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Abstract Position and orientation tracking is a major challenge for Mixed / Aug-
mented Reality applications, especially in heterogeneous and wide-area sensor se-
tups. In this article, we describe trackman, a planning and analysis tool which sup-
ports the AR-engineer in setup and maintenance of the tracking infrastructure. A
new graphical modeling approach based on spatial relationship graphs (SRGs) eases
the specification of known as well as the deduction of new relationships between
entities in the scene. Modeling is based on reusable patterns representing the un-
derlying sensor drivers or algorithms. Recurring constellations in the scene can be
condensed into reusable meta-patterns. The process is further simplified by semi-
automatic modeling techniques which automize trivial steps. Dataflow networks
can be generated automatically from the SRG and are guaranteed to be semanti-
cally correct. Furthermore, generic tools are described that allow for the calibra-
tion/registration of static spatial transformations as well as for the live surveillance
of tracking accuracy. In summary, this approach reduces tremendously the amount
of expert knowledge needed for the administration of tracking setups.

Keywords: Mixed/Augmented Reality, spatial relationship graph, tracking, sensor
fusion, authoring, calibration, registration, error analysis.

1 Motivation

Tracking the position and orientation of users and objects in the scene is one of the
most critical issues for Mixed / Augmented Reality applications. A plethora of track-
ing methods based on various sensing technologies (e.g. optical, infrared, magnetic,
ultrasonic, inertial, etc.) have been desribed for this purpose, all of them having their
particular advantages and drawbacks [23]. Therefore, in order to achieve tracking at
the expected level of robustness, speed and precision, rather complex tracking setups
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are often necessary, potentially requiring heterogeneous multi-sensor environments
that include both mobile and stationary sensors of various modalities. In this respect,
we expect increasing numbers of sensors, such as cameras as well as ubiquitously
available RFID readers and WiFi trackers, to become available in private and public
buildings, coupled with increasing tracking and self-localization facilities in mobile
devices. Until now there is no standardized way to accomplish the integration of
such sensors into an application.

Typically, MR/AR applications have special solutions for special situations. This
complicates the maintenance of tracking environments since changes in the infras-
tructure often require the source code of one or even several applications to be
adapted, undermining system integrity. Developers of MR/AR applications, on the
other hand, would rather focus on describing and modeling the application and its
visualizations than on the tracking. Typically, applications only need to know the
transformations between a few virtual or real world entities. For them, it is not
important, how the tracking is achieved — as long as it is provided at expected
quality levels. As a consequence, we expect a new breed of professionals, called
AR-engineers, to emerge. They will be responsible for configuring and maintain-
ing large, dynamically changing tracking setups. They will have general knowledge
about trackers and the concept of spatial transformations, but neither will they be
experts in all kinds of tracking systems, nor will they be experts in conceiving and
programming complex calibration or fusion algorithms.

1.1 Requirements

A number of requirements exist for an application-independent facility to allow AR-
engineers to set up and maintain a tracking environment.

e R1: Separation of Tracking from Applications To support flexible use of track-
ing facilities across many applications, a common standard is needed for the
specification of relationships between sensors and objects and the exchange of
tracking data associated with them.

e R2: Accuracy and Performance The standardization and abstraction must not
lead to a degradation in tracking quality or speed, when compared to a hard-wired
setup.

e R3: Registration and Calibration Tools must be provided to register and cal-
ibrate the increasing number of sensors and objects in tracking environments
efficiently, reliably and precisely.

e R4: Maintainability The system should enable AR-engineers to describe and
register new sensors and objects and to calibrate and continuously monitor them
quickly and reliably. At any point in time, they need a clearly documented under-
standing of the current configuration. It should be impossible for AR-engineers
to mistakingly configure physically impossible tracking setups.
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1.2 Related Work

Many systems have been described which aim at the integration of multiple sensors
and also at providing a layer of abstraction for the applications relying on them.
However, they are mostly rather problem-specific and do not follow a general pur-
pose approach, such as for example the perception and control techniques used in
autonomous land vehicles [6], [21]. The architectures proposed for this field of ap-
plication heavily rely on computer vision and make strong assumptions on the topol-
ogy of the spatial relationships to be monitored [5], [1]. They were not designed with
flexibility and maintainability in mind.

More generic architectures are based on so-called data flow networks, directed
graphs whose nodes represent components for data acquisition from sensors or for
data transformation. Components can be flexibly cross-linked, based on a small set
of data types allowed on component inputs and outputs, such as 3DoF position,
3DoF orientation, or 6DoF pose, a combination of both. Such data flow networks
constitute one of the most important building blocks of ubiquitous tracking envi-
ronments and provide the necessary transformation, synchronization, and network
transport of tracking data. We will come back to these issues in 2.

The two most prominent examples in the literature are OpenTracker [18] and
VRPN [20]. Whereas VRPN, coming from the VR domain, focuses on how vari-
ous sensors can be linked together and how tracking data can be synchronized and
transfered via network, OpenTracker originated in AR and also includes rudimen-
tary support for sensor fusion.

Also noteworthy is the OSGAR system [4]. It builds upon tracking data amongst
others given by VRPN and models tracked, statically registered, or deduced spatial
relationships in a scene graph [19]. Assumed tracking and registration errors can
be propagated along its branches in terms of covariances, thereby providing the
application with a measure of the expected tracking accuracy.

Modeling data flow networks using those systems is a great relief, compared
to coding all drivers and algorithms from scratch. However, it is still a tedious task
and maintainability (R4) is rather delimited by the fact that invalid data flows are not
excluded conceptually. Furthermore, none of the described systems provides support
for registration of statically aligned entities (R3), an obligation for real separation
of tracking from the applications (R1).

1.3 The Ubitrack and trackman Approach

The Ubitrack tracking middleware adds a higher level of abstraction to the data
flow concepts described above. AR-engineers can describe tracking setups as spa-
tial relationships between sensors and objects. Corresponding data flow graphs are
then generated partially or fully automatically. This higher level provides a more
intuitive way of describing data flows. AR-engineers can focus on describing the
physical sensor arrangements. Thereby, the risk of accidentally specifying physi-
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cally impossible data flows is excluded conceptually. Spatial relationship graphs
lend themselves to long-term documentation (and visualization) of the modeled sen-
sor arrangement. To this end, the trackman' tool provides a graphical interface for
the management, monitoring and quality analysis of complex and heterogeneous
tracking environments. Ubitrack provides the foundation for fulfilling requirements
R1 through R4. This chapter focuses on the presentation of trackman and how the
Ubitrack functionality is refined in order to accomplish the requirements fully.

2 The Ubitrack Framework

Before diving into the presentation of trackman, we provide an introduction to the
basic concepts of spatial relationship graphs, data flow networks and spatial rela-
tionship patterns. For more details, see [9], [13], [14], [15], [16], and [17].

2.1 Spatial Relationship Graphs

The concept of spatial relationship graphs (SRGs) was proposed in [13]. A simple
example is shown in Figure 1(a). SRGs are graphs which capture the structure of
a tracking environment by describing the static and dynamic spatial properties of
objects in the environment. The nodes of SRGs represent the local coordinate frames
of real or virtual objects and sensors. Directed edges represent spatial relationships
between nodes A and B, i.e., the pose (position and orientation, 6DoF) of coordinate
frame B relative to frame A. In Figure 1(a), the top node refers to a tracker that
tracks the poses of two objects, represented by the bottom two nodes. The right
one represents a head-mounted display, the left one refers to a generic target. For
instance, the applications might want to render some virtual object on top of it.
The directed solid edges represent the (dynamically changing) spatial relationships
between the tracker and the two objects.

SRGs are similar to scene graphs in computer graphics [19]. Yet, in contrast to
scene graphs, SRGs do not imply a pre-defined hierarchical ordering of the nodes.
Applications can request any node in an SRG to assume the role of a root node,
requiring the traversal through parts of the SRG from this node to a specified sink
node. For a detailed comparison of scene graphs and SRGs, see [7].

The dashed edge in Figure 1(a) describes a request to determine the spatial rela-
tionship between the tracked HMD and the tracked generic target. This relationship
is not measured directly but can be derived by considering the known spatial re-
lationships of both objects to the tracker. Figure 1(b) show the resulting extended
SRG. Two new edges have been added to the SRG: one reversing the spatial rela-
tionship between the tracker and the HMD, and the other one replacing the dashed

! The Ubitrack runtime library and trackman can be downloaded from
http://campar.in.tum.de/UbiTrack/WebHome
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Fig. 1 (a) Exemplary SRG with a sensor tracking two targets. The solid lines depict tracking in-
formation that is continuously measured and updated. The dashed line depicts spatial information
that can be derived from the tracking data. (b) Additional solid lines indicate the respective math-
ematical operations (inversion, concatenation) on the tracking data.

edge by concatenating the inverted edge from the HMD to the tracker with the edge
from the tracker to the generic target.

2.1.1 Use of Cycles for Sensor Calibration and Object Registration

SRGs typically contain multiple edges between nodes, as depicted in Figure 1(b).
For example, if multiple independent trackers are tracking the same objects (and the
transformations between those trackers are known), the SRG might contain multiple
paths to determine the spatial relationship in question. Thus, as another difference
to scene graphs, SRGs may contain cycles. These cycles are essential for exploit-
ing redundancy in tracking setups. They provide a means to calibrate or register
sensors or objects by using complementary tracking information (i.e., an alternate
path in the graph). They also allow system monitoring and the detection of faulty
(miscalibrated) sensors (in support of requirement R3).

2.1.2 Edge Characteristics

SRG edges represent a number of sensing characteristics. Most importantly, track-
ing information can have varying degrees of freedom (DoF), ranging from 2 or 3
translational DoF for wide-area sensors such as GPS or WiFi based trackers, over 3
rotational DoF for mobile sensors such as gyroscopes and compasses to full 6 DoF
poses of high-precision trackers for small-area VR or AR setups [17]. Other edge
characteristics involve the explicit modeling of sensing errors [2], [11]. A third set
of edge properties involves timing and synchronization issues with the special sim-
ple case of static edges [14]. The properties provide important criteria for selecting
optimal (w.r.t. accuracy or speed) sensor arrangements when setups offer a multi-
tude of options. They are essential to the derivation of good data flow networks (see
below) and support requirement R2.
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2.2 Data Flow Networks

SRGs are a descriptive rather than an operational specification of a certain setup and
are not directly usable by an application. Rather, for efficient use by the Ubitrack
runtime system that is included into the applications, they have to be converted into
data flow networks (DFNs). DFNs consist of computational units that operate on
tracking data.

DFNs are instances of data flow graphs (DFGs). DFGs are directed graphs and
their nodes represent the components to be instantiated in the DFN. Edges represent
the flow of tracking data between these components. Sources in a DFG generally
represent sources of tracking data (i.e. tracking devices). Sinks correspond to inter-
faces to applications or to other data flow graphs.

Application

Multiplication [—>»| Push Sink

Fig. 2 Data flow network corresponding to the SRG shown in Figure 1(b). An inversion, followed
by a multiplication is needed to compute the dashed edge of Figure 1(a) from the two solid edges.

Figure 2 shows the data flow graph that computes the spatial relationship between
the HMD and the target in the SRG of Figure 1. The tracking data of the HMD is
inverted and then concatenated with the tracking data of the target.

The Ubitrack runtime environment uses such data flow networks. At this level,
Ubitrack is comparable to the approaches taken in other systems, such as Open-
Tracker [18]. In fact, we are able to export data flow networks that have been gener-
ated from SRGs into applications that use OpenTracker, using the Ubiquitous Track-
ing Query Language (UTQL) data exchange format [16],[12] (in support of R1).

2.3 Spatial Relationship Patterns

This section describes how SRGs can be transformed into DFGs. To this end, Pustka
introduced the concept of spatial relationship patterns [15]. A pattern corresponds
to a computational unit, i.e. a node, in a DFG. Tracking data is provided to the
computational unit via inputs. It is transformed and then sent out via the output.
Good examples are the Inversion and Multiplication nodes in the DFG of Figure 2.
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2.3.1 Basic Concept

Spatial relationship patterns are depicted as template SRGs. They describe the effect
of a computational unit on an SRG. For example, the Inversion pattern in Figure 3(a)
states that, for a given SRG edge from node A to B, inversion adds a new edge
to the SRG going in the reverse direction. Similarly, the Multiplication pattern in
Figure 3(b) states that an SRG edge from A to B, and an edge from B to C can be
concatenated by multiplying the transformations. As a result, a new edge from A
to C can be added to the SRG. Component inputs in the DFG correspond to input
edges of the pattern. They are shown as dashed lines, and the associated input nodes
as light gray ellipses. The resulting component output in the DFG corresponds to
an output edge of the pattern. It is shown by a solid line, and the associated output
nodes by darker ellipses. If the input edges and nodes of a pattern match a part of an
SRG, the output edges and nodes can be added to the graph. At the same time, the
corresponding computational unit can be added to the DFG.

I I

First factor (P?SE,ED]{AUTO} e ~
| Second factor” fRQSE_6D]J[AUTO]
~. N
TA

(a) Inversion (full pattern) (b) Multiplication (full pattern)

Fig. 3 Basic spatial relationship patterns for the inversion and multiplication of tracking data.

In addition to full patterns that have both input edges and output edges, there are
base patterns that have only output nodes and edges, such as the Tracker pattern in
Figure 4(a). Since it has an empty input section, it can be applied any time. It is used
to add tracking devices as source computational units to the DFG.

Similarly, query patterns have only input nodes and edges (Figure 4(b)). They
connect the tracking setup to an application, in form of a query for information
about a specific spatial relationship in a scene. An example is the pose of the target
relative to the HMD in Figure 1(a). Generally, all base/query patterns have the same
structure, an output/input edge with output/input source and sink nodes.

2.3.2 Synchronization Issues

To properly handle measurements that are generated asynchronously by independent
sensors, each edge in an SRG is attributed with its synchronization mode, push or
pull. Pushed measurements travel downward from source toward sink through a
DFN, e.g., when a tracker such as a camera sends new data into the network at its
own speed. Pulled measurements are pulled upward in a DFN. A pull operation may
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(a) A.R.T. Tracker (base pattern) (b) Application Push Sink (query pattern)

Fig. 4 Spatial relationship patterns for a tracking device and to connect the Ubitrack runtime sys-
tem to an application.

be initiated for example by an application requesting measurements with a specific
time stamp via the Application Pull Sink component. Push as well as pull events are
propagated recursively through the data flow network.

Synchronization problems occur when two or more unsynchronized inputs have
to be combined by a computational unit, such as the Multiplication component. The
measurements then need to be valid for the same point in time. When a pull request
occurs on the output, measurements have to be pulled for this time stamp on all in-
puts. When a push event occurs for one input edge, measurements for the same time
stamp have to be pulled on the other inputs. The result can then be computed and
pushed onwards on the output. Generally, it is not possible to have more than one
input in push mode, except when both measurements come from the same tracker or
are otherwise synchronized in hardware. Therefore, all except one of them should
be in pull mode. To this end, suitable conversion facilities must be included. The
Buffer (constant interpolation), LinearInterpolation and Kalman Filter components
convert measurements from push to pull whereas the Sampler component converts
from pull to push. Refer to [14] for more details.

2.3.3 Pattern Categories

A large number of patterns and associated computational units have already been
integrated into Ubitrack [15]. For documentation purposes and for interactive use in
trackman, they are categorized with respect to their structure (i.e., as base, full and
query patterns) and also with respect to their semantics:

e Sensor patterns describe how tracking data is provided to the data flow network.
This mainly comprises driver components retrieving data from hardware.

e Basic patterns describe trivial transformation steps such as inversion or interpo-
lation of a transformation or concatenation of two transformations.

e Calibration patterns represent algorithms such as the hand-eye calibration or
absolute-orientation algorithm which are used to determine static spatial rela-
tionships under certain boundary conditions.

o Fusion patterns represent algorithms which can be used to somehow fuse track-
ing data to obtain a better, more accurate or a more general result.

o Persistence patterns represent components that write tracking or calibration
data to a file or read it from there.
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o Network patterns represent components that send/receive tracking data to/from
the network. They are needed to link independent DFNs.

e Application patterns represent components that transfer or receive tracking data
to/from an application. This principally enables applications not only to consume
tracking data but also to transform it somehow and reinject it into the data flow
network. Other patterns in this category include render components, which create
OpenGL-based 3D graphics output based on tracking data.

Table 1 presents a representative subset of patterns®, classified according to their
structure and semantics. For the application and persistence patterns, there exist
pairs of corresponding base and query patterns, such as Player and Recorder for
logging and replaying tracking data or Calibration Reader and Calibration Writer
maintaining the calibration or registration data of a static transformation in files.
The Application Source and Sink patterns represent endpoints in the DFN which
interface it to the application. The Application Pull Source is one of few data flow
sources having type pull. It retrieves current tracking data at any time via a callback
interface from the application. Similarly, the Application Push Sink pushes data into
the application via a callback interface. In both cases, the DFN initiates the flow of
tracking data. Application Push Source and Pull Sink, on the contrary, work without
a callback mechanism and the application initiates the flow of tracking data. Some
calibration patterns will be introduced in section 5.1. For more details, refer to [15].

2.4 SRG Design Activities

Pattern modeling consists of three major activities:

e Al: Description of the tracking environment All mobile and stationary sensors
and all real and virtual objects are identified. Their known or tracked spatial re-
lationships to one another are described. This activity mainly uses base patterns.

e A2: Deduction of indirect spatial relationships Full patterns are applied to
suitable parts of an SRG either by an automatic pattern matching process or in-
teractively by the AR-engineer.

e A3: Definition of the runtime interface to the application On the basis of
query patterns, application interface(s) are inserted into the SRG.

trackman can assist AR-engineers in generating SRGs for a given tracking environ-
ment (Al and A3). Ubitrack can use pattern matching techniques to automatically
derive a DFG from a given SRG [9], [17] (A2). AR-engineers can influence the
creation of DFGs manually in trackman, supporting requirements R2 and R4 (A2).
The interactive variants of these activities are described in the subsequent sections.

2 A comprehensive reference is provided at http://campar.in.tum.de/UbiTrack/WebHome
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Table 1 Pattern categorization matrix showing a subset of the existing Ubitrack patterns. The
transformation types are neglected for the sake of readability.

Syntax
Base pattern Full pattern Query pattern
Sensor A.R.T. Tracker
Static Transformation

Basic Multiplication

Inversion

Buffer
Interpolation
Collector
Gate
Sampler
Semantics | Calibration Hand-Eye Calibration
Absolute Orientation
Tip Calibration
Fusion Kalman Filter
Functional Fusion
Persistence Player Recorder
Calibration Reader Calibration Writer
Network Network Source Network Sink
Application|Application Push Source Application Push Sink
Application Pull Source Application Pull Sink
X3D Object
Background Image

3 trackman: Interactive Modeling of Spatial Relationships

trackman is a configuration and monitoring tool for tracking setups. It has a graph-
ical interface, showing the current configuration of a setup in terms of both, SRG
and DFG. It also provides interactive means to access all patterns that are known to
the Ubitrack runtime system and to integrate them into the current configuration.

3.1 System Architecture

In order to keep trackman independent from Ubitrack development and to ensure its
compatibility with upcoming patterns, it was designed as a lightweight and generic
tool. Architecturally, it is organized as a Ubitrack application.

trackman does not have special knowledge of patterns but rather imports the
current set of available patterns from external description files that come with the
Ubitrack runtime library. The description language is based on the UTQL? data ex-
change format [16]. In addition to the mere graph structure of the patterns, it also al-
lows to specify important meta information. Type information for node/edge/pattern
attributes (see 2.1.2 for the most important ones) as well as pattern documentation

3 http://ar.in.tum.de/static/files/ubitrack/utgl/utgl.xsd
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have to be provided. The resulting pattern template specification language XML
schema® allows for the formal description of available patterns. trackman uses the
meta information to allow for convenient configuration of node, edge, and pattern
attributes in its property editor and to display documentation to the user, as can be
seen in Figure 5.

3.2 Graphical Layout

Figure 5 presents a screen dump of trackman showing the interactive construction
of the SRG and DFG of Figures 1 and 2. The tree on the left shows excerpts of the
list of all patterns, accessible both with respect to semantic and structural (layout)
categories. Below, the property editor allows to inspect and edit settings associated
with the selected node, edge, or pattern. On the top left, a search facility allows the
AR-engineer to restrict the displayed elements in the tree to only those patterns that
contain all specified strings.

@) trackman 0.30.01 - Sample SRG
File

% [inv B
) Database server
=4 Local SRGs
211 Sample_SRG
~-[Z Inversion (Fose) (Foselnversion)
=i Pattern templates
=@ Category catalogue
@@ network
® Application
® Persistence
@® Fusion .
@® calibration Target Pose [FOSE._BD][PUTH]
® Vision
® Basic
i ® Sensor
-2 Layout catalogue
28 Query patterns
22 Full patterns
Inversion (Rotation) (Rotationinver:
[ Inversion (Pose+Errar) ErrorPosel
T2 Invarsion (Pose) (Poselnversion)
2 Base pattarns

Input Pose [POSH GD][AUTO_PUSH]

Inversion (Pose) (Foselnversion)
(pattern_g)

/.
Secpnd factor [FOSE_6D][AUTO]
7 1D Fose [PYSE_GDIFUSH]
Inverfed Pose [POSE\6DITAUTO_AUSHI
!/

inverted Pobe [POSE.ED][AUTO_PUSH]

First factor [POSRLEDIIAUTO_PUSH]

Multiplication (Pose*Pose)
(Poseluiplication) (patter_7)

Froduct [FOSE_BDJ[AUTO_PUSH]

Target Pose
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Application Push Sink (Pose)
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Bodly ID used by ART. (configured in DTrack.
software)

Range: [1,20]

Fig. 5 The trackman graphical modeling tool for spatial relationship graphs.

The central area is tiled, showing the current SRG and/or the DFG. In the DFG
pane on the right, data sources (corresponding to base patterns, green) are the up-
permost components, followed by intermediate computational units (full patterns,
cyan), and finally the lowermost data sinks (query patterns, orange). The latter ones

4 http://ar.in.tum.de/static/files/ubitrack/utql/utql_templates.xsd, http://ar.in.tum.de/static/files/ubitrack/utql/utql types.xsd
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represent interfaces to applications. AR-engineers can alter the tracking setup in the
SRG window. Resulting updates are automatically brought to the DFG window. At
intermediate stages of the configuration process, not all nodes in the DFG window
need to be integrated into the data flow network. For example, the right green node
in Figure 5 has not yet been connected to other modules.

3.3 Interactive SRG Generation

Starting with an empty work area in trackman, we use base and query patterns simi-
lar to those shown in Figure 4 to describe the directly existing spatial relationships in
the tracking environment and the application requests. To this end, they are dragged
from the tree view on the left to the SRG editing workspace.

HMD Pase}@{ismﬁ‘uﬂ-ﬂ
Target Pose [POSE_6D][PUSH]

nput_Pase {POSE-GD]fPUSH]

Fig. 6 Identification of coordinate systems via node unification. The indicated unification steps
result in the SRG shown in Figure 1(a).

For the SRG in Figure 1(a), the A.R.T. Tracker pattern is dragged twice into the
work area — once for each of the two targets. Names, IDs, and other attributes are
modified by selecting the respective node, edge, or pattern and applying the settings
in the property editor. The query pattern Application Sink is dragged into the work
space to describe the request that an edge be provided which describes the spatial
relationship between the HMD and the target (see Figure 6).

Using the node unification interaction scheme, all three patterns can be merged to
form a single graph. To express that two nodes from different patterns are identical
in the SRG, AR-engineers can drag one node on top of the other one. As a result
of this operation, the subgraphs are merged at this node. Node unification can be
applied to all combinations of input and/or output nodes. Nodes that result from
unification of at least two output nodes are shown darker than normal output nodes
and with a white label. Nodes within a single pattern cannot be unified (principle of
pattern atomicity). Figure 6 shows the node unification steps which lead to the SRG
shown in Figure 1(a).
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3.4 Interactive Deduction of Spatial Relationships

Another interaction scheme is needed to let AR-engineers specify which operations
should be applied to the tracking data such that additional spatial relationships can
be derived. To this end, full patterns have to be integrated into the SRG, thereby
adding further (deduced) edges in terms of their output edges.

By edge matching, an edge from the input section of a new pattern is matched
against an edge that exists already in the SRG or that is part of the output section
of another pattern. The operation also immediately updates the corresponding DFG,
linking the input of the computational unit with the output of another component.

The edge matching operation is performed by selecting the two edges, and then
invoking the match operation from the menu. Both edges must have the same edge
characteristics (according to 2.1) and illegal matchings are inhibited.

SE_6DJ[PUSH]
- o]

e Invelved Pose
Second factor_[POSE_6D]J[AUTO] First factor [F‘O\SE_SD][ oy \

- e Query {ROSE-EDJPUSH]- _@ ————————————————

Fig. 7 Identification of data input and output of patterns via edge matching. The indicated match-
ing steps result in the SRG shown in Figure 1(b).

Edge matching implies node unification on the source and sink nodes, respectively,
if necessary. Edges belonging to the same pattern cannot be matched (again due
to pattern atomicity). The edge matching steps which lead to the SRG shown in
Figure 1(b) are depicted in Figure 7.

trackman supports the analysis of synchronization issues. For many full patterns,
it can perform the recursive propagation of synchronization mode flags on-the-fly
(according to 2.3). For other full and query patterns that only allow for a specific
constellation of mode flags, still a consistency check can be performed. Edge match-
ings with incompatible sync flags are inhibited. The conflict can be resolved manu-
ally by converting some push edges to pull mode.

3.5 More Modeling Functionality

With node unification and edge matching, SRGs can be constructed from scratch.
Additional functionality is needed when dealing with existing SRGs. This is impor-



14 Peter Keitler, Daniel Pustka, Manuel Huber, Florian Echtler, and Gudrun Klinker

tant for the maintenance of existing setups (R4) and also to recover from modeling
mistakes. Therefore, trackman also provides the following interaction schemes.

- 6DJ[AUTO] !
First factor [PQSE_6DJAUTO]
_6DJ[PUSH] |

- _Query. [£OSE.6BJ[FUSH] ™ *
(a) Isolate pattern outputs (b) Isolate pattern inputs

Fig. 8 Result of the isolate pattern outputs and inputs operations, invoked on the Multiplication
pattern contained in Figure 1(b).

e Isolate Pattern Outputs: trackman is able to separate the output edges of the
pattern from connected nodes/edges in the input section of other patterns. The
effect of this operation is shown in Figure 8(a). The output edge of the Mul-
tiplication pattern contained in the sample SRG (Figure 1(b)) is isolated from
matched input edges. Concretely, the matching step 4 of Figure 7 is revoked.

e Isolate Pattern Inputs: To complement the previous scheme, trackman is also
able to separate the input edges of a pattern from its context, effectively an-
nulling all dependencies between these input edges and corresponding output
nodes/edges of other patterns. Invoking this operation on the same Multiplica-
tion pattern results in Figure 8(b). The edge matching steps 2 and 3 as depicted
in Figure 7 are revoked. This implies also the separation of those input nodes that
are neither source nor sink of an output edge of the pattern, such as node “B” of
the Multiplication pattern.

e Isolate Entire Pattern: This operation combines the two operations above and
brings the pattern back to its atomic form.

e Delete Pattern: The pattern is removed from the current SRG. It does not matter
whether the pattern was integrated in some larger SRG structure or existed in its
atomic form. In the former case, an isolate pattern step is implicitly performed
first.

e Hide Pattern: Parts of the SRG are hidden to provide an abstracted, clearer view
of the SRG in the editor window. trackman provides this functionality on a per-
pattern basis. This helps to maintain clarity in large SRGs such as the one shown
in Figure 12 which consists of approximately 100 patterns.
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3.6 Ordering of Design Activities

It is up to the AR-engineer to decide about a suitable design approach. Patterns may
be added to the SRG in any sequence. Furthermore, patterns may be combined using
the node unification and edge matching metaphors in any sequence. The output edge
of a selected pattern may therefore be associated with a subsequent input edge even
though it is currently unclear how the output edge can be deduced since the input
edges of that pattern haven’t been matched yet. A valid DFG, of course, requires all
input edges to have been matched properly.

The design process may therefore be started either with the environment, some
basic fusion algorithm or also the application interface. The first case might also
be denoted a bottom-up approach since the AR-engineer starts with physical en-
tities (A1) and refines information step-by-step (A2), resulting in an application-
level (A3) piece of information. In the opposite top-down approach the engineer
could start with the application interface (A3) and drill down through various algo-
rithms (A2) to finally reach real-world sensors and objects (Al). For clarification,
going up according to the degree of abstraction from raw sensor measurements to-
wards application-level data comes along with going down in the data flow from
data sources to data sinks.

4 Advanced Interactive Modeling Concepts

This section describes two techniques which can further ease the SRG modeling
process. Semi-automatic modeling automates simple operations and lets the user
focus on the essential deduction steps. Meta patterns provide best-practice solutions
to well known problems, reducing the modeling problem to the addition of a few
patterns only. Both techniques significantly reduce the amount of modeling opera-
tions that have to be performed manually.

4.1 Semi-automatic Modeling

Manual pattern matching can become a very tedious procedure. In more complex
setups, the amount of patterns to be integrated in the SRG increases quickly. A
concatenation of n edges requires n — 1 applications of the Multiplication pattern. In
addition to that, some edges have to be inverted. In practice, approximately half of
all matchings of full patterns fall upon the Inversion and Multiplication patterns (e.g.
22 out of 42 in Figure 12). Automatic pattern matching can relieve the user from the
trivial aspects of these and other modeling operations. Figure 9 depicts a typical
modeling situation. The transitive transformation from A to D shall be deduced
using known transformations from A to B, B to C, and C to D, respectively. Three
full patterns are necessary to solve this simple problem and overall six solutions
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exist, one of them is shown in Figure 9(b). It first deduces a transitive transformation
from B to D (Multiplication), then converts the mode of transformation A to B from
push to pull and finally concatenates both to the desired result.

Static Pos 6DJIPULL] static Post 6DJIPULL]
Interpolated Pull Oufbut [BOSE_6DJPYLL]

Tracked Tran§formajlon [POSE.6DJIRUSH]

Tracked Transformaglon [POSE_6D][PUSH]

Tracked Transformajfon [POSE.6D][PUSH] Tradked Transformaglon [POSE_EDJ[PUSH]

Input Pose~{PQSE, EDJ[PUSH] put Fose~{POSE, DJIPUSH):
T T
Product [PO

(a) Deduction problem (b) Possible Solution

Fig. 9 Typical modeling situation which requires many applications of full patterns.

On the opposite side of options, fully automatic pattern matching is also offered by
Ubitrack [9]. Yet it has its limitations in selecting optimal patterns for every purpose.
It is not easy to ensure that the chosen deduction steps meet the AR engineer’s
notion of the solution. Particularly the many push/pull variations may require fine-
tuning by the engineer, once the overall setup has been configured. Assuming that
the two tracked edges in Figure 9 offer comparable tracking quality at different
frequencies, the position of the Interpolation influences the resulting quality and
one would want to interpolate between measurements of the faster tracker. Differing
tracking qualities between both trackers further complicates the consideration.

To exploit the best of both options, trackman provides semi-automatic modeling
facilities. During manual operations, AR-engineers can enable automatic pattern
matching for individual groups of patterns (e.g., for all variations of the Multiplica-
tion pattern or the Inversion pattern) while keeping other, more specialized patterns
under strict manual control.

The automatic pattern matcher can be invoked in two ways. The first is to select
the source and then the sink node of the transformation to be deduced and then
to activate the matcher in the menu. The second method is to first insert a query
pattern by unifying its source and sink nodes and then invoke the matcher on the
corresponding input edge.

4.2 Meta Patterns

Another approach to simplify the modeling task is to provide template solutions for
common, recurring problems in terms of meta patterns. Basically, they are incom-
plete SRGs and contain only those patterns that belong to the reusable core of the
solution. Interchangeable parts such as the specification of a certain tracker are left
open. A meta-pattern can be embedded into an SRG like any other pattern.
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A (node_6)
- \

o .
Second fafmr,[PdSE_ﬁD][AuTO] !nve\zed Pose SE_6DJ[AUTO]
- N
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Input Pose [POSE. 6DJIAUTO
OSE_6DHAUTO} = - =

B (node_4) A (node_5)

Fig. 10 Meta pattern describing the principal layout and application interface of the sample SRG
in Figure 1(b).

To illustrate the idea behind meta patterns, Figure 10 shows the sample SRG from
Figure 1(b) with all base patterns removed, i.e. nodes are gray rather than black
(see also Figure 8). This meta pattern still conveys the basic structure of the sample
application, with HMD and target being tracked by a single tracking system, as well
as the application interface. It can be completed by simply matching an arbitrary
tracker pattern (providing a push measurement of type 6DoF pose) twice with the
input edges of the meta pattern in order to obtain a valid data flow description again.

5 Tools to Analyze and to Interact with Data Flows

Sections 3 and 4 dealt with SRG modeling, showing how DFGs can be provided to
applications using trackman. In addition to creating such data flows, a major task of
AR-engineers involves the calibration of sensors and the registration of objects, i.e.
the careful estimation of fixed spatial relationships between groups of sensors and/or
objects. For example, in multi-sensor setups, the poses of all stationary sensors have
to be determined. Similarly, groups of mobile sensors and objects that move together
as a package need to describe their fixed spatial relationships to one another. AR-
engineers need to measure these static relationships accurately during configuration
time. Such relationships are represented by static edges in the SRG.

During daily use of the tracking setup, the engineers further have to monitor
these relationships to determine whether changes due to wear and tear cause sys-
tematic errors that require re-registrations. Another concern is tracking accuracy. It
is critical to be able to continuously evaluate a given sensor setup according to its
current precision and accuracy [2] such that applications can deal appropriately with
different levels of tracking quality.

This section presents the tools provided by trackman and Ubitrack to support
these needs. In this respect, trackman behaves like any other application using Ubi-
track. This implies that, in contradiction to 3.1, trackman needs to know some in-
terface patterns that allow him to interact with the data flow. The implementation of
this functionality in trackman still has a preliminary status. Yet, it already proved to
useful for several scenarios, e.g. [10], [11].
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5.1 Tools for Calibration and Registration

trackman provides a generic means to carry out calibration procedures including
the necessary user interactions. As a matter of principle, calibration does not differ
from any other tracking application; it can be described fully by SRGs. They can be
directly instantiated in trackman so that no additional implementation is necessary
to solve the calibration problem.

In a typical calibration process, the AR-engineer has to move an object that is
tracked by sensors in the environment. The tracking data of each sensor is stored,
and the relative pose of the sensors can be determined from these data sets. Other
processes require AR-engineers to align several objects (e.g. for HMD calibration)
or to point with the tip of a tracked pointer at a specified location in the world. In
both cases, the engineer has to signal when he is ready to take a measurement. When
enough measurements are selected, the pose of the object can be registered.

Ubitrack provides a collection of patterns for state-of-the art registration and
calibration algorithms [15], among them solutions for the absolute orientation [8],
hand-eye calibration [22] and tip calibration (cf. Tablel). These patterns need to be
embedded into an SRG context that supports capturing and recording of data as well
as user interactions such as a button press event, as needed by the calibration task.
trackman provides a generic user interface for this purpose.

When AR-engineers calibrate or register objects, tracking measurements are
streaming (pushed) from one or more sensors into the DFN. They can be condi-
tioned in three different ways before being passed to the registration or calibration
algorithm:

e Continuous Measurements: Measurements are continuously collected. They
can either be directly fed into the calibration algorithm or stored using the Col-
lector and Calibration Writer patterns (cf. Tablel).

e Discrete Measurements: Samples are collected at regular time intervals. For this
purpose, the collection mechanism for continuous measurements is extended by
adding the Buffer (or another interpolation component) and Sampler components
upstream in the data flow. The desired frequency can be specified as an attribute
of the Sampler component.

o User-Triggered Measurements: Instead of sampling at regular time intervals,
measurements are taken when the user presses a button. This asynchronous event
triggers a gate to accept a suitable tracking measurement (either shortly before or
after the button event). Typically, a number of user-triggered measurements, e.g.
using calibration points, are collected. This setup uses the Gate pattern in combi-
nation with an Application Push Source pattern (for Button events) upstream in
the data flow. A button is provided by trackman to interact with the Application
Push Source component.

Some calibrations (such as tip calibration or registering a tracker coordinate frame
with a known CAD model) just need measurements from one tracking modality
as input. Data can then flow directly from the data collection components to the
parameter estimation components. This allows for on-line incremental parameter



Management of Tracking for Mixed and Augmented Reality Systems 19

estimation as soon as the minimal number of measurements is provided. If desired,
more measurements can be taken to incrementally improve the registration until the
residual error is considered to be small enough.

In many calibration and registration processes, however, data streams of differ-
ent trackers need to be associated with one another to obtain pairs of corresponding
measurements. There are mainly two interaction methods for AR-engineers to es-
tablish such correspondences between measurements from several trackers:

e Use simultaneous measurements of the same entity, e.g. a pointing device, hav-
ing the same timestamp. Both measurements can then be directly fed into the
calibration pattern and one SRG is still sufficient to describe the entire calibra-
tion. This probably means running two tracking systems in parallel. Balancing
the timestamps using interpolation might be necessary if the trackers are not
synchronized in hardware. Using this solution, we can still benefit from on-line
incremental parameter estimation.

e Exactly reproduce the measurement. This corresponds for example to conduct-
ing corresponding measurements (e.g. a set of points in space) sequentially using
two different tracking systems. Thus, two SRGs are needed for the whole cali-
bration step. The first SRG aggregates a list of measurements made by tracking
modality A and stores it in a file (see above). In a second SRG, the actual cal-
ibration takes place, using both, measurements from the file via the Calibration
Reader pattern and measurements from tracking modality B. This method does
not work well with the first and second method of recording measurements de-
scribed above since it is rather difficult to exactly reproduce a complete trajectory
of an object, except if you have a robot at your disposal. Therefore, sets of cor-
responding pairs of measurements often have to be acquired manually.

Both of these approaches can be assembled from the meta-patterns that gather con-
tinuous, discrete or user-triggered data streams. At yet a higher level, they can be
flexibly combined (loaded) with patterns to execute the mathematical calibration or
registration algorithms. All-together, trackman and Ubitrack thus provides a very
flexible runtime environment within which different data collection routines can be
bundled with mathematical algorithms as needed to quickly determine static rela-
tionships between objects and/or sensors in tracking environments. AR-engineers
can perform this task in combination with their efforts towards configuring descrip-
tions (SRGs and DFGs) of the tracking environment they are in charge of. They
can also revisit and anew static spatial relationships during daily use whenever this
deems necessary - as described next.

5.2 Tools for Online Analysis of Tracking Environments

The functionality provided in trackman for the direct instantiation of data flows is
not only useful for registration steps but also for the live evaluation of application
data flows and the comparison of different alternatives against a trusted reference.
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When trackman is running during the daily use of a tracking environment, it can con-
tinuously audit any spatial relationship between some nodes A and B by issuing an
Application Push Sink request with respect to that spatial relationship (dashed edge
in Figure 1(a)). Thus, trackman will be informed immediately of any new measure-
ments for that edge. Measurements to be compared against the reference value are
interfaced to trackman via the Application Pull Sink component; i.e. whenever a new
reference measurement is pushed upon the application, alternative measurements of
the same type w.r.t. other sensors are pulled. With this setup, it is possible to observe
in real-time the deviations of position and orientation tracking, as estimated by the
alternative data flows.

-02 00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 22 324 326 38 40 42 44 46 48 50 52 54 56 58 60 62 64
time [ms]

Fig. 11 Exemplary comparison plot showing deviations between four alternative measurements

This online measurement tool has been very helpful in investigating tracking setups
for several industrial AR applications [3], [10], [11]. Figure 11 shows an exemplary
comparison. The x-axis of the plot represents time. The y-axis represents positional
deviations (euclidean distance) of three alternative tracking data flows relative to the
reference data flow. Similarly, orientational deviations can be plotted.

6 Application Examples

trackman is actively used in our group for modeling and evaluation of tracking envi-
ronments. Use cases range from rapid prototyping of small demo setups up to large-
scale evaluations. We also used trackman for the evaluation of an indirect tracking
setup [11],[10]. It consists of a static camera setup mounted to the ceiling of a room
as well as a mobile stereo camera setup on a tripod which is tracked by the static
setup. The mobile setup can be placed on-the-fly such that tracking is also possible
in areas that are hidden from the static cameras. One might expect a strong degra-
dation of tracking quality of the indirect tracking approach, as compared to direct
tracking using only the cameras mounted to the ceiling. Our evaluation shows that
the main source of error in this setup is the systematically wrong detection of the
orientation of the mobile setup which propagates to large positional errors in the
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region of interest. The evaluation furthermore shows that by an appropriate error
correction, indirect tracking can be almost as good as direct tracking. The used cor-
rection mechanism is based on common reference points in the scene which can be
seen by both tracking systems.

Static
Tracker
(node_1)

Misorientec
Mobile

Misorientea
Mobile

Corrected
Mobile

Static Pose [P SE_6D]§‘FULL]Pose

atic -6D][PULL]

Static Pose [PDSE_6D][PULL]

Mobile
Tracker
x, N0CE_B)

Fig. 12 SRG for comparison of accuracies resulting from different tracking approaches

At the moment, we are integrating a Faro arm? as a third tracking system, giving us

reliable 3D point measurements as a reference. The corresponding SRG is depicted
in Figure 12. It consists of approximately 100 patterns, whereas most of them are
hidden. It contains two static transformations that have to be calibrated, one between
the “Mobile Target” and the “Mobile Tracker” and another between the “Faro” node
and the “Static Tracker” node. Both calibrations and the comparison itself were
carried out completely in trackman, without support by additional tools, using just
the methods described in 5.1 and 5.2. The plot shown in Figure 11 results from this
comparison. Four edges exist between the “Faro” and “Tool” nodes, resulting in
three deviations plotted relative to the reference measurement.

7 Conclusion

In 1.1, requirements on a tracking infrastructure have been stated. The “perfor-
mance” requirement (R2) is clearly met by using the Ubitrack library. It provides
state-of-the-art algorithms that can be linked and executed very efficiently. The other
three requirements are somewhat interdependent. In a strict sense, “calibration” (R3)
and “maintainability” (R4) are implications of the “separation of tracking from ap-
plications” (R1) requirement. The described graphical pattern modeling approach
contributes a lot to the feasibility of these goals. Together with semi-automatic mod-
eling and the meta pattern concept, the preparation of appropriate application data
flows is simplified a lot. At the same time, less expert knowledge is needed, due to
the high-level graphical description and exclusion of semantically wrong data flows.

5 FARO Technologies Inc.
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Altogether, this has the potential to lower the inhibition threshold for the acquisi-
tion and productive operation of a tracking infrastructure. However, to achieve real
separation of tracking from applications, tools to aid in administrative tasks are also
needed. We showed the principal feasibility of generic solutions for the essential
calibration and error analysis tasks. Nevertheless, there is still room for improve-
ments, e.g. by integrating consistency checks and outlier detection into calibration
procedures, by providing a more realistic 3D visualization of spatial coherences and
other more intuitive operational concepts.
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