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Abstract—The step away from a synchronized or cue-based
brain–computer interface (BCI) and from laboratory conditions
towards real world applications is very important and crucial
in BCI research. This work shows that ten naive subjects can
be trained in a synchronous paradigm within three sessions to
navigate freely through a virtual apartment, whereby at every
junction the subjects could decide by their own, how they wanted
to explore the virtual environment (VE). This virtual apartment
was designed similar to a real world application, with a goal-ori-
ented task, a high mental workload, and a variable decision period
for the subject. All subjects were able to perform long and stable
motor imagery over a minimum time of 2 s. Using only three
electroencephalogram (EEG) channels to analyze these imagina-
tions, we were able to convert them into navigation commands.
Additionally, it could be demonstrated that motivation is a very
crucial factor in BCI research; motivated subjects perform much
better than unmotivated ones.

Index Terms—Brain–computer interface (BCI), electroen-
cephalogram (EEG), motivation, motor imagery, navigation,
neutral cue, virtual environment (VE), virtual reality (VR).

I. INTRODUCTION

VOLUNTARY mental activity (e.g., a sequence of thoughts)
modifies bioelectrical brain activity and consequently the

electroencephalogram (EEG). A brain–computer interface
(BCI) is able to detect such changes in the ongoing EEG and
translates different brain states into operative control signals.
Therefore, BCI technology can establish a direct communica-
tion channel between the human brain and a machine which
does not require any motor activity [1], [2].

A BCI-system is, in general, composed of the following com-
ponents: signal acquisition, preprocessing, feature extraction,
classification (detection), application interface, and feedback. It
is a closed-loop system with feedback as one important com-
ponent. Depending on whether the BCI-application is to estab-
lish communication in patient with severe motor paralysis, or
to control a neuroprosthesis, or to perform neurofeedback, in-
formation is visually feed back to the user about success or
failure of the intended act. In previous works, it could already be
demonstrated that virtual reality (VR) can be used as a feedback
medium [3] and it is possible to control a virtual environment
(VE) with a BCI [4]–[7].

Manuscript received September 24, 2006; revised April 25, 2007.
R. Leeb, C. Keinrath, R. Scherer, and G. Pfurtscheller are with the Laboratory

of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz Univer-
sity of Technology, 8010 Graz, Austria.

F. Lee and H. Bischof are with the Institute for Computer Graphics and Vi-
sion, Graz University of Technology, 8010 Graz, Austria.

Digital Object Identifier 10.1109/TNSRE.2007.906956

The Graz-BCI is based on the analysis and classification of
sensorimotor EEG patterns generated during the imagination
of specific movements (motor imagery of left and right hand)
[8], [9]. EEG-electrodes are placed over the sensorimotor hand
and foot representation areas, and the dynamics of sensorimotor
rhythms are analyzed in real-time to extract a control signal [10].
Motor imagery can be described as a mental rehearsal of a motor
act without any overt motor output [11]. Similar brain regions
are activated during motor execution and motor imagery, how-
ever, the performance is blocked at some corticospinal level.
Functional brain imaging studies showed that changes in the me-
tabolism revealed similar activation patterns during motor im-
agery and actual movement [12]. Therefore, motor imagery has
been shown to represent an efficient mental strategy to operate
a BCI [2].

The aim of the study is threefold. First, to overcome the limi-
tations of the laboratory conditions towards real world applica-
tions, whereby subjects can act goal-orientated with a high cog-
nitive load and without any time constraints to decide whatever
and whenever they want. Second, to demonstrate that motiva-
tion is a very crucial component in BCI research and influences
the classification results. Third, to use long-lasting imagery pat-
terns, instead of single classification points, that can be used by
the subjects in the future for brain-switch like applications.

II. METHODS

In this section, first the data acquisition of the various
biosignals and the applied EEG artifact reduction method are
described. Next, the recorded screening data (without feedback)
is analyzed to obtain subject specific features which could be
used in the following steps to give cue-based feedback. After-
wards the subjects were confronted with a VR feedback and
variable trial length, thereby the subjects could decide by their
own how they wanted to explore the VE. Finally, a cue-based
session had been performed.

A. Subjects and Data Acquisition

Ten naive subjects (six male and four female, age
years) participated in this study. The subjects were right handed,
had normal or corrected to normal vision and got paid for at-
tending to the experiments. Each volunteer was seated in an
armchair, fixating on an LCD computer monitor, placed approx-
imately 1 m in front at eye level.

An electrode cap (Easycap, Germany) was fitted to the
subject’s head, and the EEG electrodes (Ag/AgCl electrodes)
were placed according to the extended 10/20-system [13] [see
Fig. 1(a)]. In case of the initial screening 22 EEG channels
were recorded, but in all feedback sessions the number was
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Fig. 1. (a) Placement of the 22 EEG and (b) the 3 EOG electrodes. For both, the
reference electrode was placed at the left and the ground electrode at the right
mastoid. (c) Location of the EMG electrodes on the right hand placed over the
musculus extensor digitorum and the musculus flexor digitorum superficialis;
for the left hand the same positions have been used. The arrows between the
EEG electrodes show the analyzed bipolar derivations (�! 	), “a” stands for
anterior-central, “p” for central–posterior, and “l” for the large distance between
the bipolar electrodes (anterior–posterior).

reduced to three bipolar recordings (C3, Cz, and C4). The
recordings had a dynamic range of , were analog
band pass filtered (0.5–100 Hz) and notch filtered at 50 Hz. In
addition to the EEG channels, the electrooculogram (EOG) was
recorded with three monopolar electrodes [see Fig. 1(b)] using
the same settings, but with a dynamic range of . Four
electromyogram (EMG) channels were recorded, whereby the
electrodes were placed over the musculus extensor digitorum
and over the musculus flexor digitorum superficialis of the
left and the right arm, with reference on the back of the right
hand [see Fig. 1(c)]. The EMG was amplified and integrated
over 10 ms with a separated EMG amplifier (Raich, Austria).
All biosignals were sampled with a sampling frequency of

.
The recording system consisted of two 16-channel biosignal

amplifier (g.tec, Guger Technologies OEG, Graz, Austria), one
data acquisition cards (E-Series, National Instruments Corpo-
ration, Austin, TX) and a standard personal computer running
Windows XP operating system (Microsoft Corporation, Red-
mond, WA). The recording was handled by rtsBCI [14], based
on MATLAB 7.0.4 (MathWorks, Inc., Natick, MA) in combina-
tion with Simulink 6.2, Real-Time Workshop 6.2 and the open
source package BIOSIG [15].

B. Eye Movement Artifact Reduction

At the beginning of each session, a recording of approxi-
mately 5 min was performed to estimate the EOG influence and
to calculate the correction coefficients. The recording was di-
vided into three blocks: 1) 2 min with eyes open (looking at a
fixation cross on the screen), 2) 1 min with eyes closed, and 3)
1 min with eye artifacts. The artifact block was divided in four
sections (15 s artifacts with 5 s resting in between) and the sub-
jects were instructed via written text on the monitor to perform
either eye blinking, rolling, up–down, or left–right movements.
At the beginning and at the end of each task, a low and high
warning tone, respectively, were presented.

Fig. 2. (a) Timing of the movement imagery task (screening). Cue stimulus
between second 3 and 4.25 in form of an arrow (either pointing to the left or
right) instructs the participant to imagine the desired movement. (b) Timing of
the cue-based feedback experiments and principle of the smiley paradigm.

Regression analysis was used to reduced the influence of eye
movements on the EEG [16], therefore, the block 3) was used
to setup the correction coefficients. It can be assumed that the
recorded EEG is a superposition of the real EEG signal and
the three spatial EOG components (horizontal, vertical, and
radial). In this study, the EOG activity was recorded with three
monopolar electrodes [see Fig. 1(b)], from which the horizontal
and the vertical EOG component can be derived. Accordingly,
the corrected EEG can be computed by subtracting the EOG
components . The correction coefficient is
calculated by computing the autocorrelation matrix of the
bipolar EOG channels and the cross-correlation between
the recorded EEG and EOG

(1)

The correction coefficients were used in all following experi-
ments on that day to reduce the influence of the EOG artifacts
in the EEG recordings.

C. Initial Screening, Training Without Feedback

Each naive subject had the task to perform kinesthetic motor
imagery (MI) [17] indicated by the visual cue on the monitor
[see Fig. 2(a)]. Prior to the first motor imagery training the sub-
ject executed and imagined different movements for each body
part and selected the one which they could imagine best (e.g.,
squeezing a ball or pulling a brake). The cue-based experimental
paradigm consisted of two imagery classes: motor imagery of
left hand and right hand. Each subject participated in two ses-
sions recorded on two separated days within two weeks. Each
session consisted of six runs with ten trials each and two classes
of imagery. This resulted in 20 trials per run and 120 trials per
session. Data of 120 repetitions of each MI class were avail-
able for each person in total. Each trial started with a fixation
cross and an additional short acoustic tone (1 kHz, 70 ms).
Some seconds later a visual cue (an arrow pointing either to
the left or right, according to the requested class) was presented
for 1.25 s. Afterwards the subjects had to imagine the corre-
sponding hand movement over a period of 4 s. Each trial was
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followed by a short break of at least 1.5 s. A randomized time
of up to 1 s was added to the break to avoid adaptation [see
Fig. 2(a)]. Twenty-two monopolar EEG channels (reference left
mastoid, ground right mastoid) were recorded [see Fig. 1(a)].

D. Signal Processing: Feature Extraction and Classification

Band power (BP) features were estimated from the ongoing
EEG by digitally bandpass filtering the recordings (Butterworth
IIR filter of order 5), squaring and averaging the samples over
the past second. Finally, the logarithm was computed from this
time series. For classification between the two motor imageries,
Fisher’s linear discriminant analysis (LDA, [18]) was applied to
the BP estimates (sample-by-sample). In the Graz-BCI the fea-
ture extraction and classification is performed with the sample-
rate of the data acquisition (250 Hz). The monitor update rate
of the feedback is reduced to 25 Hz.

In contrast to other BCI applications [2], [8], [9], not only
the classification error at one specific time point, but the per-
formance over a time interval was investigated. Therefore, the
LDA output (with for left class, for right class) was in-
tegrated over the time interval of interest (N samples), resulting
in an integrated classification output (iCO). Analogical to the
standard classification error based on the LDA output an inte-
grated classification error (iCE) based on the iCO could be cal-
culated. In the presented offline optimization this iCE was cal-
culated over the central most interesting part of the feedback
time [from second 4.5 to 6.5, see Fig. 2(a)]. During the online
experiments the iCO was calculated over the past 2 s and used
to control the feedback.

E. Subject-Specific Electrode Selection and Feature
Optimization

The philosophy of the Graz-BCI is to use as few as possible
electrodes for online experiments, which makes the BCI more
comfortable and easier to apply for subjects, and especially for
patients. Therefore, the precondition was to use only three bi-
laterally arranged bipolar channels over the sensorimotor areas,
corresponding to electrode positions C3, Cz and C4 (according
to the 10/20-system), which could be extracted out of the 22
channel screening data [see Fig. 1(a)]. For each of the three
electrode positions (C3, Cz, and C4), three different pairs could
be generated, two of them with a small distance between the
bipolar electrodes (anterior–central, central–posterior) and one
with a large distance (anterior–posterior). Therefore, nine pos-
sible channel combinations were analyzed separately.

For each of the three bipolar channels, BP features in 72 fre-
quency bands were calculated—namely 21 overlapping narrow
bands (width 2 Hz, overlap 1 Hz), 19 overlapping bands (width
4 Hz, overlap 1 Hz), 17 overlapping bands (width 6 Hz, overlap
1 Hz) and 15 overlapping broad bands (width 8 Hz, overlap
1 Hz) between 8 and 30 Hz—yielding to a total of 216 dif-
ferent BP features. These features were fed into a feature se-
lection algorithm (sequential floating forward selection, SFFS
[20]), which selected at most 6 features out of these 216. The
principle of the SFFS is to first search for the most important fea-
ture and adds this to the list of selected features. Afterwards the
next important feature in combination with the already chosen

ones is searched and so one. Early selected features can also be
removed from the list, if a combination of later selected features
achieves better results. This principle is continued till the max-
imum number of features is reached. Basically, a feature selec-
tion algorithm is an optimization technique that attempts to se-
lect a subset of the given features that leads to the maximization
of some criterion function. The fitness function used here was
the iCE (calculated from second 4.5 to 6.5, see Section II-D). To
estimate the separability of the two-class MI data with the se-
lected BP features the LDA discriminant function was trained
with a 10 10 cross-validation. This optimization procedure
was performed for each of the nine possible channel combina-
tions and the combination with the best performance was chosen
for further feedback experiments.

F. Cue-Based Feedback Training With Smiley

For the online feedback experiments, only three bipolar elec-
trode pairs (C3, Cz, and C4, based on the results of the offline
analysis, see Section II-E) were recorded apart from the EOG
and EMG. Electrode position served as EEG ground. After
the initial recording and the calculation of the EOG correction
coefficients, four runs have been performed in each feedback
session, whereby each run consisted of twenty trials for each
type of motor imagery. As feedback a smiley was used. At the
beginning of each trial (second 0) the feedback, a gray-colored
smiley, was positioned in the center of the screen [Fig. 2(b)]. At
second 2 a short warning beep (1 kHz, 70 ms) was given. The
cue was presented from second 3 to 7.5. According to the cue,
the subjects were given the task to move the smiley towards the
left or right side by imagining left or right hand movements, re-
spectively. During the feedback period the smiley changed to
the color green when moved in the correct direction, otherwise
the color was red. The distance of the smiley from the origin
was set according to the integrated classification output over the
past two seconds (see Section II-D). Furthermore, it was also
mapped to the curvature of the mouth causing the smiley to be
happy (corner of the mouth upwards) or sad (corner of the mouth
downwards) according to correct classification or misclassifica-
tion [see Fig. 2(b)]. At second 7.5 the screen was blanked and
a random interval between 1.0 and 2.0 s was added to the trial.
The subject was instructed to keep the smiley on the correct side
for as long as possible and therefore to perform the imagery as
long as possible. If the subjects could achieve a stable or contin-
uously improving result with an iCE error of below 25%, only
two cue-based feedback sessions were performed, otherwise an
additional session was performed to give the subject an oppor-
tunity for further training.

G. Classifier Update

After each feedback session, two new classifiers were calcu-
lated based on the record ed data. The first classifier used the fea-
tures (frequency bands) already selected and merely updated the
LDA weights. The second classifier was calculated after a new
feature selection optimization was performed (see Section II-E).
The updated classifier or the optimized classifier, respectively,
was only used in the next session if the integrated classification
error could have been decreased significantly by 5%.
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Fig. 3. (a) View into the virtual apartment, with one possible pathway plotted
in white. Target room is marked with a small flag pole (in this example, the
room at the upper end of the apartment). (b) All possible target rooms have
been numbered. Entrance point is marked with a dot and the doors with thick
lines. (c) First-person view of the virtual apartment with two arrows indicating
the possible directions to go (“neutral cue”). (d) Size of the arrow indicates the
BCI classification output.

H. Exploring Virtual Environments: Desktop-VR “TFT”

The next important step was to use a more flexible paradigm
instead of the trial-based analysis (see Section II-F, cues in-
dicating the type of imagination and predefined short analysis
windows, e.g., 4-s). In this paradigm, only the start of the deci-
sion period was indicated. The subject could decide for himself
which motor imagery he wanted to perform and therefore which
direction he wanted to select. The duration was variable and de-
pended only how fast or slow the user wanted to perform the
decision.

Therefore a virtual apartment [see Fig. 3(a)] was modeled and
used as virtual reality feedback controlled by the BCI [5], [6].
The subjects were placed in front of a normal TFT monitor and
had the opportunity to walk through this virtual apartment. The
creation of the 3-D virtual environment consists of two consec-
utive steps: first the creation of a 3-D model of the scene and
second the generation of a VR application which controls and
animates the modeled scene. In our experiments, the 3-D mod-
eling software package Maya (Alias, Toronto, ON, Canada) was
used for creation and Qt application framework (Trolltech, Oslo,
Norway) for the visualization and animation (collision detec-
tion). The communication between the BCI and Qt was realized
using the user data protocol (UDP).

In this virtual apartment, the subject could freely decide
where to go, but walking was only possible along predefined
pathways through the corridors or rooms. At every junction the
subject could decide to go in one of the two directions which
were indicated by a “neutral” cue consisting of two arrows [see
Fig. 3(c)]. The subject received feedback by viewing the size
of the arrows [update time 40 ms, see Fig. 3(d)] which were
modulated depending on the BCI classification output (iCO).
The analysis was performed till the iCO over the past 2 s was
1 (only one class was detected in this period). In this case,
the corresponding arrow was huge and the subject was turned
to the right/left/straight. Afterwards the system automatically

guided the subject to the next junction. Additionally a small
map (bird-view) of the apartment was inserted in the bottom
right corner of the display.

As stated above, a “neutral cue” was used to indicate the
starting point of the decision period (similar to the cue-based
BCI), but the neutral cues were completely embedded in the
given task and the duration of the decision periods (similar to
trials) was variable, depending only on the performance of the
subject. If the subject was able to immediately focus on one
thought for at least 2 s, the intended cue was selected, other-
wise it could take longer to select a cue and therefore the trial
time was very variable.

Each subject performed 12 runs with variable duration in the
virtual apartment, but all runs started at the same point (entrance
door). During the first run, no instructions were given to the
subjects, so they could walk freely through the apartment for
5 min to become familiar with the VE. In all other runs, the sub-
jects were instructed to go to a predefined target room. A small
flag pole on the map indicated the destination, which should be
reached by using the shortest way through the maze like apart-
ment [see Fig. 3(a)]. In the first two runs, only one target was
given, but in further runs the number of targets was increased
and only one target was visible each time. If this target was
reached, either the follow-up target was inserted or the run was
finished. Each run was limited to 5 min. In the last six runs,
the subjects had to draw their chosen path on a printout of the
apartment before going there. The performance error can be cal-
culated by dividing the number of wrong decisions by the total
number of junctions.

I. Exploring Virtual Environments: High-Immersive VE
System “IVE”

The same experiment as in Section II-H was carried out in an
immersive virtual environment (iVE), whereby the apartment
was projected on a single back-projected stereoscopic wall (di-
mensions 3 2.4 m, Barco Galaxy, Barco N.V., Kortrijk, Bel-
gium). The subject had to wear shutter glasses (CrystalEyes,
StereoGraphics Corporation, San Rafael, CA) to see the two
separate stereoscopic images generated for each eye of the ob-
server. The basic idea is to let the user become immersed in a
3-D scene [21]. The tasks given to the subject were the same
as in Section II-H, except that different target rooms had been
chosen.

J. Concluding Feedback Session With Smiley

Finally, one cue-based smiley feedback session (same as in
Section II-F) was performed with each subject, to see if any
influence on the performance after the VR applications could
be found.

K. Statistical Analysis

Both the performance error (in percent) in the navigation ex-
periments and the integrated classification error (in percent) in
the cue-based feedback experiments, describe the ability of the
subject to keep the correct imagination over a defined period of
two seconds. For each subject error from the following sessions
has been used in the analysis.
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• scr: The screening session cb_a and cb_b: the last two
cue-based sessions before the virtual feedback (either
cb 1 & cb 2 or cb 2 & cb 3, depending on the subject, see
Table II).

• TFT and iVE: The error of the two sessions with virtual
feedback.

• cb_c: The final cue-based session (either cb 5 or cb 6, de-
pending on the subject, see Table II).

As statistical analysis an ANOVA with repeated measurement
design was carried out to examine the effect of performance over
the sessions . The results of the Kolmogorov–Smirnov
test confirmed, that the error rate (in percent) of all measure-
ments is normal distributed (exact p values between
and ). The Greenhouse-Geisser epsilon correction
of degrees-of-freedom was applied if required. Posthoc paired
samples t tests with a conservative Bonferroni correction were
used to isolate significant differences.

III. RESULTS

In the results section, the artifacts (eye movements and EMG)
are first analyzed, then afterwards the subject-specific feature
selection and the results of the cue-based training are presented.
Next, the outcomes of exploring the virtual apartment are de-
scribed, before the statistical analysis is performed.

A. Eye Movement Artifact Reduction

The EOG regression method eliminates the EOG in the EEG
and hence modifies the EEG, therefore the data has been visual
inspected twice (before and after regression) by an expert and
trials containing artifacts were marked. Without EOG correc-
tion, the number of trials containing artifacts was in the range
of 20%, after applying EOG regression nearly all EOG artifacts
were removed and the number or trials containing artifacts could
be reduced to less than 9%. These results are in the line with the
outcome of Schlögl et al. [16] where this regression method has
been proposed.

B. EMG Analysis

The maximum amplitude of all recorded four EMG chan-
nels during the feedback time for all subjects is between 2.28
and 24.28 . Slightly dif-
ferent EMG electrodes placements achieved varying values in
some subjects. Nevertheless the activity is much smaller com-
pared to execution of movements. An example of such an EMG
recording is given in the upper panel of Fig. 4. The maximum
EMG activity occurring during the feedback time is marked
with a horizontal line. For comparison reasons, an example of a
movement execution, which was recorded only for demonstra-
tion purposes, is given in the lower panel of Fig. 4. The ampli-
tude of the EMG recording during the imagination is 20 times
smaller than during execution.

Furthermore, the EMG has been used in an offline simulation
to classify the trials. Instead of the six EEG features, the power
(averaged over the past second, like the EEG band power) of
the four EMG channels (two on the left and two on the right
hand) was analyzed. A LDA discriminant function was trained
with a 10 10 cross validation. The resulting classification error

Fig. 4. Example of the EMG recorded over the musculus extensor digitorum of
the left hand during the imagination (upper panel) and execution (lower panel)
of a left hand movement of one run of subject z22. In each panel, the upper
curve shows the mean and the lower curve the SD over the trial time (cue at
second 3). Please note that the scaling in the imagination panel is only a tenth
of the amplitude in the execution panel! Level of the maximum occurring EMG
activity during the feedback period is marked with a horizontal dashed line and
a circle.

for this two-class problem was 40.85% 4.11%. No significant
correlation (Pearson’s correlation ) between the EEG
classification error and the EMG classification error could be
found.

C. Subject-Specific Electrode and Feature Selection

The best symmetric electrode location for each subject in
terms of the highest classification accuracy is presented in
Table I. The most reactive BP features for these electrode
locations are given beside them. As mentioned above in
Section II-E, the SFFS feature selection algorithm found the
best feature subsets consisting of one to six elements. The
alpha and upper beta band of electrodes C3 and C4 contributed
substantially to classification.

As characteristics of the offline separability of the screening
data, the commonly used classification error (err), the time point
of the lowest error and the iCE over the central part of the
feedback time from second 4.5 to 6.5 are presented in Table II.
Various window sizes (1 s, 1.5s, 2s, 2.5s, and 3s) had been ap-
plied for the iCE during the electrode selection and feature op-
timization process. A length of 2 s was found to be suitable for
all subjects.

D. Cue-Based Feedback Training With Smiley

Although some subjects did not have a good performance
during the screening process, no subject was removed from the
study. Unfortunately one subject had no time to continue the
feedback training after the first session. Therefore no further
data is available for subject z17. The remaining nine subjects
performed either two or three cue-based feedback sessions de-
pending on their performance. In Table II the online results
(classification error, iCE…) are given. The performance of sub-
ject z16 and ad1 was initially so poor, that an additional training
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TABLE I
RESULTS OF THE OPTIMIZATION FOR EACH SUBJECT: BEST ELECTRODE

LOCATIONS AND CORRESPONDING FREQUENCY BANDS ARE PRESENTED

(“A” STANDS FOR ANTERIOR–CENTRAL, “P” FOR CENTRAL–POSTERIOR,
AND “L” FOR LARGE DISTANCE BETWEEN THE BIPOLAR ELECTRODES

ANTERIOR-POSTERIOR)

run without feedback was performed to help the subject to in-
crease their performance. If necessary, the classifier was up-
dated after each session (see Section II-G). The information con-
cerning which classifier (updated, optimized or old existing one)
was selected for the next session is given in the last column of
Table II.

The subjects can be ordered according to their performance
into four groups: 1) two subjects (ad1 and ac9) performed very
poorly, 2) two subjects (aa8 and z15) performed acceptably, 3)
three subjects (x20, x21, z22) performed well, and 4) two sub-
jects (ad2 and z16) performed excellently. Every subject (except
the very poor ones) obtained better results with feedback com-
pared to the screening sessions. All good subjects could improve
their performance with the number of cue-based feedback ses-
sions and the poor subjects could achieve stable results. The on-
line performance of one subject is displayed in Fig. 5.

E. Exploring Virtual Environments: Desktop-VR (TFT) and
High-Immersive System (iVE)

An example of the planned and the chosen pathway of subject
z16 is given in Fig. 6. The first junction was passed correctly, but
at the second junction a mistake occurred, the third and fourth
crossings were performed correctly to return to the original path
and the subject entered the target room. Therefore, one wrong
decision and three correct decisions were performed in this run.
Dividing the number of wrong decision by the total number of
junctions results into the performance error of the VR task (see

TABLE II
CLASSIFICATION ERROR (ERR), TIME POINT OF THE LOWEST ERROR (t ),

INTEGRATE CLASSIFICATION ERROR OVER THE FEEDBACK TIME (ICE), TIME

OF MINIMAL ICE (t ) AND CLASSIFIER CHANGE (“�” NO CHANGE, “O”
OPTIMIZED, OR “U” UPDATED CLASSIFIER USED) IS SHOWN FOR EACH SUBJECT

AND SESSION (“SCR” INDICATES SCREENING, “CB” CUE BASED FEEDBACK,
“TR” TRAINING WITHOUT FEEDBACK)

Table III). Differentially to the previous examples the number
of trials/decisions in a run varied depending on the chosen path
(between 2 and 38). The mean error rates for all subjects were
between 7.0% and 33.3%, nevertheless a large number of runs
(39) had been performed without a single wrong decision. All
subjects (except aa8) improved their performance from TFT to
iVE by 3.5% in mean. Furthermore, the analysis was more de-
manding, since one wrong decision required several correct de-
cisions to reach the same goal. The time necessary for a decision
at the junctions varied for all subjects between 2.06 and 20.54 s,
with a mean SD of 2.88 0.52 s (see last column in Table III).

F. Statistical Analysis

The summary of all experiments is given in Table IV,
therefore the performance error in the navigation experiments
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Fig. 5. Online performance of subject x20, session cb 2. Classification error is
plotted in thin and the integrated classification error in bold. Cue is indicated
with a vertical line and the feedback period with a rectangle. Minimal errors, as
given in Table II are marked with circles.

Fig. 6. (a) Scanned drawing of the planned pathway of subject z16. (b) Actual
performed pathway. Target room is indicated with the number 1. Crossings are
marked with a “�.” Entrance point into the apartment is on the bottom of the
figure, marked with a dot.

(see Table III) and the integrated classification error in smiley
feedback experiments (see Table II) have been combined.
The performed ANOVA with repeated measures revealed a
significant difference in the error (percent) over the sessions
(F1.657,13.253 4.183; ). Post hoc t tests for paired
samples showed significant differences between the screening
session (scr) and the sessions with virtual reality feedback
(TFT: ; and iVE: ;

). Additionally, significant differences between the
iVE session and the first (cb_a: ; ) as
well as the second cue-based session (cb_b: ;

) could be detected. A significant difference was also
found between the final cue-based session cb_c and the iVE
session ( ; ). No significant difference
could be found between the final cue-based session (cb_c) and
the last cue-based session (cb_b) before the virtual feedback
( ; ). Interestingly, no significant
difference between the two virtual feedback session (TFT and
iVE) could be detected ( ; ), but eight of
nine subjects performed better in the iVE condition. In Fig. 7
the mean and standard error over all subjects is given and the
statistical differences between the sessions are marked.

TABLE III
FOR BOTH FEEDBACK CONDITIONS THE NUMBER OF WRONG DECISIONS

AND THE NUMBER OF JUNCTIONS ARE GIVEN. PERCENTAGE OF WRONG

DECISIONS (THE ERROR) AND THE TIME NECESSARY FOR THE DECISIONS ARE

CALCULATED

TABLE IV
INTEGRATED CLASSIFICATION ERROR AND PERFORMANCE ERROR IN PERCENT

OF ALL SUBJECTS. DATA HAVE BEEN REARRANGED, WHEREBY CB_A AND

CB_B CORRESPOND TO THE LAST TWO CUE-BASED SESSIONS BEFORE THE

VIRTUAL FEEDBACK (EITHER CB 1 & CB 2 OR CB 2 & CB 3 DEPENDING ON THE

SUBJECT, SEE) AND CB_C TO THE FINAL CUE-BASED SESSION (SEE). VALUES

FOR TFT AND IVE HAVE BEEN COPIED FROM

IV. DISCUSSION

Online EOG regression and the analysis of the recorded
EMG showed that only brain activity was used for control.
Notwithstanding, the adaptation of subject-specific features and
electrode position is crucial to obtain reliable performances,
particularly if only a small number of electrodes should be used.
As expected from literature [22] oscillations in the alpha and
beta range of the EEG over the sensorimotor areas contribute
substantially to the discrimination between different MI.

The subjects noted that the task in the virtual apartment
was much harder compared to the prior feedback training,
because it was necessary not only to perform the “correct”
imagination, but also the shortest way through the apartment
had to be found. Therefore, the cognitive load was much
higher compared to the standard BCI paradigm. According
to our hypothesis, we found that the performance improves
(decrease of error) over the sessions and the lowest error
could be found during the sessions with virtual feedback.
The slight but stable performance improvement of all subjects
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Fig. 7. Mean � standard error (SE) over all subjects of the integrated classifi-
cation error and performance error, respectively. Asterisk (�p � 0:05; � � p �
0:01) shows statistically significant post-hoc differences.

is very well known as the training effect [2], [8]. Subjects
reported a motivational effect when switching from standard
cue-based feedback to virtual feedback, which is clearly visible
in the results. The first VR feedback session (TFT) was new,
unknown and exciting for the subjects, therefore, especially
in the good subjects a slight drop in their performance could
be found. Contrary to that, the poor subjects improved more
significantly, because they vanquished their frustration over
their bad performance and focused harder on the given task.
These findings are in line with the reports of the subjects
given after the experiments. In the second VR session (iVE)
the subjects adapted to the higher mental load and performed
best compared to all other sessions (see Table III and Fig. 7).
The return from the virtual feedback to the standard cue-based
feedback removed all the motivation and the performance of
all subjects dropped. The lowest error occurred in the sessions
with the virtual feedback. This cannot be explained by the
training effect, because that would mean the last session should
have the lowest error, which is not the case. This effect could
best be explained by the increased motivation. These findings
are in line with the outcomes of fMRI experiments, which
showed that motivation/mental effort during a motor imagery
task can enhance the BOLD signal [23].

All subjects were able to deal with the variable trial length
(the duration of the trial depended on how fast or slow the
subject could perform a decision) and the variable intertrial
interval. The flexible length permitted the subject to correct
indistinct initial thoughts and to “struggle” for the desired
result, which is not possible in common synchronous BCIs.
The time necessary for a decision in the sessions with the
virtual apartment (2.88 s) was very similar to the sessions with
cue-based feedback (subtracting the 3.5 s before the feedback
time from time of minimal iCE of 6.64, leaded to
3.14 s).

In these experiments it was planned to go one step away
from the laboratory conditions towards real world applications.
In the real world, all our activity is goal-orientated, and

the time necessary for our decision depends only on what
we want and how we want to achieve it, therefore the
introduction of this maze-like apartment with neutral cues,
variable trial lengths and with the cognitive load of finding
the shortest way, was a very promising example of a possible
real world application, which is still analyzable in terms
of BCI performance.

Using long-lasting and stable imagery patterns, instead of
single classification points, allows a very robust identification
without influences or disturbances. Therefore, the subjects
(especially patients) have the possibility to use their brain signals
for suitable control tasks outside the laboratory conditions. It
is disadvantageous that the information transfer rate (which
is the commonly used BCI measurement for success [2], [9],
[24], [25]) is decreased, but in reality the signal is much
more usable for the subjects—which is the most important
goal. Additionally, these long-lasting signals can be better
distinguished from the noncontrol state [26] and can be used
in the future for brain-switch like communication applications,
especially in the area of rehabilitation engineering [27].

V. CONCLUSION

The research reported is a further step away from laboratory
conditions towards real world applications. The naive subjects
first trained in a synchronized environment and afterwards used
their trained imagination patterns in an environment with neu-
tral cues and unassigned decision periods. This study showed
that with three bipolar electrodes it is possible for BCI novices
after a few training runs to successfully navigate through a vir-
tual apartment using only their imagination of movements. The
subjects choose freely the way to reach their goal. So each sub-
ject had his own strategy. Nevertheless, the identified brain ac-
tivities could be used for control applications even in situations
with a high cognitive load. In a further step it is planned to use
an asynchronous implementation of such a virtual navigation
task [28]. Additionally, it could be proved that motivation is a
very crucial factor in BCI research. Motivated subjects perform
much better than subjects who are bored of their task. Good sub-
jects always perform very well, but especially bad subjects can
increase their performance significantly. This is very important
during the BCI training process.
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