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Objective: Performing foot motor imagery is accompanied by a peri-imagery ERD and a post-imagery beta
ERS (beta rebound). Our aim was to study whether the post-imagery beta rebound is a suitable feature for
a simple ‘‘brain switch”. Such a brain switch is a specifically designed brain–computer interface (BCI)
with the aim to detect only one predefined brain state (e.g. EEG pattern) in ongoing brain activity.
Method: One EEG (Laplacian) recorded at the vertex during cue-based brisk foot motor imagery was ana-
lysed in 5 healthy subjects. The peri-imagery ERD and the post-imagery beta rebound (ERS) were ana-
lysed in detail between 6 and 40 Hz and classified with two support vector machines.
Results: The ERD was detected in ongoing EEG (simulation of asynchronous BCI) with a true positive rate
(TPR) of 28.4% ± 13.5 and the beta rebound with a TPR of 59.2% ± 20.3. In single runs with 30 cues each,
the TPR for beta rebound detection was 78.6% ± 12.8. The false positive rate was always kept below 10%.
Conclusion: The findings suggest that the beta rebound at Cz during foot motor imagery is a relatively sta-
ble and reproducible phenomenon detectable in single EEG trials.
Significance: Our results indicate that the beta rebound is a suitable feature to realize a ‘‘brain switch”
with one single EEG (Laplacian) channel only.
� 2008 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

The most important brain–computer interface (BCI) application
in the past was to install a non-muscular communication channel
for patients with severe motor disabilities or restoration of motor
function in patients with spinal cord injury (Wolpaw et al., 2002;
Pfurtscheller et al., 2005a). At this time and in the near future,
new BCI applications gain importance as for example to improve
the BCI-based feedback therapy in patients with epilepsy, atten-
tional disorders or stroke (e.g. Birbaumer et al., 2007; Strehl
et al., 2006). Important here is to optimize the electrode locations
and frequency bands of the recorded and analysed brain signals
used for feedback. Another application is to use the BCI for healthy
subjects. Here we can differentiate between the control of multi-
media application or computer games (e.g. Nijholt and Tan,
2007; Scherer et al., 2008) and the use of the BCI for user authen-
tication (Marcel and Millán J del, 2007). In the latter case, a user-
specific thought-related brain pattern has to be compared with a
variety of stored patterns. If there is a match, the user can login
e.g. for high-importance applications or environments.

Due to these new/novel BCI applications, preferably in able-
bodied subjects, new strategies should be explored to develop
user-friendly, non-invasive EEG-based BCIs suitable for every-day
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life and home applications. One of these strategies is to utilise
the beta rebound, a transient EEG phenomenon first reported after
termination of finger movements (Pfurtscheller, 1981; Salmelin
and Hari, 1994), for classification of a specific mental state. Another
is to use only one EEG channel to realise a simple ‘‘brain switch”.
Such a brain switch differentiates between one predefined brain
state (e.g. one motor imagery task) and all other active or passive
brain states including resting and idling in ongoing bioelectrical
brain activity.
2. Physiological background

The induced short-lasting beta oscillation after movement or in
response to somatosensory stimulation is termed as beta rebound.
This beta rebound shares the following interesting features:

(i) Strict somatotopic organization (Salmelin et al., 1995;
Pfurtscheller and Lopes da Silva, 1999)

(ii) Somatotopically-specific frequency components, with
slightly lower frequencies over lateralized sensorimotor
areas as compared to the midcentral area (Neuper and
Pfurtscheller, 2001)

(iii) Similar patterns after active and passive movement (Cassim
et al., 2001; Alegre et al., 2002), electrical nerve stimulation
(Neuper and Pfurtscheller, 2001) and motor imagery
(Pfurtscheller et al., 2005b)
ed by Elsevier Ireland Ltd. All rights reserved.
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Fig. 1. Experimental paradigm; a cross was presented from t = 0–6 s and, a visual
cue together with a short beep at t = 2 s (top). Time course of beta power changes
(mean + SD) during cue-based motor imagery with peri-imagery ERD and post-
imagery ERS; time windows (gray vertical bars) used to define classes 1 for ERD and
ERS classification, respectively (C) (middle). Class 1 labels were assigned to the EEG
segments during two different time windows for ERD detection between 2.5 and
3.5 s and ERS detection between 4 and 5 s; any other segment was labelled as class
0 (bottom).
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(iv) ‘‘Cross-talk” between hand representation area and mesial
cortex (overlying the foot representation area and the sup-
plementary motor area (SMA), Pfurtscheller et al., 2000a)

(v) Attenuation or suppression of the stimulus-induced beta
rebound during enhanced motor cortex activation (Schnit-
zler et al., 1997; Pfurtscheller et al., 2002)

(vi) Attenuation of the stimulus-induced beta rebound while
viewing another person’s manipulation movements
(Järveläinen et al., 2004)

(vii) Coincidence with a reduced excitability of motor cortex neu-
rons as measured with transcranial magnetic stimulation
(Chen et al., 1998).

From these observations two important conclusions can be
drawn: First, the beta rebound does not necessarily depend on
muscle activation or passive movement but is also present after
motor imagery. Second, the beta rebound very likely reflects a
somatotopically specific, short-lived brain state associated with
deactivation (inhibition) and/or resetting of motor cortex
networks.

Some explanation is needed for the term ‘‘cross-talk”. Self-
paced finger movements induce a beta rebound not only in the
contralateral hand representation area but also with slightly higher
frequencies and an earlier onset in midcentral areas overlying the
supplementary motor area (SMA) (Pfurtscheller et al., 2003). This
midcentrally induced beta rebound is especially dominant follow-
ing voluntary foot movement (Neuper and Pfurtscheller, 2001) and
foot motor imagery (Pfurtscheller et al., 2005). We speculate there-
fore that the termination of motor cortex activation, whether it fol-
lows the actual execution or just imagination of a body-part
movement, may involve at least two neural networks, one in the
primary motor area and another in the SMA. In the case of foot
movement both the SMA and the cortical foot representation area
are involved. Taking into consideration the close proximity of these
cortical areas (Ikeda et al., 1992), associated with the fact that the
response of the corresponding networks in both areas may be syn-
chronized, it is likely that a large-amplitude beta rebound (beta
ERS) occurs after foot motor imagery. Summarising it can be stated
that the beta rebound after foot movement displays a high signal-
to-noise ratio and is therefore especially suitable for detection and
classification of foot motor imagery in single EEG trials.

The main objective of this study was to address the following
questions:

(i) Is it possible to detect brisk foot motor imagery in ongoing
1-channel EEG (Laplacian) recordings?

(ii) Does the classification improve when not the ERD but the
beta rebound (beta ERS) is classified?

3. Methods

3.1. Subjects, data acquisition and experimental setup

EEG recordings from 5 healthy subjects aged between 24 and 31
(mean 25.8 years; SD 2.9) years were collected during cue-based
imagination of a brisk dorsiflexion of both feet (motor imagery;
MI). Before the imagery runs each subject practised the task by ac-
tive feet movement. Two of the subjects had some experiences
with hand and foot motor imagery sessions with BCI feedback,
while 3 had no experience with BCI feedback. During the recording
every 8–10 s a cross was displayed for 6 s. Two seconds after the
cross a short beep appeared together with a 1.25-s lasting cue in
form of a downward pointing arrow on a monitor in front of the
subject (see Fig. 1 top panel). Each subject performed three runs
with 30 cues each with a short break in between. For the further
cue-triggered processing, trials with 2 s before the cue and 5 s after
were used.

Sixteen closely spaced (�2.5 cm) Ag/AgCl electrodes placed over
the sensorimotor area including the electrode position Cz were
used to record monopolar EEG signals with a biosignal amplifier
system (Guger Technologies, Graz, Austria) and a sampling fre-
quency of 250 Hz. From these 16 electrodes only 5 were used to
calculate the Laplacian channel at Cz (Hjorth, 1975; the potential
at 4 surrounding electrodes is subtracted from the potential at
Cz) Filters were set at 0.5 and 30 Hz (40 dB/octave). All subjects
gave written informed consent prior to participation. The study
complied with the declaration of Helsinki.

3.2. Calculation of time–frequency maps

ERD/ERS is defined as the percentage of power decrease (ERD)
or power increase (ERS) in relation to a reference interval (in this
study 0.5–1.5 s; visual cue-onset at second 2; see Fig. 1 top panel)
(Pfurtscheller and Lopes da Silva, 1999). Time–frequency maps for
the 6–40 Hz frequencies were calculated to evaluate changes
caused by motor imagery. To that end, sinusoidal wavelets were
used to assess changes in the frequency domain by calculating
the spectrum within a sliding window, squaring and subsequent
averaging over the trials (Makeig et al., 2004). The statistical signif-
icance of the ERD/ERS values was determined by applying a t-per-
centile bootstrap algorithm (Davision and Hinkley, 1997) with a
significance level of a = 0.05.

3.3. Feature extraction and pattern recognition

Each trial was analyzed using time segments of 1 s in length
with an overlap of 500 ms. The spectral description of each seg-
ment was computed by means of logarithmic band powers in the
frequency range from 6 to 36 Hz. All patterns were labelled twice
for the classification of either ERD or ERS against all other brain
activity. The peri-imagery ERD pattern during MI was labelled as



26 G. Pfurtscheller, T. Solis-Escalante / Clinical Neurophysiology 120 (2009) 24–29
class 1 from t = 2.5 s to t = 3.5 s, all other patterns were labelled as
class 0. Similarly, the post-imagery beta ERS (t = 4 s to t = 5 s) was
labelled as class 1 (details see Solis-Escalante et al., 2008). Fig. 1
shows the labelling procedure for each trial. These as class-1 la-
belled 1-s periods, are referred to as the intentional control period
(ICP). As a consequence, the rest of the time is referred to as non-
intentional control period (NICP). Because the peri-imagery (move-
ment) ERD and post-imagery (movement) ERS share slightly differ-
ent frequency components (Müller-Putz et al., 2007; Alegre et al.,
2008) both, ERD and ERS are treated independently.

Two classifiers were trained for the individual detection of ERD
and ERS within their respective ICP. Support vector machines
(SVMs) with Gaussian kernels were used for this task by imple-
menting the LIBSVM software (Chang and Lin, 2001) in combina-
tion with the Matlab interface from the BioSig software (Schlögl
et al., 2007).

From the 3 runs available (each composed of 30 trials) one run
was always used to train the SVM with a specific combination of
parameters and a second run was used to select the hyperparame-
ters of the SVMs (Müller et al., 2001; Chang and Lin, 2001); the per-
formance of the SVM depends on the regularization parameter C
and the width of the kernel (r). Thereafter the performance of
the SVM was tested on the third (unseen) run through simulation
of an asynchronous system and computing the posterior probabil-
ities of the ERD and ERS patterns. The output of the classifiers was
additionally post-processed with three simple parameters: (i)
threshold, (ii) dwell time (DT) and (iii) refractory period (RP). The
DT and RP values were set at 62 samples (248 ms) and 500 samples
(2 s), respectively. The optimal threshold was determined from the
receiver-operator characteristic (ROC) curve. For evaluation the ICP
was extended to 2 s, from t = 2.5 to 4.5 s for ERD and from t = 3.5 to
0
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Fig. 2. Time–frequency maps of all subjects, calculated for the runs #1, #2 and #3 and all
ranges 0–7 s with 2 s prior to cue-onset in the range 6–40 Hz. The reference period f
significant power decrease (ERD) and blue significant power increase (ERS).
5.5 s for ERS. This was done since ERD and ERS display some intra-
and intersubject variability and are not restricted to 1-s time win-
dows (see examples in Fig. 2). The values of true positive ratio
(TPR) and false positive ratio (FPR) were defined from event detec-
tion and not on a sample-by-sample basis. A true positive event
(TPE) is regarded as any detection with at least DT ms over the
threshold during an ICP and a false positive event (FPE) is any detec-
tion outside an ICP.

TPR ¼ TPE
NTPIC

FPR ¼ FPE
NFPIC

where NTPIC is the maximum number of TPE (equal to the number of
ICP since only one detection is allowed) and NTPIC = (total EEG length
pro run)/(DT + RP). The number of events are 30 and NTPIC = 110.

4. Results

4.1. Intra- and intersubject variability of time–frequency maps

To give the reader an impression what the time–frequency
maps from the 3 runs with brisk feet motor imagery looks like,
the maps of all 5 subjects are displayed in Fig. 2. The most domi-
nant feature in each map is the beta rebound, while the beta ERD
is less pronounced and of larger variability. So for example the
post-imagery beta ERS is dominant in subject s2, while the peri-
imagery beta ERD is dominant in s4. Of interest is also a harmonic
component of the beta ERS in subjects s4 and s5. It can be also rec-
ognized in Fig. 2 that the beta ERD generally always involves
slightly higher frequency components than the beta ERS. On the
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Fig. 3. Example of ongoing EEG (Laplacian) (top). Time courses of classifier probability for ERD and ERS detection. A control event is detected every time the class probability
exceeds the threshold (dashed line) for a time equal to the dwell time; correct ERD detections are marked with a circle and correct ERS detections with an asterisk (middle).
Timing of cue presentation (bottom).
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right side of Fig. 2 the average time–frequency maps including data
of all 3 runs are plotted.

5. Performance rates for simulation of an asynchronous BCI

A BCI can operate either in a cue-based mode with processing in
predefined time windows (known as synchronous BCI) or uncued
(self-paced) with continuous processing (asynchronous BCI)
(Pfurtscheller et al., 2005a). Here we report the performance rates
when the complete data from one run is used for detection of feet
MI (simulation of an asynchronous BCI). An example of such ERD
and ERS detections, respectively, in ongoing EEG (Laplacian) is dis-
played in Fig. 3. All ERS but only one ERD pattern are detected during
40 s of EEG data.

With all possible combinations (e.g. run #1 for training, run #2 for
parameter selection and run #3 for testing, run #2 for training, #3 for
parameter selection and run #1 for testing) each run served twice for
testing and 6 performance measures were obtained for each subject.
These numbers were averaged for each subject (mean ± SD) and dis-
played in Table 1 together with the best (max) and worst (min) TPR
of the 6 values. The FPR was in all cases equal or below 10%. The aver-
age TPR for ERD detection was 28.4% ± 13.5 and the TPR for beta ERS
detection in ongoing EEG (simulation of asynchronous BCI)
59.2% ± 20.3. The best (max in Table 1) TPR (78.6 % ± 12.8) give some
indication which performance rate can be achieved in each subject
under ‘‘good” conditions. A real control of the ‘‘goodness” of imagery
is not possible but this true positive rate of nearly 80% suggests that
the 5 subjects investigated displayed a good task performance.

6. Discussion

The question whether foot MI can be detected in one-channel
EEG can be clearly answered with ‘‘yes”. The time frequency maps
Table 1
Subject identification (ID) and true positive rates (TPR) for ERD and ERS detection. In
addition to the mean ± SD over the 6 values from each subject also the best (max) and
worst (min) TPR are displayed. In the last 2 rows the mean and SD over subjects are
displayed.

ID ERD TPR [%] ERS TPR [%]

Mean ± SD Max Min Mean ± SD Max Min

S1 12 ± 6 20 3 57 ± 14 73 43
S2 30 ± 11 40 17 51 ± 15 73 33
S3 23 ± 9 33 13 37 ± 19 67 20
S4 49 ± 13 70 30 59 ± 24 80 23
S5 28 ± 7 33 20 92 ± 10 100 80

Mean 28.4 39.2 16.6 59.2 78.6 39.8
SD 13.5 18.7 9.8 20.3 12.8 24.2
in Fig. 2 demonstrate that all subjects displayed significant pat-
terns of post-imagery band power increase (ERS) together with a
band power decrease (ERD) during the imagery process with a rel-
atively small variability between runs. The single trial analyses re-
vealed in one run of subject s5, a classification performance of
100%. This means that each post-imagery beta ERS was correctly
detected. On average at least in one run the TPR of beta ERS detec-
tion was 78.6%. Of importance is that in all subjects the same
Laplacian EEG recording with 5 closely spaced electrodes at and
around Cz was used and for the classification procedure all re-
corded EEG data (without artefact selection) were considered.
From this it can be concluded that subject-specific EEG electrode
optimization and artefact detection/rejection can improve the clas-
sification accuracy.

The classification results in Table 1 give clear evidence, that the
beta rebound (beta ERS) is easier detectable in single trials than the
beta ERD (59% compared to 28%). It was shown recently (Müller-
Putz et al., 2007) that the beta ERD during foot movement execu-
tion and imagery comprises slightly higher frequency components
as the post-movement beta ERS. They reported frequencies of
�29 Hz for the beta ERD and �24 Hz for the beta ERS. A similar fre-
quency difference is visible in the time–frequency maps displayed
in Fig. 2. This means that not the same neural structures are in-
volved in the initial beta desynchronization and the following beta
rebound. This partial independence of the beta ERD and the beta
rebound was also confirmed in a recently reported movement
experiment (Alegre et al., 2008). When we assume, that in general
more rapidly oscillating cell assemblies (higher frequency compo-
nents; e.g. oscillations involved in generation of the centrally local-
ised beta ERD) are comprised of fewer neurons as compared to
slowly oscillating cell assemblies (e.g. oscillations responsible for
the. beta ERS; Singer, 1993), then it can be speculated that larger
and/or more widespread neural structures or networks contribute
to the beta synchronisation (beta rebound) than to the beta desyn-
chronization. The beta rebound is very likely related to resetting of
the control system after the motor task involving at least the pri-
mary motor foot representation area and the SMA (Pfurtscheller
et al., 2003a). Because of the great functional and anatomical com-
plexity of the SMA and its somatotopic organization (Lim et al.,
1994), it can be expected that not just one but a great variety of
beta-generating networks exist and both linear and non-linear
coupling with other motor areas can be expected.

Recently two studies were reported about self-paced (asynchro-
nous) BCIs. One of it reported asynchronous detection of finger
flexion movements with a low false positive rate (Fatourechi
et al., 2008) and the other described a beta rhythm-based BCI suit-
able to classify repetitive wrist extensions (Bai et al., 2008). Both
papers need some discussion. The BCI with a low false positive rate
uses 3 features (movement-related potentials, mu ERD and beta
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ERD) and 18 bipolar EEG signals to classify cue-based execution of
finger flexions. The experiments revealed that 4 able-bodied sub-
jects had an average true positive rate of 56% and a false positive
rate of �10%. In comparison to this study with a highly sophisti-
cated multiple classifier system and 18 EEG signals, we reported
a similar performance with only 1-channel (Laplacian) EEG record-
ing and classification with only 2 simple features (ERD and ERS).
One major difference is, however, that Fatourechi et al. (2008) clas-
sified real executed finger movements, while we classified imag-
ined foot movements.

The second study (Bai et al., 2008) was focussed on classification
of cue-based wrist extension either executed or imagined. They
started with a calibration procedure using 29 EEG electrodes and
16 frequency components. Thereafter, one Laplacian channel and
one beta frequency component were selected for classification. Mo-
tor execution was detected in 6 healthy subjects with an accuracy of
�90% and motor imagery with�75%. The main feature classified was
the beta ERS and the beta rebound, respectively. In contrast to our
study, where a single brisk foot motor imagery was detected, repet-
itive wrist motor imagery over a 2.5-s window period has to be de-
tected and compared to a 2.5-s window without motor imagery in
Bai’s experiment. There is no doubt that repetitive MI is easier to
classify in the ongoing EEG than one brisk imagery event. Therefore,
the slightly higher classification accuracy in Bai’s study is not unex-
pected because of the extensive search for the best electrode location
and frequency band after the calibration step.

Our reported approach is very simple because one standard EEG
(Laplacian) channel at the vertex was used in every subject. But
this also means there is still some potential to enhance the perfor-
mance when the electrode positions used to calculate the Laplacian
EEG derivation are optimised in each subject. From the results ob-
tained it is also very clear, that not the ERD during the imagery
task, but the ERS occurring after the end of the motor task is the
dominant feature for realising an asynchronous brain switch. This
beta ERS after motor imagery displays a relative great intrasubject
stability, even when the recordings are made in intervals of some
weeks (example from 8 sessions see Fig. 6 in Pfurtscheller et al.,
1997). Of interest is also the long-term stability (over years) of
the midcentrally induced beta oscillations during foot motor imag-
ery in a tetraplegic patient (Pfurtscheller et al., 2000b, 2003b,
2008). Both observations underlines the importance of networks
in the foot representation area and/or SMA to generate fre-
quency-stable beta oscillation.

Because of the relative stability of the beta rebound at Cz and its
great similarity during executed and imagined foot movements
(Pfurtscheller et al., 2005b; Müller-Putz et al., 2007) we can spec-
ulate that similar networks became reactive during covert and
overt movements. This means also that movement execution data
may be suitable to train a classifier and to apply this classifier to
motor imagery data even when only one EEG channel is available.
A paper documenting the feasibility of this novel concept is already
in preparation. This approach can be a new strategy in the future to
realize a simple ‘‘brain switch” for healthy subjects with one EEG
channel only. A limitation of the proposed method is the time de-
lay of some seconds due to the beta rebound classification. Re-
cently an information transfer rate of 11 bits/min was reported
for classification of the beta rebound during overt brisk feet dorsi-
flexions (Solis-Escalante et al., 2008). It can be expected that a rate
of �15 bits/min is not unrealistic after some training sessions. For
operating a spelling device this rate is relatively low, but sufficient
for simple switching applications of course.
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