intend and compare it
with the BCI output. This information, however, is not directly
accessible. One option to obtain this information might be an
interactive experimental design, where subjects autonomous
decide on timing and type of MI and give immediate feedback,
e.g. by interview or by pressing a button, on the correctnessof
the BCI output. When working with severely paralyzed people,



8

however, motor interaction may be impossible.
The freeSpace paradigm was introduced because no instruc-

tions, except on how to navigate and the aim to collect coins,
had to be given to the subjects. The paradigm is motivating,
entertaining and most important, it gives an ample scope on
how to achieve the goal. Each subject succeeded in navigating
through the VE and collecting coins. As can be seen from
the distribution of the BCI classification result (Tab.IV) and
emerged from the interviews, for navigation both MI and NC
were used. The paths in Fig.4.A show that each subject choose
his own way through the freeSpace. Subject v4 and v9 could
improve the performance from the first to the second session.
This was not possible for subject x6. Also during the training
x6 had a high variability of the performance. The overall
trend, however, was towards higher classification accuracies.
At this stage the NC state was not explicitly tested. However,
as stated by the subjects, periods of NC were important. For
further experiments, the paradigm can easily be enhanced by
e.g. adding predefined periods of NC.

Although the “freeSpace” VE was implemented for three-
dimensional (3-D), stereoscopic representation, at this stage
only a conventional computer screen was used for visual-
ization. One possible option for the future is to train users
to operate BCI-based devices (e.g. wheelchair) in the Virtual
Reality [24].

LDA and band power features are a good choice for the
discrimination between different MI tasks. The question is
whether this classifier/feature is best suited to identify MI
patterns in the ongoing EEG. Finding proper features and
classifier is one important task for future research. Wavelet-
packet analysis [25] or phase relationships [26] may contribute
to solve this problem. Compared to CFR1, CFR2 was sensitive
to the non-stationarity of EEG. By adapting the detection
thresholdTHzero this was taken into account. Higher values of
THzero cause a decrease of FP, however, also the motivation
of the subjects might decrease because generating TP is much
more difficult. On the other hand small values cause lots
of TP but FP as well. The varying TP/FP rates in Tab. II
reflect this relationship. For the training this implies to start
with lower values which can be increased when subjects
achieved reliable control. These procedure, however, results in
in poor TP/FP performance values. Gaining BCI-control is not
only depending from machine learning, but also psychological
aspects play an important role.

One drawback of defining IC by merging data from three MI
tasks was that CFR2 had a ”preference“ (bias) for a certain MI
patterns. This behavior was not visible during the evaluation
experiments. After the first freeSpace experiments, however,
subjects stated that switching into the IC state was easier for
certain MI patterns. Therefore one strategy developed by the
subjects was to switch into IC by performing the preferred MI
first and thereafter switching to the desired one. In Tab.IV this
effect is visible for subject v4 in session 2. Also in Fig.4.Bfor
subject v4 the preference of right MI is visible. One solution
to overcome this problem is to redesign the classifiers from
”1 vs. 1“ classification to ”1 vs. rest“. Given the classification
accuracy does not decrease the benefit for a higher number
of classes would be a reduction of the computational effort to

NC (number of classes) LDAs.

V. CONCLUSION

The methods and training procedure presented in this work
enabled users to gain control of a self-paced BCI. Three
bipolar EEG channels were analyzed and motor imagery was
used as experimental strategy. In order to assure that no muscle
activity was used for control, EMG was detected and reported
to subjects online; furthermore EOG artifacts were reduced.
Finding a proper evaluation method or performance measure
is still an open issue. Actually, the BCI community, however,
is addressing this important topic [4].

The study show that subjects successfully navigated through
the freeSpace VE and collected coins by autonomously switch-
ing between different mental states. In doing so, each subject
chose the way independently. These are further steps which
help BCIs become a real alternative to standard communica-
tion channels.
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[17] R. Scherer, A. Schlögl, and G. Pfurtscheller, “Onlinedetection and
reduction of electrooculographic (eog) and electromyographic (emg) ar-
tifacts,” in Proceedings of the Gemeinsame Jahrestagung der Deutschen,
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