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In this work one single Laplacian derivation and a full description of band power values in a broad fre-
quency band are used to detect brisk foot movement execution in the ongoing EEG. Two support vector
machines (SVM) are trained to detect the event-related desynchronization (ERD) during motor execution
and the following beta rebound (event-related synchronization, ERS) independently. Their performance
is measured through the simulation of an asynchronous brain switch. ERS (true positive rate = 0.74 ± 0.21)
after motor execution is shown to be more stable than ERD (true positive rate = 0.21 ± 0.12). A novel combi-
Event-related (de)synchronization
Asynchronous brain–computer interface
Support vector machines

nation of ERD and post-movement ERS is introduced. The SVM outputs are combined with a product rule
to merge ERD and ERS detection. For this novel approach the average information transfer rate obtained
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was 11.19 ± 3.61 bits/min.

. Introduction

A brain–computer interface (BCI) transforms signals generated
n the human brain into commands that can control devices or
pplications. In this way, a BCI provides a non-muscular commu-
ication channel (Wolpaw et al., 2002). The original goal of BCI
ystems is to help patients with severe motor disabilities and to
mprove their quality of life (Birbaumer et al., 1999; Pfurtscheller
t al., 2005a; Neuper et al., 2003). Nowadays, non-invasive EEG-
ased BCIs are increasing their importance as an alternative control
echnology for able-bodied subjects. Possible applications include
he use of such systems for user authentication through a “pass-
hought”, a subject-specific brain pattern that is used instead of an
lphanumeric password (Thorpe et al., 2005), controlling computer
ames (Müller-Putz et al., 2007a) and multimedia applications
Scherer et al., 2007). Important in all these applications is the suit-
bility of the BCI system for use at home; this requires a sensor
ontage that is easy to apply and a simple strategy to set-up a

lassifier that is able to detect “thought”-related changes in the
ngoing EEG. One way to achieve this is to use a reduced set of
lectrodes.

Motor imagery-based BCIs can be realized either with a large

et of electrodes and highly sophisticated spatial filtering methods
Blankertz et al., 2007) or with a reduced number of subject-
pecific bipolar channels (Leeb et al., 2007). Here we report on a
ovel approach, namely the use of physiological knowledge about
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he dynamics of sensorimotor rhythms in a motor task to classify
ovement-related EEG changes in one single Laplacian derivation.

efore imagery-related data are analyzed, motor execution data are
ubject to detailed investigation. Both functional magnetic reso-
ance imaging (Lotze et al., 1999; Gerardin et al., 2000; Ehrsson et
l., 2003) and EEG (Pfurtscheller and Lopes da Silva, 1999b) stud-
es have shown that similar neural structures are activated during

otor execution and imagination of the same movement without
otor output.
The physiological phenomena of interest are the event-related

esynchronization (ERD) of sensorimotor rhythms, terminated
y a short-lasting beta event-related synchronization (ERS, beta
ebound), observed during both covert and overt limb move-
ent (Salmelin et al., 1995; Pfurtscheller and Lopes da Silva,

999a; Neuper and Pfurtscheller, 2001; Pfurtscheller et al., 2005b),
assive movement (limb movement without any efferent informa-
ion flow) as well as movement induced by functional electrical
timulation (Müller et al., 2003). The beta rebound displays somato-
opically specific patterns and coincides with a reduced excitability
evel of motor cortex neurons (Chen et al., 1998). It might be
elated to a deactivated state of motor cortex networks and/or

resetting mechanism of previously activated networks (Hari,
006).

In this study we address the following questions:
1) Is it possible to detect brisk foot movements in one sin-
gle Laplacian EEG derivation when either ERD or ERS is
considered?

2) Does the performance improve when information about both
phenomena (ERD and ERS) is combined?

http://www.sciencedirect.com/science/journal/01650270
mailto:teodoro.solisescalante@tugraz.at
dx.doi.org/10.1016/j.jneumeth.2008.07.019
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Fig. 1. Labeling procedure and period definition. Logarithmic band power features
were obtained from trials of 10 s length, for ERD classification class 1 (and the inten-
tional control period, ICP) is defined from t = 2.5 to 3.5 s; class 1 for ERS classification
is defined from t = 4 to 5 s. The rest of the time is referred as non-intentional control
period (NICP). Is important to remark that: (i) the first 500 ms after the cue presen-
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. Materials and methods

.1. Data description

EEG recordings from 10 healthy subjects (6 males and 4 females
ged 24.6 ± 1.4 years, median 24 years) were made during the exe-
ution of a cue-based foot movement. Each subject performed three
uns with 30 trials each. All runs were conducted on the same day
ith several minutes in between. In the paradigm, a cross was pre-

ented at t = 0 s; then at t = 2 s, an arrow pointing downwards was
isplayed as a cue and the subject was asked to perform a brisk
ovement (dorsiflexion) of both feet. The movement duration was

bout 1 s. At t = 3.25 s the cue, and at t = 6 s the cross, disappeared.
fter the end of the trial (t = 7.5 s), a random inter-trial interval,
ith a maximum duration of 1 s, was presented. Sixteen Ag–AgCl

lectrodes placed over the sensorimotor area were used to record
onopolar EEG signals (Guger Technologies, Graz, Austria) with a

ampling frequency of 250 Hz. From these data, one small Laplacian
erivation (Hjorth, 1975) at electrode position Cz was computed
sing orthogonal neighbor electrodes (anterior, posterior and both

ateral). Further details about the data collection can be found in
üller-Putz et al. (2007b). The quality of the data was verified with

he computation of the mean and the standard deviation of all
rials in all runs. Three subjects were discarded for further anal-
sis because they displayed no significant post-movement beta
ebound.

.2. Pattern description

Each trial was analyzed using time segments of 1 s length with
n overlap of 500 ms from t = −1 to 9 s relative to the start of a
rial (cue was presented at t = 2 s). The spectral description of each
egment was computed by means of logarithmic band power: (i)
and-pass filtering (62 order FIR), (ii) squaring the value of each
ample, (iii) averaging all samples within the time segment and
iv) applying the logarithm function. A feature vector of 29 features
frequency components from 6 to 36 Hz with a length of 2 Hz and
n overlap of 1 Hz) was used for the full description of the EEG band
ower during motor execution for each 1 s segment.

All patterns were labeled twice for the classification of either
RD or ERS against all other brain activity. The ERD patterns during
ovement execution where labeled as class 1 from t = 2.5 to 3.5 s,

ll others patterns were labeled as class 0. In a similar way, ERS
atterns after movement (t = 4–5 s) were labeled as class 1.

Fig. 1 shows the labeling procedure for each trial.
Information related to motor execution (ERD or ERS) is labeled

s class 1. This period is from now on referred to as intentional
ontrol period (ICP). As a consequence, the rest of the time is
eferred to as non-intentional control period (NICP). Because ERD
nd post-movement ERS share slightly different frequency compo-
ents (Müller-Putz et al., 2007b) and only the later coincides with
he excitability level of motor cortex neurons, ERD and ERS can be
escribed as mutually exclusive.

.3. Pattern recognition

Two independent classifiers were trained for individual detec-
ion of ERD or ERS within their respective ICP. Support vector

achines (SVM) with Gaussian kernels were used for this task. The
VM are binary classifiers that find an optimal hyperplane to sep-

rate classes by maximizing the margin between the hyperplane
nd the patterns that define the border in both distributions (sup-
ort vectors). The library lib-SVM libsvm in combination with the
atlab interface from the BioSig Project (Schlögl et al., 2007) were

sed for the implementation of the SVM.
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ation (t = 2 s) evoke a visual potential and (ii) the transition between ERD and ERS
s considered as NICP for both phenomena. (Up: average EEG, bottom: average band
ower from all bands used as features; both plots show the average (bold line) ± S.D.
ubject s1 is used as example.)

.3.1. Training
The selection of hyperparameteres for the SVM was conducted in

hree steps. First, patterns from one (training) run were used to train
classifier. The performance of this classifier was estimated using
10-fold cross-validation over the training data. This classifier was

ested with the patterns from a second (testing) run. The true pos-
tive rate (TPR) and false positive rate (FPR) from this test were
omputed and stored for parameter selection (the performance of
he classifier depends on the regularization parameter C and the
idth of the kernel �). After testing all combinations of parameters

with logarithmic steps in the range {0:2} for each variable) two
easures of the performance (TPR and FPR values associated with

ach combination of parameters) regarding the analysis of receiver
perating characteristics (ROC) curve information were available.
hese two measurements were combined into a single one using
he Youden index � (Sokolova et al., 2006)

= TPR − FPR, (1)

he parameters Cmax(t) and �max(t), associated with the global max-
mum �, were selected to train a new SVM.

After this step a new SVM was trained with Cmax(t) and �max(t)
nd the patterns from the training run. The SVM model was also
rained for posterior class probability estimation (Chang and Lin,
001; Wu et al., 2004) that uses 5-fold cross-validation imple-
ented in lib-SVM. Only the Gaussian kernel was used with a

omplete search for hyperparameters, as it has been reported that
nder this conditions there is no need to consider SVM with lin-
ar kernels (Keerthi and Lin, 2003). To this end only two runs
re used for parameter selection and training of the classifiers,
he generalization capabilities of the SVM under this scheme were
ested by computing all possible combinations of two runs for train-
ng/testing.
.3.2. Testing
The trained SVMs were used to compute the ERD and the ERS

osterior probabilities for patterns obtained from a validation run
a third run not used to train/test the classifier). This run was
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escribed using the same number of logarithmic band power fea-
ures for time segments of 1 s (250 samples) shifted only one sample
orward, respectively, to the immediate anterior segment. In this
ay the simulation of an online asynchronous system was achieved.

.3.3. Performance measurements
The probability output of the classifiers was additionally post-

rocessed with three simple parameters. One threshold, a dwell
ime and a refractory period (Townsend et al., 2004) were used.
OC analysis over the threshold value was conducted and the val-
es for the dwell time (62 samples) and for the refractory period
500 samples) were picked by hand. These two parameters allow
he system to make fast decisions (dwell time = 248 ms) and lim-
ts the number of detections during ICP interval. Since ERD or ERS

ay be present at any time after the cue presentation, the ICP was
xtended up to 2 s from t = 2.5 to 4.5 s for ERD and t = 3.5 to 5.5 s for
RS. All results reported in this paper were obtained from the ROC
urves as the maximum TPR associated with a FPR ≤ 0.1.

TPR and FPR were computed as detection of events and not on
sample-by-sample basis. A true positive control event (TPIC) is

egarded as any detection (number of samples over the threshold
qual to the dwell time) during an ICP and a false positive control
vent (FPIC) is any detection outside an ICP.

PR = TPIC
NTPIC

(2)

PR = FPIC
NFPIC

(3)

here NTPIC is the number of TPIC (equal to the number of ICP
ince only one detection is allowed) and NFPIC = total number of
amples/(dwell time + refractory period). All runs used a random
nter-trial interval that leads to differences in the number of sam-
les; in this study the values of the number of events are NTPIC = 30
nd NTPIC � 110.

.3.4. ˘-rule for combination of motor-related information
Information about actual movement and its ending was com-

ined to enhance the accuracy and minimize false negatives. Both
lassifiers for ERD and ERS were combined under the following
ssumptions:

1. ERD is present in all motor execution tasks.
. If an ERS is present, it is always after an ERD.
. Classifications of ERD and ERS are independent of each other.

hese assumptions allow us to compute the joint probability
s the product of the independent event probabilities: P(ERD,
RS) = P(ERD)P(ERS), where P(ERD) and P(ERS) are the estimated
robabilities for each event. This combination was called �-rule.
owever, these assumptions make the co-ocurrance of both events

mpossible. This problem is overcome by delaying P(ERD) by 1 s
o match the ICP for ERS during testing and then computing the
roduct of both probabilities. It is important to mention that detec-
ions before t = 3.5 s cannot be regarded as motor activity due to the
elay and the time of the cue. The performance was measured as
escribed above.

.4. ERD/ERS maps
Time–frequency maps were computed for each subject using
he data from all three runs. To obtain an ERD/ERS map an anal-
sis of overlapping frequency bands between 6 and 36 Hz using
bandwidth of 2 Hz was performed. Significant (p < 0.05) band

3
e
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ower decrease or increase (ERD/ERS) with respect to the refer-
nce (t = 0.5–1.5 s) was determined using a bootstrap algorithm.
or further details see Graimann et al. (2002). The mean (X̄) and
edian (X̃) maps were computed to show the general behavior of

he patterns.

. Results

.1. ERD/ERS information

Fig. 2 shows the ERD/ERS maps obtained for all subjects. The
aps show the ERD phenomenon shortly after the cue presentation

t t = 2 s and the presence of a beta rebound (ERS) around t = 4 s. The
ime–frequency localization of ERD/ERS is clearly identified with an
RD in slightly higher frequency components than ERS, matching
he definitions of ICP for training and testing. From the analysis of
hese maps, few frequency components could be selected to tune
he pattern description for each individual subject. In this work
wide pattern description and no feature selection were used to

et the SVM learn the differences between ERD/ERS and EEG for
very subject and to allow them to automatically adjust to the intra-
ubject variability (non-relevant features are given a small weight
uring maximization of the margin for the SVM).

Fig. 3(a) shows the probability output for a single trial with clas-
ifiers based on ERD (CP(ERD)) and ERS (CP(ERS)). The signal from
he CP(ERS) is smooth while the output for CP(ERD) presents a large
ariability along the trial length. Both outputs show some reactiv-
ty to patterns from other segments (brain activity), specially for
he CP(ERD) in the 500 ms interval after the cue presentation due
o the visual evoked potential. Fig. 3(b) shows the result of apply-
ng the �-rule to the same trial (Fig. 3(b) is the combination of
he probabilities in Fig. 3(a)). The reactions in other time segments
re minimized and the probability at the ICP is the same as CP(ERD)
odulated in amplitude by CP(ERS).

.2. Performance

Table 1 shows the TPR and FPR values (mean ± S.D.) obtained
rom all combinations of train/test/validate runs for each subject
nd the grand average for these combinations. The highest indi-
idual performance is achieved in all cases for ERS classification
ith TPR values over 0.52 and a grand average of 0.74 ± 0.21. A two

ailed t-test for repeated measurements was applied to the results
f each subject (combinations of train/test/validate) showing no
ignificative differences (p ≥ 0.05) for the combination of classi-
ers with the �-rule (C�) and the ERS classification (CP(ERS)). Fig. 4
hows an example of the ROC analysis and the selection of TPR and
PR.

It was found that for ERD values between 0.20 and 0.30 (sub-
ects s2, s3, s4 and s7), C� presents a slight improvement. This
endency was observed in all cases where a particular combina-
ion of train/test/validate runs achieved similar values. However, all
hose changes are below 0.03 and are not significant (p ≥ 0.05) in all
ases except for s7, where the improvement is significant (p = 0.03)
nd around 0.10.

In the cases of CP(ERS) and C� the maximum time for detec-
ion is t = 3.5 s relative to the cue and the fastest detection possible
s t = 1.748 s (ICP start + dwell time = 1.5 s + 0.248 ms). This inter-
al allows an information transfer rate (ITR) between 17.14 and

4.32 bits/min (when TPR = 1) using the definition given by Wolpaw
t al. (1998):

= log2 N + P log2 P + (1 − P)log2
1 − P

N − 1
(4)
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ig. 2. ERD/ERS maps. The relevant changes in amplitude of each band are describe
ean and median of all ERD/ERS maps, respectively.

here P is the classification accuracy and N the number of control
tates. This definition was deduced from the mutual information
MI) formulation and then simplified for equal probabilities and

qual performance of the classifiers. These conditions do not hold
n current systems, making this measurement not suitable for real
ife applications. Fatourechi et al. (2006) have recently applied the
efinition of mutual information for an asynchronous BCI with the
ddition of information related to the differences in probabilities

I

ig. 3. Single trial ERD/ERS classification. The probability output from the SVM and indivi
scillations or variability in the resulting output are due to the ERD classification. Note th
otor execution.
ach map for individual subjects (s1–s7), the last two maps (X̄ and X̃) represent the

nd the performance of the classifier during NICP, showing that ITR
an be formulated for an asynchronous BCI.

For this ITR, the formulation used in this results is
(X, Y) = −
2∑

j=1

P(yj)log2 P(yj) +

⎛
⎝

2∑
i=1

2∑
j=1

P(xi)P(yj|xi)log2 P(yj|xi)

⎞
⎠

(5)

dual event classification (a) for a single trial and the �-rule (b) is shown above. The
e reduction of ‘noise’ in the probability output of time segments not related with



152 T. Solis-Escalante et al. / Journal of Neuroscience Methods 175 (2008) 148–153

Table 1
Individual performance

ID CP(ERD) CP(ERS) C�

TPR FPR TPR FPR TPR FPR

s1 0.34 ± 0.05 0.08 ± 0.01 0.97 ± 0.05 0.03 ± 0.02 0.92 ± 0.07 0.03 ± 0.03
s2 0.28 ± 0.13 0.08 ± 0.01 0.61 ± 0.10 0.07 ± 0.02 0.62 ± 0.14 0.07 ± 0.02
s3 0.23 ± 0.17 0.05 ± 0.03 0.94 ± 0.05 0.04 ± 0.04 0.95 ± 0.05 0.04 ± 0.02
s4 0.20 ± 0.08 0.07 ± 0.03 0.83 ± 0.12 0.04 ± 0.03 0.86 ± 0.14 0.06 ± 0.02
s5 0.12 ± 0.12 0.05 ± 0.03 0.54 ± 0.14 0.07 ± 0.02 0.49 ± 0.19 0.08 ± 0.02
s6 0.11 ± 0.08 0.05 ± 0.04 0.79 ± 0.12 0.08 ± 0.01 0.73 ± 0.13 0.07 ± 0.03
s7 0.22 ± 0.14 0.08 ± 0.02 0.52 ± 0.20 0.06 ± 0.02 0.64 ± 0.17 0.07 ± 0.02

X̄ 0.21 ± 0.12 0.06 ± 0.03 0.74 ± 0.21

Fig. 4. TPR and FPR. A ROC curve for one of the combinations train/test/validate for
subject s1 is presented as an example of the performance and the selection of results
in this paper (operation point). After the ROC analysis the results are selected as the
maximum TPR possible with a maximum of 0.1 FPR. In this case, and in general both
r
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esults for CP(ERS) and C� are the same, however, the classifier performance is clearly
hanged. This can be seen from the shape of the ROC curves, additional values of
rea under ROC curve and changes in the maximum in the Youden index (�).

here X is the transmitter (in this case the EEG and brain states),
the receiver (classification system), the indices i and j regard the

tates: 1 = intentional control and 2 = no intentional control, P(yj) is
he probability of the system (classifier) to generate an output of the
tate yj (equal to 0.5 for unbiased classifiers), P(xi) is the class prob-
bility (P(x1) � P(x2)) and P(yj|xi) is the probability of classifying as
an event i.

Table 2 shows the mean values of ITR with the new formulation

or each subject and the classifiers based on ERS and the �-rule.
ll values of ITR are above 8.00 bits per minute (bits/min) for an
verage detection time of 2.6 s and individual TPR and FPR values.

able 2
nformation transfer rate (bits/min) obtained with the classifiers: CP(ERS) and C�

D ITRP(ERS) ITR�

1 18.57 15.5
2 8.22 8.24
3 16.49 16.65
4 12.10 12.07
5 8.15 8.25
6 9.79 9.20
7 8.85 8.45

¯ 11.74 ± 4.22 11.19 ± 3.61

s
m
q
T
p
fi
g

t
c
t
o
p
e
i
e
t

0.06 ± 0.03 0.74 ± 0.20 0.06 ± 0.03

. Discussion

Even though no significative differences were found between
P(ERS) and C� (see Section 3.2), it can be speculated that there is
onsiderable potential of improvement in single trial classification
ith this combination rule and when intra-individual optimization

f the dwell time and refractory period is performed.
The time–frequency maps in Fig. 2 display some degree of inter-

ubject variability. Besides this variability, a dense ERS is present in
ll subjects in contrast to a sparse ERD in some subjects. These find-
gs are in accordance with the performance results (Table 1) where
he highest performance for individual ERD/ERS pattern detection
s obtained with the classifier based on ERS.

The SVM showed a stable performance with the training/testing
cheme presented here. This results were expected although it has
een reported (Blankertz et al., 2007) that the inclusion of more
ata (old and new) improves the performance of the classifier. In
his work all data were recorded within the same day and a robust
lassifier was used. The high dimensionality of feature vectors does
ot represent a problem. Parameter selection for the SVM is a time
onsuming task.

Two recently published reports also present results on the
esearch and development of BCI systems based on the dynamics of
rain oscillations. In Fatourechi et al. (2008) a fully automated self-
aced BCI is proposed. The authors described a method for feature
xtraction, classification and optimization to detect a cue-based
nger flexion. Features were extracted from movement-related
otentials and power changes in mu and beta rhythms. Classifica-
ion was achieved with a set of SVM and a hybrid genetic algorithm
o optimize the system parameters. With 18 bipolar channels the
erformance achieved was around TPR = 0.56 in average for the
nalyzes made in four healthy subjects.

Bai et al. (2008) reported on a beta-rhythm BCI where six healthy
ubjects performed several sessions of wrist motor execution and
otor imagery. EEG was recorded using 29 electrodes and 16 fre-

uency bins for band power computation for feature selection.
hereafter with a single Laplacian channel and a subject-specific
ower value the motor execution and motor imagery were classi-
ed, respectively. All subjects achieved successful control of a video
ame with an information transfer rate between 10 and 12 bits/min.

The methods presented in this work and the novel combina-
ion of information with the �-rule achieved higher results in the
lassification of motor execution and information transfer rate in
he offline analyses even though no optimization of the features
r the patterns were applied. In this sense, our approach presents

romising results for the use at home of a BCI system, using five
lectrodes in one single channel and a general paradigm for train-
ng the classifiers. Moreover, a similar set of features was used for
very subject and just two runs (roughly 15 min) are needed to find
he parameters of the classifier. Possible applications are games like
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he one presented in Bai et al. (2008) or Müller-Putz et al. (2007a).
mprovements in the performance of the methods described here
re expected with the addition of parameter optimization methods.

. Conclusions

It was demonstrated that a single Laplacian derivation is suitable
or detection of brisk foot movement in ongoing EEG. For the first
ime information related to brain signal dynamics during and after

otor execution was combined to improve the performance of sin-
le trial classification. An acceptable transfer rate can be achieved
fter just three training sessions (two for set up the classifier and
ne for validation). Future work will include feature selection and
he optimization of the dwell time and refractory period and test
n motor imagery data.
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