
Rehabilitation with  
Brain-Computer  
Interface Systems

N
ot long ago, paralysis and advanced palsy 
victims had little recourse but to rely on oth-
ers for the simplest tasks. With the evolution 
of biotechnology, however, has come the 
opportunity to give those with neuromuscu-

lar disorders a higher degree of self-sufficiency. Through 
a process that records brain signals combined with the 
use of special software, an otherwise incapacitated patient 
can change the television channel, turn lights on and off, 
and answer e-mail simply by concentrating on moving a 
cursor to the appropriate box on a screen.

More recent experiments have expanded these pos-
sibilities to include neuroprosthetic control. By focusing 
on moving a specially programmed prosthetic device, 
a quadriplegic can grasp a glass of water and raise it to 
his lips or pick up any other graspable object simply by 
thinking about doing it. Each thought aims toward a 
specific goal such as spelling the letter B or opening the 
hand or closing it. The brain translates the goal-directed 
thought into a specific spatiotemporal activation pattern, 
suitable for recording and online detection. Of special 
interest are mental strategies that reveal strong activa-
tions of neural networks in primary sensory and motor 
areas. These activations occur when the user focuses 
attention on one of these areas.

All these applications involve brain-computer interface 
(BCI) systems. In neurological rehabilitation, applica-
tions target the motor cortex localized in the precentral 
gyrus and the visual cortex in the occipital region. In 

both cases, the patient uses a particular mental strategy 
to focus attention either on a specific body part or on 
one of several flickering lights, flashing items, or letters. 
Motor imagery can modulate the sensorimotor rhythms, 
while a directed gaze can increase the P300—the posi-
tive component of the visual evoked potential (VEP)—or 
enhance a steady-state VEP (SSVEP). With the proper 
feedback and training, patients can learn to modulate 
their slow cortical potentials (SCPs).1 

BCI system applications can be either invasive—
requiring the direct implantation of electrodes in the 
user’s brain—or noninvasive—in which the system 
captures brain signals through an electroencephalo-
gram (EEG) recording, with electrodes attached to the 
patient’s scalp. Unlike invasive systems, which entail 
the risks associated with any brain surgery, noninvasive 
systems are basically harmless.

Perhaps for that reason, noninvasive BCI systems show 
the most promise in practical neurological rehabilita-
tion. The applications we describe are only a sampling of 
the many efforts to address the use of BCI systems in this 
important field. The “Additional Reading” sidebar lists 
more sources for those who want to explore further.

NoNiNvasive systems
As Figure 1 shows, a noninvasive BCI system captures 

brain signals through the EEG, extracts and classifies 
certain signal features, and feeds them to the applica-
tion. New uses of noninvasive BCI systems are continu-

BCi systems let users convert thoughts into actions that do not involve voluntary muscle 

movement. the systems offer a new means of communication for those with paralysis or severe 

neuromuscular disorders.
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ing to appear in the literature, particularly recently. The 
most noteworthy classes of such systems are based on 
SCP, the P300 component, SSVEP, and event-related 
desynchronization (ERD).

slow cortical potentials
SCPs are slow EEG shifts that last fractions of a second 

to several seconds. Negative deflections reflect a summa-
tion of excitatory postsynaptic potentials and indicate 
longer-lasting depolarization of dendritic networks. 
As far back as 1979, Niels Birbaumer and colleagues 
published a series of experiments demonstrating oper-
ant control of SCPs.2 Researchers have since used the 
operant conditioning technique to enable participants 
to self-regulate brain potentials such as SCP shifts with 
the help of suitable feedback. 

Although this process does not require continuous feed-
back, it does require a reward for achieving the desired 
brain potential change. In the thought-translation device,3 
selection, such as selecting a target letter, takes four sec-
onds. Two alternating tones of different pitch, which 
follow each other in an interval of 2 seconds, indicate a 
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Figure 1. Elements of a noninvasive BCI system. With the user’s 
EEG recording as input, the system digitizes the brain signals, 
extracts and classifies signal features, and feeds the results to 
the application interface. The user controls the application and 
receives visual, auditory, or haptic feedback on the accuracy of 
the focused thought. In this way, the system becomes a closed 
loop.
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baseline period and selection period of 2 seconds each. 
Only during the 2-second selection time can the user 
select a target by decreasing or increasing the SCP’s volt-
age level. 

The thrust of this BCI system is on clinical applications, 
especially providing late-stage amyotrophic lateral sclero-
sis (ALS) patients with basic communication functions.4

P300 component
Randomly presented rare target stimuli in the so-called 

oddball paradigm evoke the P300, the positive compo-
nent of the evoked potential, at a latency of approxi-
mately 300 ms. Emanuel Donchin and colleagues used 
the P300 to develop a communi-
cation system.5 With this BCI, the 
user sees a 6 × 6 letter matrix in 
which one row or column is flash-
ing in 125-ms intervals. The user’s 
focus on a certain letter produces a 
larger P300 amplitude than that of 
other possible letter choices. Some 
researchers have achieved a commu-
nication rate of approximately seven items per minute 
with this system.5

Advantages of the P300 BCI system include a relatively 
short training time and a much faster selection of letters 
than any other BCI system. 

steady-state visual evoked potential
Steady-state evoked potentials (SSEPs) occur when 

the system repetitively delivers sensory stimuli at a high 
enough rate to keep relevant neuronal structures from 
returning to their resting states. Ideally, the amplitude 
and phase of discrete frequency components remain con-
stant within an infinitely long period. The components 
have the same fundamental frequency as the stimulus, 
but often include higher or subharmonic frequencies. 

In an SSVEP BCI system, the user gazes at one of several 
lights, which flicker at different rates. The gaze-directed 
flickering light evokes SSVEPs over the visual cortex, 
which means that the system can detect them and use 
them for control. Multiple flickering lights enable higher 
dimensional discrimination. Ming Cheng and colleagues6 
reported a BCI with 13 flickering lights and a mean high 
information transfer rate of 27 bits per minute. 

event-related desynchronization
Sensorimotor rhythms can display either an ERD, 

which is an amplitude decrease, or an event-related syn-
chronization (ERS), which is an amplitude increase.7 A 
localized ERD is an electrophysiological correlate of an 
activated cortical network, and a localized ERS in the 
alpha band is typically viewed as a correlate of a deac-
tivated or even inhibited cortical network, correspond-
ing to a disengaged or deactivated state (at least in some 
instances). 

ERD BCI systems encompass the range of BCIs that 
analyze and classify the dynamics (ERD and ERS) of 
either one single-frequency component, such as a BCI 
based on mu or beta rhythms or multiple components 
of sensorimotor rhythms.8-10 Also, the sensorimotor 
rhythm BCI11 uses the mentally induced increase (ERS) 
or decrease (ERD) of sensorimotor rhythms to control 
a hand orthosis.

One of the first reports on classifying ERD/ERS pat-
terns induced by motor imagery appeared in the early 
1990s.12 Several years later, other systems began to 
use ERD/ERS patterns as features for single-trial EEG 
classification, including the Wadsworth,1 Berlin,9 and 

Graz13 BCIs, as well as variants of 
the Tübingen BCI.11 Bit rates were 
between 3 and 35 bits/min.9 

ERD BCIs operate in either a cue-
based (synchronous) or a self-paced 
(asynchronous) mode. The cue-
based mode restricts data process-
ing and classification to a predefined 
time window of a few seconds. In 

self-paced mode, data processing is continuous.
training sessions. To ensure that the ERD BCI system 

operates as intended, users first undergo training ses-
sions in which they learn to control their brain signals 
so that the system can more accurately classify brain 
states. These states are essentially the user’s brain pat-
terns relative to motor imagery types. Before starting 
online feedback sessions, users imagine movements of 
specific body parts, such as a hand, foot, or tongue. They 
do so repeatedly in intervals of several seconds while the 
system records their EEG. By applying feature-selection 
algorithms to the screening data, such as the distinction-
sensitive learning vector quantization algorithm, the sys-
tem attempts to identify the frequency components and 
electrode positions that best discriminate between two 
brain states. 

After the system sets up a classifier, the user must learn 
to enhance the EEG patterns associated with a partic-
ular motor imagery type. Thus, in follow-on training 
sessions, the user receives online feedback about EEG 
changes related to motor imagery.

Feedback sessions. Users receive feedback either 
through a continuous feedback signal, such as cursor 
movement, or from the trial’s success or failure. With 
trained subjects, system operation does not have to depend 
on the sensory input the feedback signal provides. In one 
trial, for example, well-trained subjects still displayed 
EEG control even after the researcher removed feedback 
(cursor movement) temporarily. In general, when a naïve 
user starts to practice hand motor imagery, a contralater-
ally dominant desynchronization pattern is likely. After 
several training sessions, in which the user receives feed-
back about the performed mental task, the user is apt to 
exhibit changes in the relevant EEG patterns.

the user must learn to  
enhance the eeG patterns 

associated with a particular 
motor imagery type.
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Feedback is most often visual in BCI research,9 
although some BCI experiments involved complex vir-
tual reality environments.8 Figure 2 shows the BCI-based 
control of a virtual street, for example.14

Recently, Aniruddha Chatterjee and colleagues15 pre-
sented an ERD BCI system that uses a motor imagery 
paradigm and haptic feedback provided through vibro-
tactile stimuli to the upper limb. Although the experi-
ments did not determine how the neural correlates of 
vibrotactile feedback affect the modulation of the mu 
rhythm, the effort underlines the importance of haptic 
information. Indeed, such information might become 
a critical component of BCIs that control an advanced 
neuroprosthetic device.

Desirable features. ERD BCI systems for home appli-
cation and everyday use must be robust, light, wireless, 
and simple to use, considering only one or two EEG 
channels. It would be interesting to compare the clas-
sification results of multichannel (full-head) EEG studies 
when the BCI system considers all EEG channels and 
when it considers only one or two.

The standard method for processing multichannel 
data and discrimination between two brain states is 
the common spatial pattern (CSP) algorithm.16 In one 
experiment that used the CSP algorithm applied to a 30-
channel EEG of 10 naïve subjects, classification accuracy 

was 88.8 ± 5.5 percent for discrimination between hand 
and foot motor imagery.10 With only one subject-specific 
Laplacian EEG derivation, the corresponding accuracy 
was 81.4 ± 8.7 percent. 

It is surprising that such high classification accuracy is 
possible with only one channel. To achieve this accuracy, 
system developers must carefully select features, such as 
electrode locations and frequency bands, and optimize 
each feature for a particular user. 

In another experiment with a 55-electrode EEG mon-
tage, classification accuracy was approximately 80 per-
cent for the discrimination between hand and foot motor 
imagery.9 With two individually selected bipolar EEG 
channels, the classification accuracy was about 10 per-
cent lower. 

On the basis of these results, we recommend start-
ing the first BCI training session with a full-head EEG 
montage (> 30 channels), selecting the best perform-
ing electrodes and frequency bands, and continuing 
the training procedure with feedback using the fewest 
possible EEG derivations.

NeuRoPRostheses CoNtRol
Figure 3 shows how a BCI controls a neuroprosthesis. 

Spinal cord injury, with its associated disruption of nerve 
fiber tracts in the spinal cord, results in a loss of sensory 

Figure 2. BCI-based control of a complex virtual environment. The user was told to “walk” from avatar to avatar by visualizing 
foot movements. From the top down, avatars in relation to time axes, the filtered EEG signal (15-19 Hz), time course of band power 
(spectral power density in a predefined frequency range) with threshold, and the go/stop signal through which the user controls 
walking.
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and motor functions. Neuroprostheses guided through 
functional electrical stimulation (FES) can compensate 
for the loss of voluntary functions by artificially elic-
iting muscle contractions. Such techniques provide the 
possibility of restoring movement, such as grasping, in 
quadriplegic patients.

High-level SCI patients are much less able to activate 
external controllers on their own volition, and that abil-
ity decreases the higher the lesion in the cervical ver-
tebrae. For these patients, brain activity recorded with 
the EEG in concert with a neuroprosthesis and BCI 
might be a viable alternative means of control. Combin-
ing a neuroprosthesis and a BCI could enable thought-
driven, complete restoration of hand and arm function 
in patients with a spinal cord injury. Figure 4 shows two 
possible applications.

Recent work has focused on using a noninvasive BCI 
to control neuroprosthetic systems in human subjects. A 
first attempt in 2000 used EEG-based control systems 
to restore the hand function in a quadriplegic patient 

through an electrically driven hand orthosis. In later 
efforts with the same patient, we used FES controlled 
through foot motor imagery to realize a hand grasp. We 
implemented a sequence of grasp phases in the stimula-
tor, and whenever the BCI detected foot motor imagery, 
the stimulator initiated the next phase and activated 
muscle groups accordingly, as in Figure 4a.17

There are drawbacks to any neuroprosthetic system 
based on surface electrode stimulation, however, includ-
ing low selectivity, cable problems, and the need to vary 
electrode positions almost daily. These disadvantages 
motivated the development of implantable neuropros-
theses, such as the Freehand system. In this system, sur-
geons implant electrodes in the hand and arm and insert 
the stimulation unit into the patient’s chest as they would 
a pacemaker. Patterns move from an external device and 
controller into the implanted system through inductive-
coupling energy and stimulation. 

In an early feasibility study,17 we coupled this system 
and a BCI. A quadriplegic male patient took a daily BCI 
training session using the Freehand system, and after 
three days, was able to induce characteristic brain pat-
terns by left-hand motor imagery and perform the grasp 
sequence. Figure 4b shows the patient with implanted 
FES electrodes. 

In another feasibility study,18 the BCI was based on a 
four-class SSVEP, which controlled an electromechani-
cal hand prosthesis that contained flickering lights. One 
light on the index finger flickering at 6 Hz and one on 
the pinky finger flickering at 7 Hz translated to com-
mands for turning the hand in supination and pronation. 
Two lights on the wrist (flickering at 8 Hz and 13 Hz) 
represented the commands for opening and closing the 
hand. Four able-bodied subjects followed a given grasp-
ing sequence at will. Three of the four could perform the 
sequence, although sometimes they had to correct their 
movements within a given time. The fourth subject was 
not able to obtain SSVEP control.
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Figure 3. Using a BCI system to control a neuroprosthesis. By 
coupling a BCI system with a neuroprosthesis, scientists can 
artificially bridge a spinal cord lesion that has interrupted 
efferent and afferent fiber tracts. In this application, the provided 
feedback is exclusively visual.

Figure 4. Thought-based control of a neuroprosthesis. (a) A patient uses functional electrical stimulation and surface electrodes to 
control hand grasp. (b) A patient controls hand grasp with implanted stimulation electrodes. 

(a) (b)
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All these studies report encouraging 
results in attempts to use an EEG-based 
BCI to restore grasp functions. However, 
the system bit rate is still quite low and 
not suitable for controlling larger objects, 
such as a full arm neuroprosthesis. To 
make an EEG-based BCI system practi-
cal on a daily basis, the next step might 
be to develop intelligent controllers that 
could recognize system errors. 

A myoelectrical prosthesis shows prom-
ise in restoring lost motor function in 
patients with amputated hands or arms. 
The patient controls prosthetic move-
ment with myographical signals from the 
remaining arm muscles. In one patient, 
whose arm was amputated to the shoul-
der, a procedure surgically connected 
the nerves governing the arm muscles 
with the nerves that contract the pecto-
ral muscle, which was subdivided in dis-
tinct parts.19 Whenever the patient thinks 
about a movement, the pectoral muscle parts activate in 
a certain pattern. By using an electromyographic record-
ing and classifying the resulting patterns, such a system 
can control an artificial arm.

sPelliNG systems
Figure 5 shows a patient training to use a spelling sys-

tem by selecting letters to form words and sentences. In 
early training, the patient uses basket feedback train-
ing, and then later letters replace the baskets. In copy 
spelling, one strategy is to split the alphabet iteratively 
according to a predefined procedure, until the user iso-
lates the desired letter. 

The simplest method uses a binary control signal, 
which requires two distinct mental activities. Patients 
suffering from ALS learned to control their SCPs in oper-
ating the thought-translation device.3,20 In two other stud-
ies that used the same dichotomous selection strategy, 
patients used motor imagery to modulate the ERD and 
ERS changes in oscillatory EEG activity. Both the ALS 
patient in Figure 5a8 and a patient suffering from severe 
cerebral palsy21 learned to operate the Virtual Keyboard 
spelling application in this manner. In these studies, the 
performance measure was spelling rate, or the number of 
correctly selected letters per minute. Unfortunately, study 
parameters tend to differ, making direct comparison diffi-
cult. Alphabet size varies, as do paradigm timing and user 
training periods. For these studies, spelling rates varied 
from 0.15 to approximately 1.0 letter per minute. 

Splitting the alphabet into more than two parts might 
increase the spelling rate, or more generally the informa-
tion transfer rate, but again, there must be some way 
to reliably discriminate or map brain patterns. A study 
using a three-class BCI22 reported an average spelling 

rate of ~3.0 letters per minute, but the study also used an 
asynchronous (self-paced) communication protocol. 

An asynchronous protocol was also the basis for a 
novel spelling concept, in which users employed a three-
class BCI to select letters by scrolling through the alpha-
bet.23 The volunteers used foot motor imagery to rotate 
two wheels, one on each side of the screen, on which the 
letters appeared alphabetically. With left- and right-hand 
motor imagery, a subject could select the item on the left 
or right wheel. Healthy users were able to achieve an 
average spelling rate of 2.0 letters per minute.

Another efficient selection strategy is the Hex-O-Spell 
application,24 which combines asynchronous two-class 
BCI control and divides the alphabet into six parts. Par-
ticipants achieved an average spelling rate of nearly 6.0 
letters per minute using this application. 

Both these spelling systems are based on rhythmic EEG 
activity, using an ERD BCI. The use of evoked poten-
tials, such as the P3005 or the SSVEP6 BCI lets patients 
reliably and quickly discriminate four and more classes 
and so increases the possible spelling rate.

stRoke RehaBilitatioN
Motor impairment after stroke is the leading cause 

of permanent physical disability. Strokes frequently 
result in some form of hemiparesis or hemiplegia, usu-
ally contralateral to the stroke site. Rehabilitation meth-
ods based on neuroscience seek to stimulate spontane-
ous functional motor recovery by exploiting the brain’s 
potential for plastic reorganization after a stroke. 

One post-stroke therapy—constraint-induced move-
ment therapy (CIMT)—encourages goal-directed 
movement with the impaired hand while constraining 
the unaffected limb. The idea is to activate the lesional 

Figure 5. Training to use a spelling system. (a) An ALS patient during BCI training 
at home. (b) What the patient sees using the basket paradigm, in which the 
patient is asked to move the falling ball into a target, in this case, a red or green 
rectangle. (c) What the patient sees using copy spelling, in which the task is to 
isolate a particular letter.
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hemisphere (through forced repetitive practice with the 
affected limb) and simultaneously deactivate (inhibit) the 
intact hemisphere by constraining the unaffected limb.

Typically, physical therapy aimed at post-stroke motor 
recovery focuses on active movement training. Some 
patients, however, are so severely disabled that they can-
not engage in movement without assistance. New reha-
bilitative strategies seek to extend CIMT to serve these 
patients. Newly developed protocols based on mentally 
rehearsing movements (like motor imagery) represent 
an intriguing backdoor approach to accessing the motor 
system because they can activate sensorimotor networks 
that the lesions affected.25

One study showed that unilateral hand motor imag-
ery results in a simultaneous contralateral ERD and 
ipsilateral ERS after some training sessions. Hence, an 
ERD BCI based on movement imagery can provide some 
measure of attempted activity in the motor regions and 
reinforce a patient’s sensorimotor experience during 
post-stroke motor recovery. 

Feedback from the BCI can be solely visual, as in the 
movement of a virtual hand in Figure 6, or it can occur 
through a prosthetic device, such as an orthotic hand 
attached to the patient’s own.11 In both cases, not only 
can positive feedback reinforce the motor imagery pro-
cess, but the act of observing the hand movement can 
itself lead to an activation of the sensorimotor areas. 

An important question is whether or not stroke patients 
produce reliable EEG changes during hand motor imag-
ery that are detectable in a single trial and suitable for 
use as a trigger to induce assisted movements. One study 
showed that imagery of movement not only with the non-
paretic but also with the paretic hand can be objectified 
in single EEG trials with a clear preponderance of beta 
ERD in the nonlesioned hemisphere. The study found a 
similar ERD pattern during hand movement when such 
movement was possible. The BCI system discriminated 
the cue-based EEG reactivity patterns from rest with 70 
to 80 percent classification accuracy.

C learly, BCI technology is a relatively new, fast-
growing field of research and applications with the 
potential to improve the quality of life in severely 

disabled people. To date, several BCI 
prototypes exist, but most work only 
in a laboratory environment. 

Before a BCI can be used for com-
munication and control at home, 
research must solve several prob-
lems. An important next step is to 
establish protocols for easily set-
ting up and using BCI systems in a 
practical environment. Many fea-
tures, such as electrode positions 
and frequency components, must be 

automatically selectable for particular motor imagery. 
The system must use the fewest number of recording 
electrodes possible, striving for the optimal single EEG 
channel. Finally, training time must decrease, perhaps 
through game-like feedback and automatic detection of 
artifacts, such as uncontrolled muscle activity. 

With these improvements, which are on the horizon, 
we expect to see practical BCI systems for a wide range 
of users and applications. ■
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