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Abstract— The self-paced (or asynchronous) control paradigm
enables users to operate Brain-Computer Interfaces (BCl)n a
more natural way: no longer the machine is in control of timing
and speed of communication, but the user. This is important @
enhance the usability, flexibility and response time of a BCI

In this work, we show how subjects, after performing a cue-
based feedback training (smiley paradigm), learned to nagate
self-paced through the “freeSpace” Virtual Environment (VE).
Similar to computer games, subjects had the task of picking p
items within a limited time period using the following navigation
commands: rotate left, rotate right and move forward (3-classes).
Since the self-paced control paradigm allows subjects to nke
voluntary decisions on time, type and duration of mental adwity,
no cues or routing directives were presented. The BCI was
based on three bipolar electroencephalogram (EEG) channeblnd
operated by motor imagery. Eye movements (electrooculogra,
EOG) and electromyographic (EMG) artifacts were reduced
and detected on-line. Results of three able-bodied subjectare
reported and problems emerging from asynchronous control ee
discussed.

Index Terms— Brain-Computer Interface (BCI), Electroen-
cephalogram (EEG), Motor imagery, Classification, Virtual Re-
ality (VR), asynchronous operation mode

I. INTRODUCTION

preset by the paradigm. The most natural way of human-
machine interaction is the self-paced mode. The BCI system
is continuously analyzing the ongoing brain activity and ca
handle NC. Recently an increasing number of papers started t
address the issues of constantly-engaged and self-pacisd BC
[5], [6], [7], [8], [9], [10]. Another very important issueof

BCI control, especially in early training sessions [11]the
automatic removal or detection of artifacts. Signals witigio
other than in the central nervous system (e.g. muscle BQtivi
must not have any influence on the BCI output.

The Graz-BCl is based on the analysis and classification of
sensorimotor electroencephalogram (EEG) patterns gextera
during imagination of specific movements (motor imagery, Ml
e.g. hand or foot) [12]. In this work we present the new two-
classifier based Graz-BCl designed for self-paced apjmitst
The first of the two classifiers, CFR1, is set-up to discrirteéna
between different M| tasks; the second classifier, CFR2, is
trained to detect any Ml-related brain activity in the ormgpi
EEG. By combining the results of both we create a system
able to discriminate between several MI-modulated mental
brain states (IC) and NC. As a first self-paced application
participants had to navigate through the "freeSpace” ¥irtu

possibility to reestablish communication. A Brain-Comgout Placed into the "freeSpace” virtual park, presented in 2-D
Interface (BCI) recognizes voluntary changes in ongoirg-el 0N & conventional computer screen, with the task of picking

trophysiological signals and translates different bratiates

up items within a limited time. Results of three able-bodied

into appropriate commands for communication and contr@ubjects are reported.

For a review see [1], [2], [3]. In this work the BCI terminolpg

and definitions proposed in [4] were adopted.

Important aspects for BCI control paradigms are (i) the
temporal availability of the system for the user, eitheripe

odically, requiring a cueing or synchronization mechaniem
continuously and (i) the ability to support “non-contrgRC)
[4]. NC, in contrast to intentional-control (IC), describthe

{

Il. METHODS
A. From externally-paced (or cue-based) to self-paced aper
tion protocol

Subjects and BCI were trained (mutually adapted) in a three-
step procedure. First, twenty-two monopolar EEG channels
were recorded while subjects were performing a 4-class Mi

ability of the system not only to discriminate between salertraining without feedback (synchronized paradigm). Sioce

voluntarily modulated brain patterns (IC), but also to detePhilosophy (endeavor) of the Graz-group is to reduce the
that the user does not require IC. Nowadays the majorfgmber of channels, 3 bipolar channels were derived with
of BCI Systems are Operated using a Synchronized (Or Clk@st discrimination pOWer between three of the four Ml tasks

based) paradigm_ T|m|ng and Speed of communication dlféature Selection). CFR1 was trained with the obtained fea
tures and 3-class feedback training was performed (synchro

nized paradigm). Second, as soon as the 3-class classificati
accuracy was higher than 75% for each subject, classifier
CFR2 was trained to classify between the enhanced MI brain
patterns and non-control (NC). NC consisted of recordings
were subjects were instructed to sit relaxed and perform-no
MI* mental activities. To evaluate the performance of CFR2
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An automated correction method was used to reduce the
influence of EOG artifacts [16], [17]. It can be assumed that
the recorded EEQ is a superposition of the real EEG signal
S and three spatial EOG components (horizontal, verti-
cal and radial) weighted by some coefficign{accordingly
S = Y — N -b). The EOG was recorded with three
monopolar electrodes, from which two bipolar EOG channels
(covering the horizontal and the vertical EOG activity) wer
derived (see Fig. 1). The weighting coefficients were comgut
from a 1 minute recording where subjects were asked to
perform eye movements. This eye movement recording was
used to calculate the autocorrelation matf%yy of the

_ & and EOG ol e ol both ref ced bipolar EOG channels and the cross-correlatign, between
B B e sy recorded EEG” and EOGN. The correction coeficients were
show the analyzed bipolar derivations (— ©). obtained byb = C'yyCny (see [16] for more details).

We applied the method of inverse filtering [18] by estimat-

ing the autoregressive parameters of a 2-minute EEG segment
feedback training with longer inter-trial periods, regeting without artifacts to detect muscle activity [17]. If an EMG
longer periods of NC, were made. The third and last step wasifact is superimposed to the EEG, the root-mean-square
to train subjects to navigate self-paced through the "fpees“ (RMS) of the inversely filtered process increases. Each time
VE and to fine tune CFR2. the increase exceeded the detection threshoid Bfi\/ S from
artifact-free EEG, a warning message (marker) was pregente
for 1s on the screen. Subjects were instructed to relax €loos
the musculature) in order to make the warning disappear and

Three healthy subjects (2 male, 1 female, right handezhntinue with their task.
age 24.11.9 years) participated in this study. Prior to the At the beginning of each feedback session a recording of
study presented in this work, subjects participated in rpri@approximately 4 minutes was performed (initial recording)
experiments [13] and learned to operate the 2-class baskeb minutes of EEG/EOG with eyes open, 1-minute with
paradigm [14]. After 3 feedback training sessions the agfile eyes closed and 1-minute with eye artifacts were recorded.
classification accuracies were 71.4% for subject v4, 82@% During the first three minutes subjects were instructed tto si
v9 and 86.4% for x6. relaxed and to perform only a minimum of movements (eyes,

Two different electrode arrangements were used. For theallowing, ...). For the last minute subjects were inggdc
training without feedback twenty-two monopolar EEG charie perform repetitively eye blinks, clockwise and counter-
nels (Ag-AgCl electrodes, extended 10-20 system, refererdockwise rolling of the eyes, repetitively horizontal ameghet-
left mastoid, ground right mastoid) were recorded; Feeklbaitively vertical eye movements for 15s respectively. Thesy
experiments were performed using three bipolar EEG channghould circumscribe the whole filed of view without moving
(ground position Fz) only. Additionally three electroooul the head. No limitations on the mental activity (thinkingg.sv
gram (EOG) channels were acquired (see Fig.1). The signaigosed. Written instructions were presented to the stdbjec
were amplified, analog filtered between 0.5 and 100 Hz and a computer screen for the duration of each individual.task
recorded with a sample rate of 250 Hz. At the beginning and end of each task a low and high warning

tone was presented, respectively. The first two minutes were
. . used to compute the inverse-filter coefficients and segment
C. Signal processing with the eye artifacts to set-up the EOG correction-coeffits.

1) The Graz-BCl: The Graz-BCI (rtsBCI [15]) works on  2) Distinction Sensitive Learning Vector Quantizatidror
a sample-by-sample basis. This means that feature exinacthe selection of the most informative BP features, bipolar
and classification is performed with the same rate of the datiaannel derivations and MI tasks, the Distinction Serssitiv
acquisition (250 Hz). This implies that the analysis parfed Learning Vector Quantization (DSLVQ), an extended version
and the results reported in this work are sample-by-samplieKohonens Learning Vector Quantization algorithm (LVQ),
based. The feedback is presented at a rate of 25 Hz (screes used [19]. LVQ uses a reduced number of codebook
update). vectors (labeled reference vectors) to approximate thienapt

Band power (BP) features were estimated from the ongoiBgyesian decision borders between different classes. Each
EEG by digitally bandpass filtering " order Butterworth IR sample is classified to the label of its closest codebookovect
filter), squaring and averaging (moving average) the sampheccording to a distance function (e.g. Euclidean distgnce)
over the 1-s just passed. Consequently for each subject the influence of the features on the distance function is
only parameter to determine was the bandpass frequergual. DSLVQ introduces a weighted distance function which
band for a selected number of BP features. For classificaticates the influence of the features for classification: most
Fishers linear discriminant analysis (LDA) was appliedHte t informative features are upgraded, features that coré&itmu
logarithm of the BP estimates. misclassification are discarded. The LVQ codebook spligs th

B. Subjects and data acquisition



classification problem into sub-problems. By finding an -opteach trial, 15 non-overlapping BP features between 6 - 36 Hz
mal linear approximation for the sub-problems, the releeanwith a bandwidth of 2 Hz were computed for each of the
of the features, which determines the correct classifinaticexamined 23 bipolar channel derivations (Fig.1). The setec

is analyzed [20]. The major advantage of DSLVQ is thdtequency range coveks and 8 bands, both relevant for the

it does not require expertise nor any a priori knowledge afassification of Ml [22]. By selecting 2 Hz frequency bands
assumption about the distribution of the data. Furthermotbe resulting temporal delay (blur) and spectral resofuto

not only relevant features, but also feature combinatians, acceptable. At the same time the total number of features was
identified. limited in order to avoid overfitting-effects.

In order to obtain a reliable feature relevai®€,, [19], the The most relevant BP features were selected by evaluating
DSLVQ method was repeated 100 times (3 codebook per cladg RT,, values (high value means important feature) from the
type C training, 10.000 iterations, learning rate decredsen DSLVQ analysis at with the highest classification accuracy.

a = 0.05toa = 0.0 andc’/(t) = 0.1-«(t)). For each run BP features were selected manually according to the fotigwi
of DSLVQ classification randomly selected 50% of the Beriteria: (i) large meanRkT,, value and small variance (100
features were used for training and the remaining 50% wdBSLVQ iterations) (i) maximum number of bipolar chan-
kept to test the classifier. nels = 3 (iii) maximum number of BP features = 6 (iv) sym-
metrically arrangement over sensorimotor areas (hemisphe
Two adjacent BP features were combined to one 4-Hz BP
feature (e.g. 10-12 Hz and 12-14 Hz to 10-14 Hz).

The three class problem (number of clasd&s = 3) was  \jth the identified features for each of the four 3-class
solved by applying a majority voting to 3 pairwise traineq| combinations an independent CFR1 was trained (10x10
LDA discriminant functions (see [8] for more details). Incross-validation) and a sample-by-sample on-line siriarat
contrast to [8] only the sign of each LDA distance (classlabgas computed. The three MI tasks with the best classification
information) was considered<(0 class one=> 0 class two) accuracies within the feedback period (t=2.0s to t=6.03pwe
and the LDA distance information was discarded. The clagg|ected and used for on-line experiments.
with the highest frequency of occurrengg ) within the past  3) Feedback training:On-line feedback experiments were
subject-specific N samples (maximum N=75 or 250 ms) w@galized using the 3 subject-depended bipolar EEG devivati
selected and a normalized distaneg,)(was defined in the glectrode position Fz served as ground.
following way: Each session started (after the initial recording) with un-

dy = (foce — ]év_c)/(zvc]\?cl)»zv V foee > Nic or _guide(_ll prac_tice (fre_e training) lasting about $_minutes_r-Du
Ay =0 fone < L. ing this period subjects C(_)uld test the classifier (contirsuo
" °¢¢ = Ne feedback) and the smoothing parameter N needed,fowvas

This normalization prevents quick changes of the classificadjusted according to the subjects preference (slow or fast
tion result and enables a smooth transition ("zero* cragsinreaction time). The feedback presented to the subjects was
between class-specific feedback. The disadvantage is thedrsmiley (see Fig.2.A).
troduction of an additional feedback delay. Five (subject v4 and x6) and seven (v9) feedback sessions

1) Training without feedbackThe twenty-two monopolar were recorded with at least 4 runs with 30 trials (10 per
EEG channel setup was used (Fig.1). Subjects were insttuctéass) each. At the beginning of each trial (t=0.0s) the gray
to perform continuous kinesthetic Ml [21] according to theolored smiley was positioned in the center of the screen. At
instructions presented on the screen. The kind of movemeén®2.0s a warning tone was presented followed by the cue at
was chosen by the subject according his/her preferenags (6=3.0s. From t=3.0s to t=7.5s subjects had the task to move
playing a piano or swimming) and fixed before the recordintpe smiley according to the cue to the left/right/down(up)
started. Two sessions were recorded for each subject pn performing left hand, right hand or foot (tongue) Mi
different days. Each session consisted of 6 runs with 4&triaespectively (Fig.2.A). During the feedback period (t=3t6
each (12 trials per class per run). At t=0s of each trial atshar7.5s) the smiley changed to color green when moved to the
warning tone was presented and a fixation cross appearedanrect direction, otherwise the color was red. The pasitd
the middle of the screen. From t=2.00s to t=3.25s an arrate smiley was set according to the classification resule Th
(cue) was shown, indicating the mental task to be performelhsslabel indicated the direction adg the distance to the
(start MI). An arrow pointing to the left, to the right, dowavel origin. Furthermored,, was mapped to the curvature of the
or upward indicated the imagination of a left hand, righthouth causing the smiley to be happy (corner or the mouth
hand, foot or tongue movement, respectively. The order opwards) or sad (corner or the mouth downwards) according
appearance of the classes (cues) was randomized and at te6sorrect classification or misclassification (see Fig)2 At
the screen was blanked (stop MI). To avoid adaptation to the7.5 s the screen was blanked and a random period between
timing a randomly selected inter-trial interval lastingween 1.5 s and 2.5 s was presented.
1s and 2s was introduced after second 6. After each session feature selection was performed and

2) Feature selection:For each subject individual 4-classthe classifier was updated. Each time the accuracy of the
DSLVQ classifiers were trained with BP features extractagpdated classifier was higher than the on-line result, stbje
with the same time lag (from t=0.0s to t=4.0s in steps désted the new classifier during the unguided practice gerio
At=0.5s) to the cue presentation at t=2.0s. For eaend of the next session. When subjects achieved better BClalontr

D. Classifier CFR1: Design and Customization



selected with the intention to detect only MI specific patser
] during feedback (after cue presentation) and not unspecific
Foot I activations (e.g expectation) induced by the appearanteeof
Tongue fixation cross.

» Cue o To make the CFR2 more robust and reliable, considering
Srley (arey) | Feedback | Blan the non-stationarity and inherent variability of brain readp,

75" fimeins one thresholdTH..,,) and two transition periods, one for
the state switch NC to ICt{,.ccq) and one for IC to NC
(trerow) Were introduced. Each time the distance between the
BP features and the optimal LDA hyperplane (LDA distance)
was higher thad"H .., for t...ccq, the state IC was detected.
To get back to NC the LDA distance had to fall below
TH.cro fOr theon, (S€€ Fig.2.B). The system reaction time
was modified byfepceeq aNdEperow; changingT H.,.,.,, meant
Soore: 0 Time: 02: 09 moving the decision hyperplane towards IC or NC. The initial

4 TH,.., used for feedback experiment was determined by
Receiver Operator Characteristic (ROC) analysis. Theevalu
which maximizes the number of TP detections within the
feedback period (t=3.5s to t=7.5s) and at the same time

B view minimizes the number of FP detections everywhere else was
T map selected (sample-by-sample).

By combining both, CFR1 and CFR2 we created a system
able to discriminate between 4 classes: (i) left hand, igiptr
hand, (iii) foot (tongue) MI and (iv) non-control. The outpu
of CFR1 was triggered by CFR2. Each time IC was detected
the classification result of CFR1 was feed through. Otherwis
Fig. 2. A: Feedback timing and scheme of the Smiley parad@masyn- the output was "zero”.
chronous switch between intentional control (IC) and nontml (NC). Only 2) Feedback training with longer inter-trial intervals:
when the classifier output exceeded, (...4) or did fall below ¢pe;0.,) the i ; ini ;
predefined thresholdI{H ..r,) @ switch between NC and IC or IC and NCTWO sessions with 5 feedbaCk training rur.ls (10 trial per
was valid. C: First person view of the freeSpace virtual emnent. A tree, C/ass) were performed. The first 2 runs consisted of feedback
some hedges and a coin (to collect) is visible on the screke.big arrow training with CFR1 only (section 1I-D.3) to monitor the
represents the BCI classification result and indicates #vegation command subjects actual performance. Thereafter subjects unaérwe
(here forward movement). During the non-control state tiree arrows had . . e . .
the same (small) size. On the upper left side the scoreboatcba the right @n unguided practice lasting about 10 minutes to determine
side the elapsed time was presented. For an easier navigatithe right side T'H.cro, tezceeda @Ndtperow. Depending on the statements of
a rotating bird-view map of the freeSpace was shown. the subjectd’H..,, was gradually increased or decreased. The

criteria was that subjects were able to control the smileyab
o ._the same time the number of FP detections was a minimum.
the updated classifier was used for feedback experime R o .
. o e transition times were set to 500ms and also gradually
otherwise the old one was maintained. . .
adapted. A maximum period of 1s was chosentf@r.., and
trelow- Subjects had to identify these values by themselves

o 1 2 3354 5 6 7.8 10 Muscle artefact detected

A 497 [2]E]8 (B frees [ ® wew [ ems [XBer )" (7] TR 7099

E. Classifier CFR2: Design and Customization empirically. The values found were fixated and not changed
One single LDA function was trained to discriminate beduring the remaining experiments of each session.
tween IC (3 MI tasks merged) and NC. Training subjects to gain self-paced control, the feedback

1) Feature selection:In order to obtain a more detailedsmiley paradigm from section 11-D.3 was modified. The feed-
spectral representation thirty-one overlapping (1 Hz) B&-f back smiley was presented and reactive during the whole run.
tures between 6 - 36 Hz with a bandwidth of 2 Hz wer&ach run consisted of 30 trials (10 per class). From t=0.0s
extracted from each channel and analyzed by DSLVQ. The t=8.0s the cue was presented and subjects had the task to
six most relevant features were selected to set-up the LDAstir the smiley to the indicated direction. After this pefia

Two BP feature vectors were extracted from the feedbackndom inter-trial period between 7.0s and 17.0s was pteden
interval (MI) around the best on-line classification acecyra (NC). At the beginning the gray smiley was positioned in the
(e.g. best classification at t=5.5s; BP extracted;ab.5s and middle of the screen. During the transition timgs.c.q Or
t2=6.5s) from each trial of the last feedback training sessiap.;,., the color of the smiley changed gradually from gray to
(4 runs with 30 trial each). The resultinig-uns - 30¢rials - green or green to gray, respectively. Additionally the smil
2 BP = 240 BP samples were defined as IC. NC consistaslas moving according to CFR1 with the distance information
of 120 BP samples extracted equidistantly from the EE®eighted by the normalized transition time (from O to 1). In
block of the baseline recording lasting 2 min with eyes opethis way subjects were informed of a forthcoming state switc
Furthermore 120 feature samples were extracted from eack\fter the first session an additional DSLVQ analysis was
trial at t=3.0s (before cue presentation). The latter tings wperformed for CFR2. Subjects tried the new CFR2 during the



TABLE |
MOTOR IMAGERY (MI) TASKS (LEFT HAND, RIGHT HAND, FOOT OR
TONGUE), BIPOLAR CHANNEL SETUP(BIPOLAR), FREQUENCY
COMPONENTS(IN HZ) USED FOR THE DISCRIMINATION BETWEENMI
F. Evaluating self-paced control of CFR1 and CFR2 (CFR1)AND INTENTIONAL CONTROL VS. NON-CONTROL STATE(CFR2)
1) The "freeSpace" Virtual EnvironmentThe Virtual Envi- ARE SUMMARIZED FOR EACH SUBJECT(ID).
ronment (VE) was created using the 3-D modelling software

unguided practice period of session two and if the perforean
increased, the new classifier was used.

: ID Ml Bipolar CFR#1 (M) CFR#2 (IC vs. NC)

package Maya (Alias Wavefront, Toronto, Canada). FurtherG— b5 17—77.13 2557 1212, 1517, 2022, 2527
more it was animated (collision detection) and visualizgd b +04-16 B 0-11, 21-23
the Qt application framework (Trolltech, Oslo, Norway)n& +06-18  11-13, 23-25 -
the VE was running on a separate personal computer, the/® LRF *0208 1113, 1244 1274, 1921, 27-29
communication with the BCl was realized using the User +06-12 11.13 21.23
Data Protocoll (UDP) and updated 25 times per second. Thex6 LRF +02-08 10-12 8-10, 16-18
virtual park, size30 x 30 units, consisted of a flat meadow, +04-10 9-11 8-10

. . ) +06-12  10-12, 19-23 15-17, 24-26
several hedges and a tree placed in the middle for orienta=
tion. Three items (coins) were positioned on fixed predefined a Synchronized B synchronized (onger infer-ialintorval)

100

locations inside the park. Three navigation commands were
implemented: turn left, turn right (angular velocitys°/s)
and move forward (speed 1 unit/s). With this control, each
part of the park could be reached. To help subjects not get
lost and facilitate locating the coins, a bird view map of
the VE, showing the actual position, was presented (see Fig.
2.C). Interaction with each of the existing virtual objeatas
possible. A sphere, representing the user in the VE, was used
for collision detection. Each time the surfaces of two otgecFig- 3. Feedback experiments (synchronized protocol). ddré gray lines
. . d: Coi el indicates the interval of cue-presentation, the light gaagas the feedback

were intersecting an event was generated: Coins were eCperiod. A: Three-class on-line classification performarféeur runs from 2
and hedges or the tree had to be bypassed. days were combined. Feedback was given from second 3.5 tB7 Mean

2) Experimental paradigmTwo sessions were recorded orflassification performance of the on-line feedback trajnirith longer periods

diff d Each . d with ab 20 rai without motor imagery. Subjects had the task from secondd@&0 to move

two di grent ays. Each session starte ! with about ) M8 WUthe feedback to the given direction.
of unguided practice (free training). Subjects could getifiar
with the freeSpace VE and the navigation mechanism. In
regard to the non-stationarity and inherent variabiliyE@fG, the proposed method [16]. For each subject the percentage of
TH..., was adapted and fixated. samples classified as EMG artifact, and consequently the tim

The VE was presented to the subjects in the first-persapf-presentation of the warning message, was less than 0.9%.
view on a conventional computer screen (2-D). Subjects hAdditionally power spectral densities were computed farhea
the task of picking up the 3 coins within 3 minutes. From ahannel and checked for muscle activity.
randomly selected starting point (different positions éaich
run but same positions for all subjects), subjects couldo#gp B. Classifier CFR1

the park in the following way: left/right hand Ml resultedan  The most discriminative bipolar channels, BP features and
rotation to the left/right whereas foot or tongue Ml resdlie  pj tasks found by DSLVQ are summarized in Tab.l. As one
a forw_ard motion. Whenever NC was detected, consequently,d expecto and uppers band of electrodes placed around
no action was performed. _ electrode position C3, Cz and C4 (international 10-20 sy}te
Six self-paced feedback training runs of 3 min each wefgoved to substantially contribute to classification.
p_erformed. The first three runs served as training, run four t The on-line performance of the feedback training is shown
six were used to evaluate the performance. _in Fig.3.A. The curves show the classification accuracy ef th
For each subject the covered distance and resulting pathyns recorded at the beginning of the 2 feedback training
was depending on the individual routing strategy (e.9. ick sessions with longer inter-trial intervals (see sectiof.R).

order) and the ability to operate the BCI. Classification accuracies around 80% were reached for all
Since for this paradigm it was not possible to compute trygree subjects.

positive of false positive detections, at the end of eackisas
subjects were asked to self-report on the BCI performancec  c|assifier CFR2

Column CFR2 in Tab.l lists the BP features found by
] DSLVQ which most discriminate between IC (left hand,
A. Muscular artifacts right hand and foot or tongue together) and NC. Off-line
By means of a 4 minute recording at the beginning aflassification accuracies (10x10 cross-validation) of 7%
each session the proposed EOG reduction and EMG detsgbject v4, 84% for v9 and 78% for x6 were computed.
tion algorithms were initialized. An independent inveatign The classification performance for CFR1 and CFR2 during
revealed that 80% of EOG artefacts are removed by usitlte feedback training with longer inter-trial intervalsydaare

80 =
P

l—i
s latency

Classification accuracy in %

0 3 time in s 8

IIl. RESULTS



. I TABLE I
presented independently. The mean classification accufacy
. . . . . . RAINING WITH LONGER INTER-TRIAL INTERVALS . FOR EACH SUBJECT
CFR1 during the active period is shown in Fig.3.B. ComparegD

. . . . .. ), SESSION(S) AND RUN (R), THE DURATION OF THE RUN IN SECONDS
with the results in Fig.3. A similar characteristics can b
UR.), THE NUMBER OF TRANSITIONS FROMNC TO IC (T}, MAXIMUM

observed. The mean latency from cue-presentation to a clas:
e . /RUN), THE TP/FPDETECTION RATES FOR THE2 INVESTIGATED TIME
sification performance better than random was about 2s. For
. . . . E)?IODSAND THE DURATION OF THE NONCONTROL PERIOD IN SECONDS
subject v4 and x6 the mean classification accuracies were 75%

. - . tN ARE SHOWN. ADDITIONALLY THE THE SESSION MEANS1 AND 2
and 80%, respectively; for v9 the mean classification aayura 2 a .
ARE REPORTED FOR EACH SUBJECT

was 60%.

As performance measures true positive (TP) and false 0.0-8.0 2.0-10.0
positive (FP) rates were computed (sample-by-sample) for!'D_ SR Dur. Th,¢c TP FP TP FP tnc
CFR2. The evaluation criteria for TP and FP were very strictl va i; 283 if; 17%4 17§é9 g(.)éo é%g 336%2
According to the feedback paradigm, samples from t=0.0s 1-3 615 16 17.8 122 211 101 375
to t=8.0s, the period of target presentation, were defined pp 609 13 146 122 170 106 369

o 221 612 27 327 225 369 195 372
as IC and consequently labeled as class 1. The remaining 52 612 29 335 235 371 212 372

samples were NC labeled as class 2. Since cognitive pracesse 23 610 28 397 232 337 270 370
(e.g. processing the visual cue, motor preparation, decisi pe 611 28 353 231 359 226 3Nl
making) as well as digital signal processing requires time, " i% 283 %2 §;‘_§ ;ii’ §§j’ %?:2 §2§
and according to the time latency of about 2.0s, an additiona 1-3 636 21 234 88 316 38 39
evaluation with TP defined from t=2.0s to t=10.0s was com- g 616 217 266 189 343 200 376
puted. The TP/FP rates were computed by dividing the number g; g;é ;g ég:? %2:2 4215:? %i:g g;(l,
of correctly classified samples within the TP/FP intervals b 23 617 18 369 325 421 291 377
the total number of samples belonging to the TP/FP class p 616 17 308 239 360 206 376
Tab.ll summarizes these results. Mean FP rates (over gabjec X6 1_'; ggg ig fié ié‘g fé‘;l 19260 g’gg
and sessions 2 hours NC and 1 hour IC) of 19.1% or 16.9% 13 608 15 161 157 192 136 368
could be achieved. The mean TP rates for the 8 second action pio 605 157 176 126 191 115 = 365
period were 25.1% or 28.4%. Colunific in Tab.ll shows g% ggg ig fg:; fg:g fg:g %:g ggg
the number of transitions from NC to IC during the cue 2-3 614 19 202 228 246 200 374
presentation. Subjects succeeded in 18.6 of 30 trials glurin pe 625 17 257 238 280 224 385
the presentation of the cue (t=0.0 to t=8.0) to switch from NC 55" 6&3'6 2_83'6 5_58'1 é%l 1%%4 812'9 3793'6

to IC. The last column of Tab.ll shows the time in seconds of median 6115 18.0 228 168 28.1 158 3715
NC for each run. The mean inter-trial interval was 12.5 s.

) the selected time limit without IC. The same results were

D. “freeSpace” paradigm obtained by increasing the frequency of occurrence of fobt M

The summary of the freeSpace experiment performancefgr comparison also the shortest possible route was compute
given in Tab.lll (best results are highlighted). The codereéWith 100% classification accuracy about 110s were necessary
distance, number of collected items and pick-up times ai@ collect the three items.
shown for each of the 3 runs during the 2 sessions. Subjecilhe selected navigation strategy required that subjects we
v9 and x6 were able to collect the three items within the @&le to control at least two mental states: Either left or
minutes time limit. Subject v4 was able to collect only 2 ofit gight for rotation and foot/tongue to move forward. The BCI
the 3 coins. While v4 and v9 could improve their performancagassification results in Fig.4.B and the distribution irb T,
(distance and collected items), the results of session two fiowever, show that all four classes occurred. Interviews wi
x6 were poor compared to the first. the subjects confirmed that all four mental states were elelib

The routes (paths) of the best run for each subject a&tely used to navigate through the freeSpace. It was negessa
presented in Fig.4.A. Best results were achieved from ealt@t no navigation command was sent to the VE during non-
subject independently when starting from the same initiM! related mental activity, like e.g. orientation or roudin
position. The paths show that each subject choose a differen whenever subjects needed a break. For subject v4 and
way to collect the coins. Fig.4.B shows the corresponding B€9 the percentage of navigation commands increased from
classifier output (navigation commands) sent to the VE. Tis€ssion 1 to session 2. Although subject x6 was satisfied with
distribution of the BCI classification output is summarized the achieved BCI control during the unguided practice gerio
Tab.lV. Since it is not possible to report the percentage 6f session 2, a clear bias towards NC is visible during the
erroneous navigation control signals (lucky errors) detc evaluation.
by the BCI which contribute to the collection of the coins,
a ‘random walk” navigation was simulated. When starting IV. DiscussION
from the position which is marked with “X” in Fig.4.A  Asynchronous control, dealing with artifacts, reliablasl
and randomly selecting the Mi-states we obtained a zig-zaification or a fast setup are some of the key-issues which
shaped route. The resulting course, however, is unidineati contribute to make BCls become a real alternative communi-
Accordingly, it was impossible to collect all three coinghin  cation channel.



TABLE Il
PERFORMANCE OF THE FRESPACE EXPERIMENT FOR EACH SUBJECT
(ID), RUN (R) AND SESSION THE COVERED DISTANCE(DIST.) AND
NUMBER OF COLLECTED ITEMS WITH CORRESPONDING PICKUHIMES
[#ITEMS (TIME)] ARE SHOWN.

Session 1 Session 2
ID R Dist. #items (time) Dist.  #items (time)
vd 1 317 0 1172 2 (0:46, 1:59)
2 544 1 (1:37) 523 0
3 234 0 963 2 (0:53, 2:59)
v9 1 1223 2 (0:58, 2:21) 1781 3 (0:16, 0:46, 2:33)
2 1573 1 (2:12) 1788 2 (1:10, 2:20)
3 1438 1 (0:53) 1478 2 (0:39, 2:00)
x6 1 1520 2 (149, 2:34) 544 1 (2:19)
2 1729 2 (0:41, 1:23) 807 1 (0:24)
3 1635 3(0:20, 1:17, 2:26) 468 1 (0:55)
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Fig. 4. A. Map of the freeSpace virtual environment showihg best
performance (route) for each subject. The rectangles atelibedges, the
circles the pickup areas (collision detection) and the "drks the starting
point. Subject v9 (continuous line) and x6 (dotted line)cassfully collected
the 3 coins. Subject v4 (dashed line) succeeded in pickingniyp2 coins in
3 minutes. B. Classification output as function of time (lftleand, R=right
hand, F=foot, NC=non-control).
TABLE IV

DISTRIBUTION OF THE CLASSIFICATION RESULTS OF THE FREBPACE

EXPERIMENT. FOR EACH SUBJECT(ID), RUN (R) AND SESSION THE
FREQUENCY OF OCCURRENCE IN PERCENT OF DETECTED LEFT HANR),

RIGHT HAND (R), FOOT OR TONGUE(F/T) MOTOR IMAGERY AND

NON-CONTROL(NC) IS REPORTED

Session 1 Session 2
ID Rn L R FT NC L R FT NC
v4 1 18 18 6 58 14 19 21 46
2 14 17 10 50 14 20 15 51
3 7 4 4 85 16 22 18 44
v9 1 16 12 27 45 25 19 36 20
2 20 18 29 33 17 26 33 24
3 20 26 30 24 14 13 30 43
X6 1 30 24 39 7 4 8 10 78
2 27 23 43 7 5 6 14 75
3 20 22 38 20 4 4 9 83

Online EOG reduction and EMG detection was used for the
first time in our feedback experiments. The muscle detection
algorithm has been used to identify possible muscle agtivit
in realtime. Accordingly, it is possible to use this infortioa
to avoid the classification of artifact data. A thresholdueal
can be used to modify the sensitivity and specificity of the
detector. An open and interesting issue is the discussion on
the desired system response. One can think e.g. of a "system
freeze” or "pause-mode”. In any case, this approach previde
new possibilities for patients which are unable to conthelit
own muscle activity (e.g. spasms).

The feedback training results show that 3 bipolar channel
contains enough information to control a 3-class BCI (syoch
nized protocol) with an accuracy of 80%. Reducing the number
of EEG channels is important because of (i) an increase of
the usability (less time needed for electrode placemerd) an
(i) a minimization of electrode failures (e.g. exact pumsit
on the scalp, impedance, ...). Adaptation to subject-fipeci
parameters is crucial to obtain a reliable classificatiorain
short space of time. By default DSLVQ was applied to the
data after each session. In the future this part can be exgblac
by a on-line adaptation method presented recently [23].

A new type of feedback was presented to subjects during
the feedback experiments. The smiley was introduced becaus
of the "richer” visual feedback (colors, position, shapettod
mouth) compared to the bargraph or basket feedback [12],
[14]. The expectation was a increased motivation for the
subjects resulting in an improved performance. Intervieitis
the subject confirmed that the motivation to make the smiley
laugh was high.

One very important issue for self-paced (asynchronous)
BCls is the evaluation criteria or measure of performance.
We presented TP and FP rates computed on a sample-by-
sample basis from data collected using a synchronizedgubto
with longer inter-trial intervals. For each subject thewérst
attempts of self-paced control were used for evaluatiore Th
achieved average FP rates of 16.9%/19% (18.9/21.3 min out
of 112 min of NC) were to high and the mean TP rates of
28.4%/25.1% to low. During 18.6 out of 30 trials (62%), how-
ever, subjects suceeded in switching from NC to IC. One can
assume that longer feedback training period helps to iserea
the performance. TP/FP rates, however, depend strongly on
the definition of the TP and FP intervals. The fact that MI-
induced changes in EEG activity are not time-locked (delay)
and have a variable duration make this definition difficulteO
problem emerging from the cue-based design might be the
expectation of the next cue to come. This expectation can
unintentionally induce subjects to change the brain dgtivi
and produce FP. Nevertheless we are confident that sample-by
sample based TP/FP rates are most suited to charactefize sel
paced BCI performance. To compute the right TP/FP rates it is
necessary to access the subjects "real“ intend and compare i
with the BCI output. This information, however, is not ditigc
accessible. One option to obtain this information might be a
interactive experimental design, where subjects automsmo
decide on timing and type of Ml and give immediate feedback,
e.g. by interview or by pressing a button, on the correctoéss
the BCI output. When working with severely paralyzed pepple



however, motor interaction may be impossible. N¢ (number of classes) LDAs.

The freeSpace paradigm was introduced because no instruc-
tions, except on how to navigate and the aim to collect coins, V. CONCLUSION
had to be given to the subjects. The paradigm is motivating, The methods and training procedure presented in this work
entertaining and most important, it gives an ample scope enabled users to gain control of a self-paced BCI. Three
how to achieve the goal. Each subject succeeded in navigatiipolar EEG channels were analyzed and motor imagery was
through the VE and collecting coins. As can be seen froused as experimental strategy. In order to assure that nolenus
the distribution of the BCI classification result (Tab.IM)da activity was used for control, EMG was detected and reported
emerged from the interviews, for navigation both Ml and N@ subjects online; furthermore EOG artifacts were reduced
were used. The paths in Fig.4.A show that each subject cho&%eding a proper evaluation method or performance measure
his own way through the freeSpace. Subject v4 and v9 couddstill an open issue. Actually, the BClI community, however
improve the performance from the first to the second sessi@ addressing this important topic [4].
This was not possible for subject x6. Also during the tragnin  The study show that subjects successfully navigated tiroug
x6 had a high variability of the performance. The overathe freeSpace VE and collected coins by autonomously switch
trend, however, was towards higher classification accesaciing between different mental states. In doing so, each stibje
At this stage the NC state was not explicitly tested. Howevathose the way independently. These are further steps which
as stated by the subjects, periods of NC were important. Faelp BCls become a real alternative to standard communica-
further experiments, the paradigm can easily be enhancedtion channels.
e.g. adding predefined periods of NC.

Although the “freeSpace” VE was implemented for three- ACKNOWLEDGMENT
dimensional (3-D), stereoscopic representation, at ttdges  This work was supported by the “Fonds zur Forderung der
only a conventional computer screen was used for visudissenschaftlichen Forschung” in Austria, project P16326
ization. One possible option for the future is to train useB®02 and in part by the EU research project PRESENCCIA IST
to operate BCl-based devices (e.g. wheelchair) in the &lirtl2006-27731. The authors also would like to thank Hewlett-

Reality [24]. Packard for their support.
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