
Clinical Neurophysiology 120 (2009) 239–247
Contents lists available at ScienceDirect

Clinical Neurophysiology

journal homepage: www.elsevier .com/locate /c l inph
Motor imagery and action observation: Modulation of sensorimotor brain
rhythms during mental control of a brain–computer interface

Christa Neuper a,b,*, Reinhold Scherer a,b, Selina Wriessnegger a, Gert Pfurtscheller b

a Department of Psychology, Section of Neuropsychology, University of Graz, Universitaetsplatz 2/III, A-8010 Graz, Austria
b Institute of Knowledge Discovery, Laboratory of Brain–Computer Interfaces, Graz University of Technology, Krenngasse 37, A-8010 Graz, Austria
a r t i c l e i n f o

Article history:
Accepted 5 November 2008
Available online 3 January 2009

Keywords:
Brain–computer interface (BCI)
Motor imagery
Action observation
Event-related desynchronization
Visual feedback
1388-2457/$34.00 � 2008 International Federation o
doi:10.1016/j.clinph.2008.11.015

* Corresponding author. Address: Department of P
psychology, University of Graz, Universitaetsplatz 2/I
+43 316 380 5133; fax: +43 316 380 9811.

E-mail address: christa.neuper@uni-graz.at (C. Neu
a b s t r a c t

Objective: This study investigates the impact of a continuously presented visual feedback in the form of a
grasping hand on the modulation of sensorimotor EEG rhythms during online control of a brain–com-
puter interface (BCI).
Methods: Two groups of participants were trained to use left or right hand motor imagery to control a
specific output signal on a computer monitor: the experimental group controlled a moving hand per-
forming an object-related grasp (‘realistic feedback’), whereas the control group controlled a moving
bar (‘abstract feedback’). Continuous feedback was realized by using the outcome of a real-time classifier
which was based on EEG signals recorded from left and right central sites.
Results: The classification results show no difference between the two feedback groups. For both groups,
ERD/ERS analysis revealed a significant larger ERD during feedback presentation compared to an initial
motor imagery screening session without feedback. Increased ERD during online BCI control was partic-
ularly found for the lower alpha (8–10 Hz) and for the beta bands (16–20, 20–24 Hz).
Conclusions: The present study demonstrates that visual BCI feedback clearly modulates sensorimotor
EEG rhythms. When the feedback provides equivalent information on both the continuous and final out-
comes of mental actions, the presentation form (abstract versus realistic) does not influence the perfor-
mance in a BCI, at least in initial training sessions.
Significance: The present results are of practical interest for classifier development and BCI use in the field
of motor restoration.
� 2008 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Brain computer interfaces (BCIs) aim at providing users with an
alternative output channel other than the normal output path of
the brain, i.e. the efferent nervous system and muscles. The main
purpose of a BCI is to detect changes in brain signals that are re-
lated to human intention, typically electrical signals resulting from
neural firing, and by using an algorithm, to translate this signal in
order to control an output device (for a review see Wolpaw et al.,
2002). The most important clinical applications of BCI systems in-
clude brain-derived communication in paralyzed and locked-in pa-
tients (Birbaumer et al., 1999; Neuper et al., 2003) and restoration
of motor function in patients with spinal cord lesions (Pfurtscheller
et al.,2000, 2003; Müller-Putz et al., 2005) and chronic stroke (Bir-
baumer et al., 2006). For many years, event-related desynchroniza-
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tion and synchronization (ERD/ERS) patterns have been utilized as
important features in motor related BCI systems, and the discrim-
ination between right hand and left hand motor imagery has
shown to be very useful for ERD-based classification (Pfurtscheller
et al., 1997; Neuper et al., 1999, 2005, 2006; Pfurtscheller and Neu-
per, 2001).

To date, much BCI research has focused on the development of
powerful signal processing techniques to enable high classification
accuracy of the generated electroencephalogram (EEG) signals (for
a recent review see e.g., Pfurtscheller et al., 2006a). However, there
is a lack of systematic studies involving relevant aspects of the
experimental (training) task, focusing on the person interacting
with the technical system. A successful operation of BCI depends,
however, to a great extent on the degree to which neural activity
can be voluntarily controlled. Therefore, approaches to the training
of users to control a BCI, also taking into consideration the specific
target application, play an important role. For example, different
training protocols and feedback techniques may be more or less
efficient depending on whether the user’s task is to drive a cursor
on a computer screen (Wolpaw et al., 1991), to select certain
ed by Elsevier Ireland Ltd. All rights reserved.
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Fig. 1. Electrode setup (A) and timing of the paradigm used in screening
sessions (B).
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characters or icons for communication purposes (Birbaumer et al.,
1999; Kübler et al., 2001; Neuper et al., 2006; Scherer et al., 2004),
or to acquire control of a neuroprosthesis to restore grasping (Mül-
ler-Putz et al., 2005; Neuper et al., 2006).

Since BCI systems use immediate, typically visual feedback of
performance, the influence of the visual feedback presentation
should be considered. For instance, there is some evidence that a
rich visual representation of the feedback signal, e.g., in the form
of a 3-dimensional video game or virtual reality environment,
may enhance the learning progress in a BCI task (Pineda et al.,
2003; Ron-Angevin et al., 2005; Pfurtscheller et al., 2006b). Based
on these results, it seems plausible to expect that the visual display
itself has an important potential to improve the control of a person
over his/her brain activity. In particular, the mentioned studies
suggest employing rather realistic and engaging feedback scenar-
ios, which are closely related to the specific target application.
For example, one could expect that observing a realistic moving
hand should have a greater effect on the sensorimotor rhythms
than watching an abstract feedback in the form of a moving bar
(Pfurtscheller et al., 2007).

Another important point to consider is, however, that the pro-
cessing of such a realistic feedback stimulus may interfere with
the mental motor imagery task, and therefore, in some cases, im-
pair the development of EEG control. Motor imagery, described
as the mental rehearsal of a motor act without overt movements
by muscular activity, is assumed to involve to a large extent the
same cortical areas that are activated during actual motor prep-
aration and execution (Jeannerod, 2001). Similar brain signals,
i.e. oscillations in the mu and beta frequency bands, are reactive
to both motor imagery (Pfurtscheller and Neuper, 1997, 2001;
Neuper et al., 2006) and observation of biological movement
(e.g., Hari et al., 1998; Cochin et al., 1998; Babiloni et al.,
2002; Muthukumaraswamy et al., 2004; Oberman et al., 2007;
Pfurtscheller et al., 2007). Therefore, it is not unlikely that a real-
istic feedback presentation, showing, for instance, a moving arm
grasping an object, may interfere with the motor imagery related
brain signals used by the BCI. This may play a critical role when
using the BCI for neuroprosthesis control in tetraplegic patients
with spinal cord injury (Pfurtscheller et al., 2000, 2003; Müller-
Putz et al., 2005; Neuper et al., 2006). In that case, indeed, the
feedback provided during BCI-controlled grasping is visual, i.e.
the observation of the own moving hand. There is evidence from
functional magnetic resonance imaging (fMRI) studies that this
kind of action observation, i.e. the observation of manual actions,
such as grasping a cup and raising it to the mouth, is associated
with activation of premotor cortical structures (Buccino et al.,
2001).

The goal of the present study was to explore how different
types of visual feedback affect the EEG activity (i.e. ERD/ERS pat-
terns) during BCI control. In this context, at least two aspects are
crucial: (i) the exact manner of how the brain signal is trans-
lated into the feedback signal (i.e. the amount of information
provided by the feedback) and (ii) the properties of the feedback
stimuli. In the present study we compared two presentation
types, abstract versus realistic feedback, while keeping the infor-
mation provided by the feedback equivalent. The abstract feed-
back condition corresponded to the standard training protocol
of the Graz-BCI (cf. Neuper et al., 1999; Pfurtscheller and
Neuper, 2001), whereas in the realistic condition, online EEG
parameters were used to drive a video presentation showing
an object-directed grasp from the actor’s perspective. This study
has clear implications for both the influence of feedback type on
BCI performance and the reactivity of sensorimotor rhythms
during the complex interplay between motor imagery, feedback
processing and movement observation (i.e. observation of hand
movement during hand motor imagery).
2. Methods

2.1. Subjects

The original sample consisted of 23 healthy subjects (aged
23.04 ± 1.64 years; 14 women, 9 men) who participated in four
experimental sessions on different days. All were right-handed,
without any medical or psychological disorders (according to
self-reports), and had normal or corrected to normal vision. All par-
ticipants were initially naive to the experiment and gave informed
consent after the experimental procedure had been explained to
them. After completion of the whole series of experiments they re-
ceived a fee for their participation. Three subjects’ data were ex-
cluded from analysis due to bad quality of the EEG recordings.

2.2. Data recording

In the first (screening) session, the EEG was recorded from nine
sintered Ag/AgCl electrodes placed at positions C3, Cz and C4, as
well as positions 2.5 cm anterior and posterior to these (see
Fig. 1A). The reference electrode was located at the left mastoid,
ground electrode was located at position Fz. Electrode impedance
was kept lower than 5 kOhm. The acquired signal was filtered be-
tween 0.5 and 100 Hz (2nd order, attenuation 40 dB) and sampled
with 250 Hz. An additional 50 Hz notch filter was applied to avoid
power line contamination. Based on the screening data, three bipo-
lar channels covering C3, Cz and C4 were individually selected for
the recordings in the further (feedback) sessions (see selection pro-
cedure described below).

In parallel to the EEG, electromyogram (EMG) data (bandpass
0.5–100 Hz; sampling rate 250 Hz) obtained from the right and left
ventral forearm (m. digitorum profundus) was collected to control
for muscle activity potentially involved in motor imagery.

2.3. Procedure

Each subject participated in a series of four experimental ses-
sions: one screening and three feedback sessions. In the screening
session, sitting in a comfortable armchair, subjects had to imagine
left and right hand movements, following a fixed repetitive time
scheme (see Fig. 1B). Each trial started with the presentation of
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an acoustical warning tone and a fixation cross (second 2). One sec-
ond later, an arrow (cue) pointing to the left (left hand) or to the
right (right hand) specified the motor imagery task to perform.
Subjects were instructed to imagine performing a grasping move-
ment (i.e. the kinesthetic experience of movement) with their right
or left hand, while their arms rested relaxed on the arm rest. They
had to perform the motor imagery for 4 s, until the screen content
was erased (second 7). After a short pause (random duration be-
tween 1 and 3 s) the next trial started. Each training run consisted
of 40 trials with 20 trials per class (left/right) presented in random-
ized order. Five runs were recorded for each subject.

After the screening session, the participants were matched for
achieved classification accuracy and randomly assigned to one of
two experimental groups, receiving different types of feedback in
the subsequent sessions. One group (n ¼ 10) received ‘abstract’
feedback, which largely corresponded to the standard Graz-BCI
Fig. 2. Examples of feedback sequences for realistic (A) and abstract (B) feedback type in
misclassified trial (A.2) are displayed.
protocol (Neuper et al., 1999; Pfurtscheller and Neuper, 2001). Fol-
lowing the time scheme and stimuli of the screening protocol
(Fig. 2B), a continuously moving feedback bar was placed over
the arrow (cue stimulus); it appeared 0.5 s later than the cue and
was presented over a 4-s period. The subjects’ task was, depending
on the direction of the arrow, to extent the bar horizontally toward
the right or left monitor edge and to keep it as long as possible in
the correct half of the screen. Subjects were informed that right
hand motor imagery would shift the bar to the right, and left hand
motor imagery to the left. The direction as well as the length of bar
extension was controlled by the online algorithm described below.
In the case that the subject could successfully drive the bar to the
required side of the screen for at least 3 s, reinforcement was given
in form of an additional ‘reward’ signal: a small square, presented
at the target boundary of the screen at the end of the trial (second
8), informed the subject about his/her correct performance.
‘left hand’ trials. For the realistic feedback, both a correctly classified trial (A.1) and a
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The second group (n ¼ 10) received ‘realistic’ feedback in the
form of a short movie, where (according to their brain patterns
caused by the required motor imagery) a right or left hand was
moving to reach a target object (i.e. a glass) (see Fig. 2A). A digi-
tized video sequence showing two real human forearms from the
first person’s perspective was presented on the screen. At the
beginning of the trial (i.e. second 2) a frozen image of both arms
resting on an empty table was shown and, after one second, a glass
appeared on the screen (second 3). The initial position of the glass,
which was placed either on the right or left part of the screen,
served as cue indicating the required side of movement. For exam-
ple, if the glass appeared on the left side, the subject had to imag-
ine a left hand movement and, in case of correct classification, the
left hand started moving to reach the glass and finally grasped it.
Analogous to the bar movement in the abstract feedback, the selec-
tion of the ‘responding’ hand and the movement trajectory were
continuously controlled by the online classifier. The rewarding
grasping of the glass and raising it at the end of the trial corre-
sponded to the ‘reward’ signal in the abstract condition, i.e. it
was only achieved when the correct hand was selected for at least
3 s during the feedback period. In both feedback conditions (exper-
imental groups), subjects performed three runs with 40 trials each
per session.

2.4. Psychological assessment

Before the first experimental session (screening), the partici-
pants were asked to complete a German translation of the ‘‘Vivid-
ness of Mental Imagery Questionnaire” (VMIQ; Isaac et al., 1986) to
assess their ability of mental imagery. Prior to each EEG session we
assessed the temporary mood of the participants by means of a
self-report questionnaire describing the actual mood on several
dimensions (e.g., activation, anger, anxiety, calmness, weakness).
As assessed by means of analysis of variance (ANOVA), no signifi-
cant group and session differences were found with respect to
these control variables.

2.5. Signal processing, classification and online feedback

From the screening EEG data band power features were com-
puted by band pass filtering the EEG signal, squaring and averaging
the samples in the analyzed 1-s time windows. From this averaged
value the logarithm was calculated. For classification of left versus
right hand trials Fisher’s linear discriminant analysis (LDA) was ap-
plied to the band power estimates (sample-by-sample). To extract
the relevant parameters (i.e. the most relevant frequency compo-
nents and electrode locations) for each participant, the sequential
floating forward selection (SFFS) feature selection algorithm (Pudil
et al., 1994) was applied to the data. The SFFS method is an itera-
tive process. In every iteration loop, at a first step, the most rele-
vant features with respect to some objective (or fitness) function
are included into the (initially empty) feature set (sequential for-
ward selection). After this, the new feature combinations are eval-
uated and the least relevant features are excluded (sequential
backward selection). These steps are repeated until the desired
number of features is obtained. Three independent analyses were
performed on three different bipolar electrode combinations (same
for both hemispheres): anterior–central (a–c), central–posterior
(c–p), anterior–posterior (a–p) (see Fig. 1A). These setups allow
for refining both electrode spacing (small versus large distance)
and location (more anterior versus posterior).

The motor imagery period of each trial was subdivided into
N ¼ 7 overlapping time intervals of 1-s length and a time-lag of
0.5 s. For each channel and interval 72 overlapping frequency com-
ponents between 8 and 30 Hz with bandwidths of 2, 4, 6 and 8 Hz
were calculated. With the features obtained from each interval
individual SFFS runs were computed. The task was to identify four
features which best discriminate between the two brain patterns
(left versus right hand) within the 4-s motor imagery period. The
selected bipolar derivation for the channels C3 and C4 were used
to compute online feedback. A 10 � 10 cross-validation procedure
was applied to avoid over fitting and enhance the generalization of
classification results (Duda et al., 2001).

In the feedback sessions, the system used the individual classi-
fier of each participant to translate the user’s motor imagery into a
continuous output, which was presented as online feedback on a
computer screen as described above. For both feedback modalities
the LDA distance, that is the distance of the current sample to clas-
sify and the decision border, was reported back to the participant.
In the case of abstract feedback, the LDA distance was mapped to
the bar graph length; in the case of realistic feedback, the LDA dis-
tance was linearly mapped to a frame in the movie sequence. The
direction of the feedback, that is the class information, was given
by the sign of the LDA distance. To enhance the class distinction
for participants the LDA distance was weighted by offline-calcu-
lated gain factors, computed during classifier setup, which lead
the mean deflection for each direction to the middle of each screen
half for the abstract feedback or the middle of each movie se-
quence for the realistic feedback. After the first feedback session
the SFFS method was applied to the feedback data. Each time the
new classification results gained 5% of accuracy compared to the
online performance, the classifier was adjusted to the new find-
ings. This was the case in 14 out of 20 subjects.

2.6. ERD/ERS analyses

In a first step of analysis all EEG trials were visually controlled
for artifacts and contaminated trials were discarded. For conve-
nient data inspection, we computed time-frequency maps of
ERD/ERS for each participant, session and task (i.e. right versus left
hand). The resulting ERD/ERS maps represent plots of significant
ERD (percentage band power decrease) and ERS (power increase)
in narrow bands within a given frequency range (e.g., 6–40 Hz;
for further details see Graimann et al., 2002). A 1-s time interval
at the beginning of the trial (0.5–1.5 s) was used as reference inter-
val (R). As activation interval (A), the time period from 3.5 to 6.5 s
(imagery/feedback period) was considered (see Fig. 1B). Based on
the results of the time-frequency maps, we computed the ERD/
ERS in two alpha/mu (mu1: 8–10 Hz, mu2: 10–12 Hz) and two beta
(beta1: 16–20 Hz, beta2: 20–24 Hz) frequency bands by employing
the traditional ERD/ERS method (Pfurtscheller and Lopes da Silva,
2005).

For statistical analyses, we used the ERD/ERS values obtained
from the right (recording position C4) versus left sensorimotor cor-
tex (recording position C3), temporally aggregated over the imag-
ery/feedback period (3.5–6.5 s). In all statistical analyses, degrees
of freedom were corrected for violations of the sphericity assump-
tion by means of the Huynh–Feldt procedure. The probability of a
Type I error was maintained at 0.05.

3. Results

3.1. Classification results

3.1.1. Relevant features obtained from the screening data
The results obtained from the selection procedure of relevant

input features are summarized in Fig. 3. It shows histograms of
the identified frequency components averaged over all 20 subjects,
separately for each hemisphere (electrode positions C3 and C4). As
can be seen, for the majority of the participants frequency compo-
nents in the alpha band, especially components above 10 Hz, were
selected. In contrast to the clear peak in the alpha range, the fre-
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quency distribution of relevant beta band components across sub-
jects was more widespread, indicating higher variability between
subjects.

The mean classification accuracy (at best classification time
point) obtained over all participants (n ¼ 20) was approx. 77%
(i.e. abstract feedback group: 77.5 ± 9.1, realistic feedback group:
77.0 ± 5.6). The majority of subjects reached values between 70%
and 85% accuracy; the results of only 2 participants were below
70% and those of 3 participants higher than 85%.

3.1.2. Classification performance during feedback sessions
To compare the classification results of subjects who received

realistic versus abstract feedback in the three feedback sessions,
a repeated measures analysis of variance (ANOVA) was computed
with type of Feedback as between- and Session as within-subjects
factor. The results did not reveal any significant main effects or
interactions, indicating that the performance was similar for both
groups in all sessions. The mean classification results over feedback
sessions were approx. 68% (session 1: 68.6 ± 11.4; session 2:
67.2 ± 10.4; session 3: 67.5 ± 11.3) for the abstract feedback group
and approx. 70% (session 1: 69.6 ± 9.4; session 2: 70.8 ± 9.2; ses-
sion 3: 69.9 ± 6.5) for the subjects who received realistic feedback.
Note that for the online classification in the feedback sessions, a
classifier built on a distinctive data set (i.e. data of the screening
session without feedback) was applied. Therefore, classification re-
Fig. 4. Grand average time-frequency representation of significant ERD values (marked
session, separately for the two feedback groups (abstract versus realistic) and both exper
trial (0–8 s; x-axis) and for the frequency range of 4–40 Hz (y-axis). A vertical line indica
legend, the reader is referred to the web version of this paper.)
sults of screening and feedback sessions are not directly
comparable.

3.2. ERD/ERS results

Fig. 4 compares the grand average time-frequency representa-
tion of significant ERD values (at electrode positions C3, Cz and
C4) in the screening and the first feedback session. In the screening
data a clearly focused (contralateral) ERD of especially alpha/mu
band components can be observed during motor imagery. In both
feedback groups (abstract and realistic) a strong increase of ERD
during observation of the feedback stimuli is obvious. In contrast
to the screening data, ERD during feedback becomes more wide-
spread (i.e. it is present at all electrode positions) and involves to
a large extent also beta band components.

In order to analyze the potential influence of the feedback
modality on the ERD/ERS patterns during task performance in
the different sessions, we performed a repeated measures ANOVA
on the ERD/ERS data using the Feedback type (i.e. abstract versus
realistic) as between-subjects variable and Electrode position (C3
versus C4), Task (left versus right hand imagery), Session (4 levels:
sessions 1 to 4) and frequency Band (4 levels: mu1: 8–10 Hz, mu2:
10–12 Hz, beta1: 16–20 Hz, beta2: 20–24 Hz) as within-subjects
variables. In addition, we performed two 2� 2� 4� 4 ANOVAs
using the variables Electrode, Task, Session and Band as
in red) at electrode positions C3, Cz and C4 for the screening and the first feedback
imental tasks (left hand versus right hand trials). The maps are plotted for the whole
tes cue onset (second 3). (For interpretation of the references to color in this figure



Table 1
Summary of significant F-valuesa for ERD/ERS analyses.

ANOVA effects

Whole sample (n ¼ 20) Abstract FB (n ¼ 10) Concrete FB (n ¼ 10)
FB (2) � Electrode (2) � Task (2)
� Session (4) � Band (4)

Electrode (2) � Task (2)
� Session (4) � Band (4)

Electrode (2) � Task (2)
� Session (4) � Band (4)

Electrode � FB F(1,18) = 10.24**

Task � FB F(1,18) = 10.65**

Electrode � Band � FB F(3,54) = 14.39**

Electrode F(1,9) = 19.36**

Task F(1,9) = 21.59**

Session F(3,54) = 5.49* F(1,9) = 21.59**

Band F(3,54) = 4.86* F(3,27) = 4.14*

Electrode � Task F(1,18) = 28.19**

Electrode � Session F(3,27) = 6.97** F(3,27) = 9.53**

Task � Session F(3,27) = 5.33*

Electrode � Band F(3,27) = 10.65** F(3,27) = 6.38*

Electrode � Task � Band F(3 ,54) = 9.21**

Session � Band F(9,81) = 3.77*

Task � Band F(3,54) = 3.35*

a F-values 5% (�) and 1% level (��). All repeated measures tests are Huynh–Feldt corrected.
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within-subjects variables for the two feedback groups separately.
An overview of significant ANOVA effects is provided in Table 1.

Overall, significant differences were observed as a function of
Session. This main effect is primarily due to the general larger
ERD during feedback sessions than during screening. The signifi-
cant main effect of Band indicates that largest ERD was obtained
in the lower alpha (mu1) frequency range. As expected, a highly
significant interaction between recording position and side of
movement imagery (Electrode � Task) was found, which substan-
tiates the contralateral dominance of ERD. However, this analysis
failed to yield a significant main effect of the group factor, but re-
vealed significant interactions involving the factors Feedback, Elec-
trode, Task and Band. The pattern of results suggests a generally
higher ERD over the left (as compared to the right) sensorimotor
region, and a higher ERD associated with right hand than with left
hand imagery for the realistic but not for the abstract feedback
group. With respect to the Electrode � Band � Feedback interac-
tion, the respective means indicate that the pronounced left hemi-
sphere preponderance in the concrete feedback group can be
traced back to a particular laterality of the upper alpha (mu2)
ERD/ERS pattern.

Fig. 5 presents a detailed overview of the mean ERD/ERS values
for the two feedback groups, separately for the respective task
(right, left hand motor imagery), frequency band, session and elec-
trode position (C3, C4). In general, the results show a clear differ-
ence of contralateral ERD between the screening (S1) and the
feedback sessions (S2–S4). Of special interest is that such an in-
crease of ERD was observed for all frequency bands, with the
exception of the upper alpha (mu2) band, which appears to be
independent of the feedback presentation.

4. Discussion

The present study was particularly performed to investigate the
impact of a continuously presented visual feedback in the form of a
grasping hand on sensorimotor EEG rhythms during BCI control via
motor imagery. A ‘motor’ BCI, controlled by modulation of sensori-
motor brain rhythms and devoted to motor restoration, allows, for
instance, control of grasping in high spinal cord lesioned patients
(Pfurtscheller et al., 2000, 2003; Müller-Putz et al., 2005; Neuper
et al., 2006). Apart from single case studies, however, little is
known about the impact of such a realistic feedback, i.e. viewing
grasping movements of the own hand, on BCI operation. This is a
quite complex situation: the movement of the prosthetic hand de-
pends e.g., on the suppression of sensorimotor brain rhythms but,
on the other hand, seeing the moving hand can cause a similar sup-
pression. In the present paper we, therefore, set out to explore in a
controlled study in healthy volunteers the reactivity of sensorimo-
tor rhythms during the complex interplay between (i) motor imag-
ery, (ii) concomitant processing of feedback, and (iii) the special
impact of ‘realistic’ feedback involving action observation (i.e.
observation of hand movement during hand motor imagery). In
the following discussion of our results we address these aspects
separately.

4.1. Screening results: ERD/ERS during unilateral hand motor imagery

Rolandic mu and beta rhythms in humans are characteristically
recorded over sensorimotor areas with spectral peaks around 10
and 20 Hz (for a review see Hari et al., 1998). Both frequencies
show typical reactivity in association with voluntary movements
(Pfurtscheller et al., 2006b) and motor imagery (Pfurtscheller and
Neuper, 1997, 2001). Also in the present study, we found a clear
and locally restricted desynchronization of the mu rhythm during
imagery of unilateral hand movement. Corresponding to previous
results, frequency components around 10 Hz (11–13 Hz) and
20 Hz (15–25 Hz) showed highest significance for the classification
of the imagery-related EEG segments (Neuper and Pfurtscheller,
2001; Neuper et al., 2005; Pfurtscheller et al., 2006c).

The mean classification accuracy of approx. 77% obtained over
the whole sample (n ¼ 20) as well as the proportion of good versus
bad performers is in line with previous results obtained with the
standard Graz-BCI protocol (see e.g., Pfurtscheller and Neuper,
2001). Comparing these classification results with the literature,
one should take into account that, in contrast to many other stud-
ies, this one has been performed using (i) naive subjects, without
any preselection or inclusion restriction and (ii) two channels only
were used to compute online feedback.

4.2. ERD/ERS and performance in feedback sessions

As expected from previous studies (e.g., Neuper et al., 1999;
Shenoy et al., 2006), our data show that the ERD/ERS patterns used
for BCI control can change substantially from the offline screening
session to online control. In contrast to the simple motor imagery
task during screening, motor imagery and simultaneous processing
of feedback clearly increased ERD over sensorimotor areas. Regard-
ing specific frequency bands, our data show that largest ERD was
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generally obtained in the lower mu (8–10 Hz) frequency range,
which increased significantly from screening to feedback sessions.
Such an increased ERD during feedback was also found for the beta
bands (16–20, 20–24 Hz), but more prevalent in the group that re-
ceived realistic feedback.

The most striking result is, however, that only ERD in the upper
mu (10–12 Hz) band, which shows most pronounced hemispheric
asymmetry and contributes for the most part to the differentiation
of left hand and right hand imagery trials, does not differ between
screening and feedback sessions. That is, the signal which is used
as the main input feature for the BCI, seems to be independent of
and is not influenced by the feedback, irrespectively of its type
(i.e. abstract or realistic). This result is of interest in the context
of a recent BCI study addressing the issue of neurophysiologic
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changes related to offline and online sessions (Shenoy et al., 2006).
The authors found a huge and systematic difference between brain
activity during offline and online sessions, but the significant dif-
ference between tasks stayed relatively stable when going from
offline to online operation. Our data now suggest that distinct as-
pects of the processes involved in the specific BCI control task
may be reflected in reactivity patterns of different frequency
bands. For example, the lower frequency mu rhythm (8–10 Hz)
displays a bilateral, movement-type non-specific ERD, which in-
creases with enhanced involvement during online BCI control.
The upper frequency component (10–12 Hz), in contrast, shows a
more focused and motor imagery specific pattern, which remains
stable across sessions with and without feedback. In some of the
subjects (i.e. participants of the realistic feedback group) imagina-
tion of hand movements led to ERD at the contralateral, but to 10-
Hz ERS at the ipsilateral site, as reported earlier (Neuper et al.,
1999; Neuper and Pfurtscheller, 2001).

A rather unexpected result was that there was no improvement
of classification accuracy over feedback sessions. From previous re-
search there is no doubt that performance feedback is a necessary
and useful method improving learning, attention and motivation in
BCI applications (Kübler et al., 2001; Wolpaw et al., 2002; Birbau-
mer et al., 2006). The lack of learning progress in the present study
may be partly explained by the short training period including
three feedback sessions only, which in some cases were quite long
(i.e. up to several weeks) apart. A larger number of feedback ses-
sions, performed in short and regular intervals, would be impor-
tant to further study training progress in inexperienced BCI
users. The lack of a significant learning progress may also be ex-
plained by the fact that the participants already started at a rela-
tively high performance level.

Learning to control brain activity for driving a BCI is a complex
task and in this situation, not only physiological but also psycho-
logical factors like motivation, attention or excitement may play
an important role (Curran and Stokes, 2003; Nijboer et al., 2008).
Such psychological factors could be influenced by the choice of
feedback presentation, which might, in turn, determine the success
in following BCI applications. The results of this study, however,
indicate that the type of feedback (abstract versus realistic) per
se does not necessarily influence the performance in BCI applica-
tions, at least in early training. These findings are contrary to the
assumptions previously made from our group (Pfurtscheller
et al., 2006b, 2007) and others (Pineda et al., 2003), suggesting that
more stimulus-rich and realistic feedback conditions would lead to
better performance and shorter training times. On the other hand,
the present study compared, to our knowledge, for the first time,
two experimental groups, which were carefully matched with re-
spect to their classification results in the screening (since the initial
performance level is a very important predictor for later BCI perfor-
mance; see Neumann and Birbaumer, 2003) and controlled for
other psychological variables like motor imagery ability and self-
reports of actual mood. More importantly, the two experimental
feedback conditions were exactly equivalent in terms of informa-
tion content and timing.

4.3. Realistic feedback: impact of action observation

Modulation of sensorimotor brain rhythms in the mu and beta
frequency band has been recently linked to the activity of the
human mirror neuron system, referring to an action observation/
execution matching system, which is capable of performing an
internal simulation of the observed action (for a review see Pineda,
2005; Hari, 2006). On indirect evidence of functional imaging and
electrophysiological studies, a functional correspondence between
action observation, internal simulation or motor imagery and exe-
cution of the motor action has been proposed (Grezes and Decety,
2001). The mu rhythm has been considered to reflect the down-
stream modulation of primary sensorimotor neurons by visuomo-
tor mirror neurons in the premotor cortex (Pineda, 2005; Kilner
and Frith, 2007). The underlying idea is that activation of mirror
neurons by executed, imagined or observed motor actions pro-
duces asynchronous firing and, therefore, is associated with a con-
comitant suppression or desynchronization of the mu rhythm
(Lopes da Silva, 2006).

There is evidence that the mu rhythm and beta oscillations re-
corded from scalp locations C3 and C4 are reduced by observation
of experimental hand grasp (Gastaut and Bert, 1954; Cochin et al.,
1998). Moreover, the presence of an object, indicating a goal-direc-
ted action, increases the mu rhythm suppression as compared to
meaningless actions (Muthukumaraswamy et al., 2004). A previous
study in our laboratory (Pfurtscheller et al., 2007) which also used
an event-related experimental design like the present one, con-
firmed that the processing of moving visual stimuli depends on
the type of moving object: viewing a moving virtual hand resulted
in a stronger desynchronization of the central beta rhythm than
viewing a moving cube.

In the present study, comparing the observed ERD/ERS patterns
related to realistic versus abstract feedback, the impact of viewing
the moving hands (as compared to the moving bar) is less clear.
Although stronger motor cortex activation could be expected for
the realistic feedback, our data show that realistic and abstract
feedback suppressed the sensorimotor rhythms to relatively the
same extent. This may be resolved by considering the ‘goal-ori-
ented’ experimental task used in the present study. In both condi-
tions, the participant’s task was to drive the feedback signal (bar
extension/hand trajectory) to the respective target (side of
screen/position of glass) by using mental motor imagery. Interest-
ingly, although motor activation seems to be strongest for the
observation of human biological motion, there is recent evidence
from neuroimaging data that premotor areas involved in the pro-
cessing of biological motion are also activated by sequences of ab-
stract stimuli, as long as they provide sequentially structured
information (Schubotz and von Cramon, 2004). Areas like the infe-
rior parietal cortex seem to be strongly linked to biological motion,
whereas frontal regions like Broca’s area seem to be concerned
with more abstract aspects like the action goal (Koski et al.,
2002). Therefore, it can be speculated that goal-orientation may
also have an influence on ERD/ERS patterns during observation of
a moving feedback signal. In consideration that the varying bar
extension in the abstract feedback condition may be seen as a rep-
resentation of the outcome of the mental action simulation, the
equally strong ERD of sensorimotor activity during abstract and
realistic feedback fits into this line of evidence.

In the realistic feedback, the participants watched the moving
hand trying to grasp a glass, while they focused their attention
on imagining performing the respective hand movement them-
selves. This condition may not necessarily facilitate the required
motor imagery. In the case of misclassification, where the partici-
pant is required to e.g., imagine a right hand movement, but views
unsuccessful grasping attempts of the animated left hand, this task
may even cause some sort of interference. Such interference be-
tween observation and self-performed movements has been re-
ported in a number of reaction time experiments, which showed
that movement execution is faster when accompanied by observa-
tion of a congruent movement than when it is accompanied by
observation of an incongruent movement (for a review, see Brass
and Heyes, 2005).

The skill of BCI control requires for acquisition and maintenance
feedback of performance and adaptation of brain activity based on
that feedback (Wolpaw et al., 2002). Our results show that, when
the feedback provides comparable information on the continuous
and final outcomes of mental actions, the type of feedback (ab-
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stract versus realistic) does not influence the performance, at least
in initial training sessions. In both conditions, the feedback stimuli
seem to become closely associated with the action goal during on-
line control, and therefore, are able to enhance the desired electro-
physiological signals for individuals to perform accurately.
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