Does conscious intention to perform a motor act depend on slow cardiovascular rhythms?

Gert Pfurtscheller a,∗, Rupert Ortner a, Günther Bauernfeind a, Patricia Linortner a, Christa Neuper a, b

a Laboratory of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology, Krengasse 37, A-8010 Graz, Austria
b Department of Psychology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria

Article Info

Article history:
Received 3 August 2009
Received in revised form 13 October 2009
Accepted 20 October 2009

Keywords:
Slow blood pressure oscillations
Self-paced movements
Heart rate
Baroreflex loop

Abstract

Slow oscillations around 0.1 Hz are characteristic features of both the cardiovascular and central nervous systems. Such oscillation have been reported, e.g. in blood pressure, heart rate, EEG and brain oxygenation. Hence, conscious intention of a motor act may occur only as a result of brain activity changes in frontal related and related brain areas, or might be entrained by slow oscillations in the blood pressure. Twenty-six subjects were asked to perform voluntary, self-paced (at free will) brisk finger movements. Some subjects performed self-paced movements in relatively periodic intervals of around 10 s at the decreasing slope of the slow 0.1-Hz blood pressure oscillation. Our study reveals the first time that self-paced movements, at least in some subjects, do not stem from “free will” based on brain activity alone, but are influenced by slow blood pressure oscillations.

© 2009 Elsevier Ireland Ltd. All rights reserved.
from the self-paced condition according to the median and the normalized SDn (mean/SD):

Group A: median ≥7 s and <13 s and SDn <0.4
Group B: median ≥13 s.
Group C: median <7 s and SDn <0.4

Group A: 9 subjects showed relatively constant intervals between consecutive movements of 10.0 s ± 2.0 (mean ± SD). Group B: 8 subjects performed self-paced movements in random intervals of 20.8 s ± 6.3. Group C: 5 subjects performed relatively fast and periodic self-paced movements in intervals of 4.55 s ± 1.32. Subjects in group C were excluded from further analysis because of their short inter-movement intervals related frequently to respiratory cycles. The remaining subjects executed the self-paced movements either relatively periodically, with a frequency close to 0.1 Hz (group A), or randomly (group B). Tables 1 and 2 present additional analyses of data from these two groups.

We continuously recorded the ECG bipolarly at electrodes placed on the thorax (filter setup: 0.5–100 Hz), blood pressure (BP), respiration and prefrontal changes of (de)oxyhemoglobin (Hb/HbO2). For BP recording, the beat-to-beat systolic (BPsys) and diastolic (BPdia) pulse pressures were extracted, linearly interpolated, resampled by 4 Hz and also time series generated. A transfer function model [9] was used to remove respiratory-related variability from instantaneous HR-, RRI-, BPsys- and BPsys-time series and Hb/HbO2 signals. Auto spectra were calculated from the RRI, BP beat-to-beat time series and HbO2 by applying Welch’s method with a Hanning window. The single segments had a length of 100 s, with 50 s overlap. Welch’s method was also used to estimate cross power spectral density and magnitude squared coherence (COH²). For the phase-relationships, we chose the frequency with the highest squared coherence between RRI and BPdia series. With this frequency, it is possible to identify the phase- and time-delay from the cross power spectra. (time-delay = phase-delay)/(2 × pi × frequency)). Fig. 1 presents the examples of different time series and their spectra. Each time series displays slow oscillations as documented by the 0.1-Hz peaks in the power spectra. In the spectra of BP and HbO2 additional peaks at ~0.24 Hz are visible due to the respiration.

The power spectrum was calculated from the 5-min BPdia time series during rest. When one dominant peak was found in the right of position FP1 according to the international 10/20 system for EEG recording. A digital 3 Hz low pass Butterworth filter of order 5 with an attenuation of 30 dB in the stop band was used to allow down sampling to 10 Hz. Afterwards, a 0.01 Hz high pass filter was used to remove baseline drifts. For more details about the system see [1].

From the ECG, the QRS complexes were automatically detected based on an algorithm using a filter bank to decompose the ECG signal into various subbands. Afterwards, an interval series was formed, linearly interpolated, resampled at 4 Hz and displayed as HR intervals (RRI) series. From the BP recording, the beat-to-beat systolic (BPsys) and diastolic (BPdia) pressure were extracted, linearly interpolated, resampled by 4 Hz and also time series generated. A transfer function model [9] was used to remove respiratory-related variability from instantaneous HR-, RRI-, BPsys- and BPsys-time series and Hb/HbO2 signals. Auto spectra were calculated from the RRI, BP beat-to-beat time series and HbO2 by applying Welch’s method with a Hanning window. The single segments had a length of 100 s, with 50 s overlap. Welch’s method was also used to estimate cross power spectral density and magnitude squared coherence (COH²). For the phase-relationships, we chose the frequency with the highest squared coherence between RRI and BPdia series. With this frequency, it is possible to identify the phase- and time-delay from the cross power spectra. (time-delay = phase-delay)/(2 × pi × frequency)). Fig. 1 presents the examples of different time series and their spectra. Each time series displays slow oscillations as documented by the 0.1-Hz peaks in the power spectra. In the spectra of BP and HbO2 additional peaks at ~0.24 Hz are visible due to the respiration.

The power spectrum was calculated from the 5-min BPdia time series during rest. When one dominant peak was found in the right of position FP1 according to the international 10/20 system for EEG recording. A digital 3 Hz low pass Butterworth filter of order 5 with an attenuation of 30 dB in the stop band was used to allow down sampling to 10 Hz. Afterwards, a 0.01 Hz high pass filter was used to remove baseline drifts. For more details about the system see [1].
Fig. 1. Example of blood pressure (mmHg), RR intervals (ms), ∆HbO₂ and respiration time courses during self-paced movements (indicated by vertical lines) in subject AS6 with the corresponding power spectra for BP, RRI and HbO₂. Dominant peaks were found in only 4 subjects in group A and 5 subjects of group B (indicated in Tables 1 and 2 by bold numbers in the far right column). All other subjects showed either unclear peaks or two peaks within the investigated interval, whereby always the largest peak was selected automatically.

In a first step, both the respiration corrected beat-to-beat blood pressure and heart rate interval time series were averaged across all subjects of each group starting 6 s prior and ending 6 s after each movement onset. Fig. 2 presents the examples of the individual averaged diastolic blood pressure time courses and beat-to-beat heart rate responses, together with their grand average time courses. Prior to movement onset, the beat-to-beat heart rate intervals increased in all 9 group A subjects, who also clearly displayed a decreasing slope in their 0.1-Hz blood pressure oscillations. Both the blood pressure decrease and the beat-to-beat increase were highly significant (see indicated time windows in Fig. 2; paired sample t-test $p<0.01$ and $p<0.005$, respectively). No such movement-related changes were found in group B.

Second, the phase-relationship between RRI and BPdia were analysed for both groups by calculating cross spectra. The results are summarized in Table 3. We found that the mean time delay varied between 2.6 and 2.9 s without any significant differences between both groups, or between rest and movement conditions. Therefore, in all subjects from groups A and B, across both conditions, the 0.1-Hz BPdia oscillation led the 0.1-Hz HR oscillation by ~ 2.6 s.

Third, we investigated whether any relationship exists in group A between the “eigenfrequency” derived from the resting state and the movement-to-movement intervals. The subjects who exhibited relatively constant movement-to-movement intervals around 10 s displayed a weak negative correlation ($r=-0.524$, $p=0.182$), with its “eigenfrequency”. This weakness of the relationship is not surprising, since only 4 subjects displayed clear spectral peaks in the BP time series during rest (marked in Fig. 3 by circles). The weak correlation might also result from the small number of subjects, and because (in some subjects), one pressure wave sometimes occurred between consecutive movements, and other times, two blood pressure waves occurred instead. Summarizing, the weak correlation seen here may result from the small sample size and some confounds.

One of the goals of the complex, non-linear cardio-baroreceptor control system [18,21] may be to guarantee the blood and oxygen supplies, respectively, of all body parts and especially the central nervous system (CNS). An interesting feature of this system is the slow oscillation with a strong preference for frequencies around 0.1 Hz [23]. Noteworthily, such 0.1-Hz oscillations have been reported at different brain locations and in different physiological signals. For example, Cooper et al. [3] reported irregularly rhythmical changes at a frequency of about 0.1 Hz in the oxygen availability of cortical tissue, Schroeter et al. [17] reported on spontaneous low-frequency oscillations of oxyhemoglobin at optodes places over the occipital cortex, and Witte et al. [24] described the occurrence of EEG bursts in full-term newborns (“tracé alternant” EEG pattern) in intervals of approximately 10 s. Recently, slow frequency fluctuations in the range between 0.01 and 0.1 Hz have been...
reported in the resting-state fMRI BOLD signal related to HR [7,19] or EEG power fluctuations in various frequency bands [14]. All these observations suggest a close relationship between brain activity fluctuations at frequencies around 0.1 Hz and the timing of mental processes associated with (at least) the preparation and initiation of self-paced movements. Here, we report for the first time that a slow decrease of the 10-s blood pressure slope may act as a type of trigger for cortical activity changes associated with the initiation of voluntary movements.

In group A, we have to consider two types of mutually interacting 0.1 Hz oscillations. The first are the motor actions that result from central changes in motor excitability induced through 0.1 Hz activations. During a “steady-state” condition with two mutually interacting 0.1-Hz oscillations, the important condition of the baroreflex is fulfilled: the blood pressure change leads clearly the heart rate change (see Table 3). The heart rate changes are induced by “central commands” [22] which impinge upon brainstem cardiovascular nuclei and induce the pre-movement deceleration ([15], see Fig. 2 upper right diagram) closely related to the pre-movement blood pressure decrease (Fig. 2 upper left diagram). The preparatory HR deceleration is followed by a fast return to the baseline and a post-movement cardiac acceleration [9,11].

Why did only some subjects execute self-paced movements in ~10-s intervals, and how did the cardiovascular features differ between groups A and B? No difference between both groups was found in the “eigenfrequency” during rest (see Tables 1 and 2). No significant difference was found in the phase-coupling of 0.1-Hz oscillations in BPdia and RRI time series (see Table 3). Remarkably, 7 males were in group A, but only 2 males were in group B. This is interesting because there is strong evidence that males have a higher baroreflex gain than females [2]. This could indicate that subjects with higher baroreflex gain are more likely to exhibit self-paced movements in close phase-relationship to the 10-s blood pressure oscillations. Further research should explore whether “central commands” and/or stronger CNS inhibition through baroreceptor activation [8] could also differentiate between groups.
The BP time series.

Acknowledgments

The work was supported by the EU project PRESENCCIA (IST-27731) and the “Allgemeine Unfallversicherungsanstalt” (AUVA). We like to acknowledge the English correction by Dr. B. Allison.

References

[22] K.H. Wesseling, J.J. Settels, Baromodulation explains short-term blood pressure regulation. This means somatic markers might be responsible for the “eigenfrequency” of the blood pressure waves play a special role. Our study indicates that self-paced movements, at least in some subjects, do not stem from “free will” from brain activity alone, but are influenced by slow blood pressure oscillations.

Acknowledgments

Fig. 3. Relationship between mean movement-to-movement intervals and “eigen-frequency” defined in the resting state without movement while performing voluntary, self-paced finger movements. Each subject is illustrated by a distinct symbol. The line fits the relationship in a least squares calculation (coefficient of determination $R^2 = 0.28$). The encircled subjects displayed clear spectral peaks in the BP time series.

Summarizing, some subjects (group A) performed voluntary, self-paced movements in relatively periodic intervals of around 10 s at the decreasing slope of the slow 0.1-Hz blood pressure oscillation. This means somatic markers might be responsible for initiation of self-paced movements in some subjects, where the “eigenfrequency” of the blood pressure waves play a special role. Our study indicates that self-paced movements, at least in some subjects, do not stem from “free will” from brain activity alone, but are influenced by slow blood pressure oscillations.