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A B S T R A C T

This paper presents an asynchronous brain switch using one Laplacian electroencephalographic (EEG)

derivation. The brain switch is operated through foot motor imagery (MI) and is based on the

classification of event-related desynchronization (ERD) during a motor task or event-related

synchronization (ERS) after the termination of the task (also known as the beta rebound). The methods

described in this work are suitable for operating a brain–computer interface (BCI) as an attractive control

alternative for healthy users. A general description of ERD/ERS is obtained with several band power

features and a rigid paradigm timing. Two support vector machines (SVMs) are trained in a novel fashion

by using the patterns from motor execution (ME) and a priori information about the significance of ERD/

ERS patterns. A maximum true positive rate (TPR) of 0.92 and a minimum of 0.43 was achieved (in 8 out

of 9 subjects) during training of the classifiers; with a mean false positive rate (FPR) of 0.09 �0.05.

A simulation of an asynchronous BCI using MI data and the classifiers trained with ME data achieved a

maximum TPR of 0.88, a minimum of 0.50 (in 6 out of 9 subjects) and an average FPR of 0.09 �0.04. This

work presents a step forward towards an easy-to-set-up and easy-to-use asynchronous BCI system for

healthy users.

� 2009 Elsevier Ltd. All rights reserved.
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Non-invasive brain–computer interfaces (BCIs) based on
electroencephalographic (EEG) signals are gaining attention as
an alternative control technologies for disabled and able-bodied
people [1,2]. However, several issues have yet to be addressed to
bring a BCI system ‘‘out of the lab’’. Important issues are: (i) an easy
montage of electrodes with a minimum number of EEG channels,
(ii) a simple strategy to set up a classifier, ideally without expert
help, (iii) the use of reproducible EEG patterns for classification and
(iv) an asynchronous mode of operation. The latter means that the
BCI must be continuously available to the user for self-paced
control [3]. In such an asynchronous BCI, the number of false
control commands should be minimized in order to make the
system useful.

In recent publications the use of a BCI to switch an application
on or off has been presented as an appealing control strategy. A BCI
that detects only one predefined brain state or brain pattern from
the ongoing EEG is referred to as a brain switch. In other words, a
brain switch differentiates between the predefined brain state and
47
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any other activity [4]. Such a system is suitable for controlling
several applications such as neuroprostheses, gaming and spelling
devices [5–7].

A commonly used mental strategy for BCIs is motor imagery
(MI). Both execution and imagination of the same limb movement
activate similar neural structures [8,9] and result not only in a
desynchronization (event-related desynchronization, ERD) of
sensorimotor rhythms, but also in a beta rebound (beta event-
related synchronization, beta ERS) after termination of the motor
task [10]. The ERD and ERS phenomena were first described after
active brisk finger movement [11] but are also present during
passive movement, somatosensory stimulation, and both observa-
tion and imagination of a movement [12–14]. The most important
features of the beta rebound are the somatotopic organization, its
specificity [15,16] and the subject-specific stability. These features
make the ERD/ERS phenomena suitable for realizing a brain switch
[17].

An interesting issue is the minimum number of electrodes
needed to detect and classify brain states reliably. One standard
method for processing multichannel EEG data and discriminating
between two brain states is the common spatial patterns (CSP)
algorithm [18]. In two recent studies, it was shown that with 30
and 55 EEG channels, respectively, a classification accuracy
between 80 and 90% can be achieved [7,19]. After selection of
ensorimotor rhythms for the implementation of a brain switch for
6/j.bspc.2009.09.002
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one subject-specific Laplacian channel or one bipolar derivation,
the classification accuracy dropped only by about 10%. Never-
theless, one EEG derivation (Laplacian or bipolar) can still be
suitable to realize a BCI for specific applications. In this context, it is
interesting to note that foot movement execution was successfully
detected using only one Laplacian EEG derivation at the vertex
with an adequate performance [20].

In this study, we report on the simulation of an asynchronous
brain switch based on one Laplacian EEG derivation using brisk
foot MI and the classification of the peri-imagery ERD and post-
imagery ERS. The classifiers were trained in a novel fashion with
data from brisk foot motor execution (ME) and were then applied
directly to the brisk foot MI data. Our asynchronous brain switch
addresses the four important issues mentioned above such that (i)
there is only one derivation (i.e., a standard set of five electrodes),
(ii) it uses ME to train the classifiers, (iii) it utilizes the stable
phenomena of ERD/ERS, and (iv) it works in an asynchronous
mode.

2. Methods

2.1. Data recording

Nine healthy subjects participated in this study. Each subject
performed three runs of ME and three runs of MI with the same
paradigm. Each run was comprised of 30 trials and all runs were
recorded on the same day with several minutes of breaks in
between. The subjects were sitting in front of a monitor and were
asked to perform/imagine a brisk movement of both feet
(dorsiflexion) right after the presentation of the cue. At the
beginning of the trial (t ¼ 0 s), a fixation cross was presented on
the screen. At t ¼ 2 s, a beep and an arrow pointing downwards
served as a cue for the motor task. After 1.25 s, the arrow
disappeared from the screen and at t ¼ 6 s the cross disappeared,
indicating the end of the trial. In between the trials, a short pause
(during which the screen was blank) with a random duration
between 1.5 and 3 s was included.

One single Laplacian derivation at electrode position Cz was
computed by subtracting the average of the four orthogonal
neighboring electrodes [21]. Ag/AgCl electrodes were used to
record the EEG signals with a sampling rate of 250 Hz. Reference
and ground electrodes were located at the left and right mastoid,
respectively. A bandpass filter between 0.5 and 30 Hz was used in
combination with a notch filter at 50 Hz. The sensibility of the
channels was set to 100 mV. Fig. 1 illustrates the timing of the
paradigm as well as the positions of the electrodes.

Six out of the nine participants were experienced with BCIs but
unfamiliar with this particular paradigm. The remaining three
were naive subjects. All subjects gave written informed consent
prior to their participation. No feedback was presented to the
subjects at any time during the recording sessions.
U
N

C

Fig. 1. Paradigm and electrode setup. (a) Timing of the paradigm. (b) Electro
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The analysis of the data was divided into two parts. First, two
classifiers were trained with the data from ME and applied to one
MI run; second, a simulation of an asynchronous BCI was
performed with the remaining two MI runs. In this section, the
steps for training the classifiers are described. Fig. 2 illustrates the
methods.

2.2. Synchronous processing

2.2.1. Definition of time windows for ERD/ERS classification

Quantification of ERD/ERS was achieved by the computation of
a time–frequency map from the ME task. To this end, sinusoidal
wavelets were used to assess changes in the frequency domain by
computing the spectrum within a sliding window, squaring and
subsequent averaging over the trials [22]. The statistical sig-
nificance of the ERD/ERS values was determined by applying a t-
percentile bootstrap algorithm [23] with a significance level of
p ¼ 0:05. This analysis was carried out for frequencies between 6
and 40 Hz and time points from 0 to 7 s. The resulting type of data
representation is termed an ERD/ERS map.

Such an ERD/ERS map was computed for every subject; the time
windows with the largest ERD or ERS significance were identified
by visual inspection by selecting those time points with the highest
ERD/ERS significance. Additionally, three constraints were taken
into account for the selection of these intervals: (i) patterns
occurring before the cue or at most 0.5 s after its presentation were
not considered, (ii) an ERD pattern should be present before the
ERS and (iii) the length of the trial (and thus the possible existence
of a pattern) was restricted to 6 s and the duration of the ERD was
set to 1 s (due to the ME duration in the paradigm). The length of
the ERS was not restricted. These two windows (one for ERD and
one for ERS) were regarded as the intentional control (IC) period
and used for feature labeling and training of the classifiers [3].

2.2.2. Feature extraction

Twenty-nine logarithmic band power (logBP) features were
used to describe the power of the EEG signals. These features were
computed with a set of filters (FIR order 20) between 6 and 36 Hz
(2 Hz bandwidth with 1 Hz overlap). Every trial was filtered,
squared, smoothed with a moving average filter (250 samples) and
transformed with the logarithm. Then, 11 overlapping segments
(50% overlap) of 1 s were extracted as features. The features lying
within the IC window were labeled as class 1; all other features
were labeled as class 0. The labeling procedure was done twice,
once for ERD vs. the rest classification and a second time for ERS vs.
the rest. Note that with this approach, ERD and ERS are treated as
independent phenomena.

2.2.3. Training the classifiers with ME

After labeling the segments from all trials from the ME data, one
of the runs was chosen randomly to train a support vector machine
de positions (the filled electrode Cz was used as a Laplacian derivation).

ensorimotor rhythms for the implementation of a brain switch for
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Fig. 2. Diagram of the methods used for the data analysis.
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(SVM) [24] with a specific set of parameters for the Gaussian kernel
(the performance of an SVM depends on the regularization
parameter C and the width of the kernel s). This classifier was
tested with one of the remaining ME runs and the performance was
measured with the true positive rate (TPR) and the false positive
rate (FPR) on a segment-by-segment basis. This procedure was
repeated in an iterative manner during an exhaustive search for
parameters (C was varied from 2�10 to 215 and s was varied from
2�15 to 212, for every step the value of the current parameter was
doubled).

A definitive set of parameters was selected from the perfor-
mance measures. The selection was divided into two parts: (i) a
first subset was created with the parameters that achieved the
maximum value of TPR and (ii) the minimum value of FPR was then
used as the criterion to further reduce the set of parameters. In the
case of a tie between two or more sets of parameters, the set that
included the smallest regularization parameter was chosen. The
winning parameters were used to train a final SVM using all
patterns from the three ME runs. The ERD- and the ERS-based
classifiers were trained to predict the posterior class probability
[25].

2.3. Asynchronous simulation

2.3.1. Post-processing parameters

The first recorded MI run was continuously classified by the
ERD- and ERS-based classifiers trained with ME data. This run was
described with the logarithmic band power features as described
in the previous section. The features obtained were used as input to
the classifiers and two output signals were obtained, namely the
ERD and the ERS posterior probabilities. These outputs were used
to optimize the post-processing parameters.

Since a switch-like behavior is intended, only one control event
is needed for the whole IC interval. With this objective, a threshold,
a dwell time (DT) and a refractory period (RP) were used for the
post-processing of the classifier outputs [26]. At this stage, the
optimal values were determined from a set of receiver operating
characteristics (ROC) curve analyses, where the threshold was
varied from 0 to 1 (in steps of 0.01) and the dwell time was chosen
among the values 25, 50, 62, 75 and 100 samples. The refractory
period was computed according to DTþ RP ¼ 500. This definition
Please cite this article in press as: T. Solis-Escalante, et al., Analysis of s
healthy subjects, Biomed. Signal Process. Control (2009), doi:10.101
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 Pensures that only one control event is detected in every trial. Larger
values for the dwell time (up to 200 samples) were tested in a
preliminary study but the results showed no improvement.

One control event was counted every time the classifier output
exceeded the threshold for a number of samples equal to the dwell
time. After that, the classifier output was ignored (suppressed)
during the refractory period. An event was counted as positive if it
was detected during the IC and as negative in any other case.

The IC period for continuos processing was changed since it can
occur at any time in an asynchronous system. The IC intervals were
shifted from the ones obtained through the ERD/ERS maps and
were the same for all subjects. The new intervals ranged from 2 to
4 s for ERD and from 3 to 4 s for ERS. Note that the new intervals
include the time of the cue and the beep. However, the patterns
from this period were used to train the rest class during the
classifier training and therefore should not elicit an event.

Measuring the performance of the asynchronous simulation,
which is based on events, is different from measuring the
performance during the training phase (which was based on
segments). The main problem is the definition of the maximum
number of events. In this simulation, the maximum number of
positive events is given by the total number of trials, namely 30 for
each run. On the other hand, the false positive events are difficult to
measure. In this work, this number was computed as
X

i

b NCi

DTþ RP
c ;

all values in samples, NCi corresponds to the length of the no
control (NC) period in trial i which includes all data points except
for those inside the IC period. With all definitions solved, the
performance was measured in terms of the TPR and FPR. The values
of threshold and dwell time were selected at the maximum value
of TPR. To achieve an acceptable performance with an asynchro-
nous brain switch, the values of FPR were allowed to be as high as
0.10.

2.3.2. Asynchronous simulation

The remaining two MI runs were described with the same
logarithmic band power methods and classified by the ME-trained
SVMs. The values of the threshold, dwell time and refractory period
were included and the performance was measured with the TPR
ensorimotor rhythms for the implementation of a brain switch for
6/j.bspc.2009.09.002
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Table 1
TPR and FPR in the training phase with ME data for ERD and ERS separately (columns 1–5), and TPR for the calibration phase (columns 6–7). All TPRs corresponding to a

classification accuracy greater than 80% are boldface. Naive subjects are marked with an asterisk (*).

ID ERD ERS Calibration (TPR)

TPR FPR TPR FPR ERD ERS

S1 0.52 0.14 0.73 0.07 0.13 0.70
S2* 0.29 0.18 0.52 0.09 0.13 0.33

S3* 0.28 0.22 0.17 0.15 0.00 0.00

S4* 0.36 0.18 0.43 0.13 0.23 0.43
S5 0.46 0.23 0.70 0.21 0.30 0.77
S6 0.36 0.18 0.84 0.09 0.33 0.37

S7 0.67 0.06 0.66 0.09 0.70 0.10

S8 0.92 0.04 0.37 0.15 0.60 0.37

S9 0.58 0.12 0.76 0.03 0.17 0.97

X̄ 0.49�0.21 0.15�0.07 0.58�0.22 0.11�0.05 0.29�0.23 0.45�0.31
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and FPR. This processing is equivalent to an on-line implementa-
tion of the BCI system.

3. Results

Tables 1 and 2 summarize the performance of all participants in
this study. In Table 1, the TPR and FPR values for the training stage
with all three runs of ME (final SVM) are shown. The last two
columns of this table show the TPR values obtained during the
calibration of the post-processing parameters (in this stage the FPR
was fixed to be less than or equal to 0.1).

Table 2 lists the TPR and FPR for the simulation of an
asynchronous BCI with the last two runs of MI. In both tables,
the results that achieved an acceptable performance, i.e., a
classification accuracy greater than 80% (ME) or TPR–FPR greater
than or equal to 0.40 (MI), are presented with boldface.

In Table 3, the phenomenon (ERD or ERS) associated with the
highest TPR is shown for each subject and type of motor task. This
table also includes the values of the IC time windows and dwell
time used.

For comparison purposes, an ERD/ERS map was computed with
the data from MI for every subject, see Fig. 3 for the ERD/ERS maps
of all subjects for each motor task. Every map was computed with
the methods described above and all trials available from ME or MI.

4. Discussion

In this work, we have shown that a brain switch can be
implemented by training a classifier with ME and then applying it
directly to MI data with only a minor threshold calibration phase.
Moreover, the classification of MI was continuously performed in
the simulation of an asynchronous BCI.
U
N

C 283
284

Table 2
TPR and FPR values from the simulation of an asynchronous brain switch. A boldface

TPR corresponds to the case where TPR–FPR � 0:40.

ID ERD ERS

TPR FPR TPR FPR

S1 0.05 0.06 0.63 0.09

S2 0.12 0.08 0.50 0.10

S3 0.50 0.48 0.47 0.41

S4 0.23 0.11 0.25 0.09

S5 0.17 0.10 0.68 0.13

S6 0.23 0.14 0.25 0.13

S7 0.57 0.09 0.12 0.18

S8 0.55 0.15 0.37 0.10

S9 0.25 0.11 0.88 0.02

X̄ 0.30�0.19 0.15�0.13 0.46�0.24 0.14�0.11
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healthy subjects, Biomed. Signal Process. Control (2009), doi:10.101
C
TE

D
 P

R
OOur approach proved to be successful because both motor tasks

(MI and ME) result in similar ERD/ERS patterns (as expected). This
can be seen from the TPR and FPR values shown in both Tables 1
and 2. The use of a classifier from ME applied to MI data can be seen
as a measurement of similarity between the patterns of both tasks.

More information about the similarity of these two phenomena
can be obtained from the ERD/ERS maps in Fig. 3. When analyzing
these maps, three cases can be observed, both for ERD and ERS: (i)
the pattern disappears, (ii) the pattern increases (time/frequency
span) or (iii) the pattern decreases. Another pair of (de)synchro-
nization-specific changes can be identified, (a) for ERD the pattern
overlaps with the event-related potential evoked by the cue and (b)
for ERS the pattern changes with the enhancement or attenuation
of harmonics. From the results, it can be seen that the performance
of the system is sensitive to the changes in the ERD/ERS patterns, as
expected.

For the ERD-based classification, only two subjects (S7 and S8)
achieved an acceptable performance for the continuous proces-
sing. It can be seen from their corresponding ERD/ERS maps that
the ERD patterns changed from ME towards MI mostly with
differences in the width of the pattern. The highest drop of
performance (for subject S8) can be attributed to the reduced
bandwidth of the pattern and the new ERD pattern around 10 Hz.
On the other hand, for ERS-based subjects S1, S2, S5 and S9, the TPR
values did not drop by more than 0.10 from ME to MI. The results
are also supported by the differences in the ERS patterns (Fig. 3).
Thus, these results clearly show that our method succeeds in 6 out
of 9 subjects.

Subjects S3, S4 and S6 need to be discussed in further detail.
First, subject S3 did not exhibit highly significant ERD/ERS patterns
neither in the ME nor in the MI task. This is shown by the TPR and
FPR values in all tables. Second, the ERD patterns from subject S4
were slightly shifted from 24 Hz in ME towards 21 Hz in MI and the
ERD pattern around 25 Hz disappeared. Although this frequency
Table 3
Most important phenomenon (ERD or ERS) during ME and MI and post-processing

parameter values.

ID Training Calibration/evaluation

Phenomenon IC (s) Phenomenon DT (samples) Threshold ( pðxÞ)

S1 ERS 3–4 ERS 100 0.15

S2 ERS 4.5–5.5 ERS 75 0.15

S3 ERS 3.5–4.5 – 25 0.15

S4 ERS 3.5–4.5 – 100 0.29

S5 ERS 3.5–4.5 ERS 62 0.22

S6 ERS 4–6 – 100 0.22

S7 ERD 5–6 ERD 62 0.66

S8 ERD 4–5 ERD 100 0.56

S9 ERS 4–5 ERS 75 0.24

ensorimotor rhythms for the implementation of a brain switch for
6/j.bspc.2009.09.002

Original text:
Inserted Text
i.e. a 

Original text:
Inserted Text
TPR − FPR 

Original text:
Inserted Text
ERD

Original text:
Inserted Text
TPR −FPR≥0.40.ERDERSIDTPR

Original text:
Inserted Text
Training

Original text:
Inserted Text
Calibration/EvaluationIDPhenomenon

http://dx.doi.org/10.1016/j.bspc.2009.09.002


C
D

 P
R

O
O

F
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
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shift is small, it affects the performance, reducing the TPR from
0.36 to 0.23 while improving the FPR from 0.18 to 0.11. The
changes in ERS patterns and its classification are more evident with
a decrease in performance from (TPR) 0.43 to 0.25. This is probably
caused by the ERD around 25 Hz that overlaps with the ERS IC
during ME (training stage). In these two cases, the subjects were
naive and had no previous knowledge of their own patterns.

An interesting case is subject S6. The differences in ERD-based
classification are obvious, because the pattern disappears almost
completely from ME to MI (Fig. 3), but the ERS pattern does not
present dramatic changes that could lead to a bad performance.
The ERS patterns presented in this subject are similar to the ones
present in subjects S1 and S2. A closer look to the individual runs
made evident that this subject was not able to produce an ERS
pattern for all cue-based MI trials, thus making it impossible to
detect any command during the expected IC.

One way to overcome the problems related to pattern shifts or
new harmonics during MI is the use of narrow bands for the feature
extraction as used in [19,27]. However, this requires previous
knowledge of the MI patterns. The methods presented in this work
make use of the ME for training the classifier and one single run (30
trials) of MI to adjust the bias, although this threshold could be
estimated from ME data alone. A method that uses direct
comparisons between the patterns from ME and MI should lead
to a better performance of the ME-trained classifiers. Another
improvement could be the combination of both classifiers by a
simple product as presented in [20].

In comparison with current work, two recently published
papers show results for an asynchronous BCI with ME detection
(namely wrist extension and finger flexion, respectively). In the
work of Bai et al. [6], an accuracy of about 90% is achieved for ME
and around 75% for MI. These results are similar to the ones
presented in this work. During ME training, the accuracy values
were above 80% for eight subjects (Table 1). In the second work by
Fatourechi et al. [28], three different motor-related brain
potentials were used to detect ME. An average performance of
Please cite this article in press as: T. Solis-Escalante, et al., Analysis of s
healthy subjects, Biomed. Signal Process. Control (2009), doi:10.101
TE
0.56 for the TPR (with a minimum FPR of 0.05) is reported. In our
case, 7 out of 9 subjects achieved a TPR greater than 0.50 with
different values of FPR. Five of these subjects (S1, S2, S5, S7 and S9)
showed a similar performance for the continuous processing of the
MI recordings.

A study published by Morash et al. [29] reports on the cue-
based classification of the ERD/ERS prior to the execution/
imagination of four different motor tasks (left hand, right hand,
tongue and right foot rotation). In this study, eight naive subjects
participated in a cue-based task and the time–frequency patterns
were analyzed in both conditions (execution/imagination). For the
foot movement execution/imagination, one subject showed no
patterns before the cue and five subjects had a classifiable ERD
while the other two subjects had an ERS pattern. Classification
results were in the range of 60–80% for ME and 55–70% for MI (six
subjects during the testing phase). A large electrode array with 29
electrodes and more complex spatial filtering (independent
component analysis) were used.

As opposed to the studies mentioned above, where highly dense
electrode arrays were used, only one Laplacian derivation from Cz
was used in this study for all subjects. Two other papers from
Mason and Birch [4] and Birch et al. [30] present a brain switch
approach with the use of 9 electrodes in bipolar configurations, the
use of a low frequency feature (1–4 Hz) and wavelets for feature
extraction. In the second paper, the use of such a brain switch with
spinal cord injured patients proved to work with a low FPR (� 1%).
The main differences to our approach are that we use less EEG
channels, simpler features and train the classifiers with ME data; it
is clear that, since our design is based on ME, this methodology can
not be used to create a brain switch for patients. It is instead a
simple way to train a BCI for home applications by healthy users.

It is worth noting that our classifiers were trained in a general
way for all subjects with the same number of features and only one
Laplacian EEG channel. The time interval for labeling of the classes
was selected based on the ERD/ERS maps. Optimization was
carried out for classifier training and post-processing parameters
ensorimotor rhythms for the implementation of a brain switch for
6/j.bspc.2009.09.002
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only. In the subset of naive subjects, only one of the three
participants presented no significant patterns during MI and a
weak beta ERS during ME. The remaining two subjects had similar
patterns in both cases, but the changes in the patterns led to a bad
performance during the asynchronous simulation. It can be
expected that feedback and subject training with MI tasks would
help these subjects to increase their performance. At the same
time, the FPR can be further improved by updating the threshold
with the new MI data.

Although beyond the scope of this work, the importance of ERS
is notable for the MI task; this is in accordance with the findings
reported in [17]. A closer look at ERS and its changes will be the
subject of further studies.

This brain switch could also be useful in a ‘‘hybrid’’ BCI. The
brain switch has a low false positive rate, but also suffers from a
low information throughput. Our group is combining a brain
switch with an SSVEP BCI for control of an orthosis, which could
capitalize on the advantage of both types of BCIs. Other future
directions involving ‘‘hybrid’’ BCIs also merit exploration [31].

5. Conclusions

The methods presented in this work are an important step
towards an asynchronous BCI system that can be used outside the
lab. A simple strategy to train a robust classifier is given and the
asynchronous performance shows an acceptable level of control
for six out of nine subjects (TPR�0:50). Further studies on the
characteristics of ERD/ERS and the stability from ME to MI may
lead to the use of simpler classifiers, thus improving the
information transfer rate and reducing the time needed to train
the classifiers.

No feature selection was used and all the parameters were
derived from the data. The use of automatic methods for the
definition of the IC from the ERD/ERS maps and adaptation of the
classifiers to the changes in ERD/ERS patterns during MI would
lead to an auto-configurable, subject-specific system. Furthermore,
the presentation of feedback and update of the classifiers would
improve the performance.
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