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Abstract

Three independent components analysis (ICA) algorithms (Infomax, FastICA and SOBI) have been compared with other preprocess-
ing methods in order to find out whether and to which extent spatial filtering of EEG data can improve single trial classification accuracy.
As reference methods, common spatial patterns (CSP) (a supervised method, whereas all ICA algorithms are unsupervised), bipolar der-
ivations and the original raw monopolar data were used. In addition to only performing ICA, the number of components was reduced
with PCA before calculating a spatial filter for Infomax and FastICA.

The multichannel data (22 channels) of eight subjects, consisting of two sessions recorded on different days, was analyzed. The task
was to perform motor imagery of the left hand, right hand, foot or tongue, respectively, during predefined time slices (cued paradigm).
For a measure of fitness, classification accuracies for both cross-validated results using data from just one session as well as simulated
online results (representing the session-to-session transfer) were calculated. In the latter case, the spatial filters and classifiers were com-
puted for one session and applied to the completely unseen second session.

For the data analyzed in this study, Infomax outperformed the other two ICA variants by far, both in the cross-validated as well as in
the simulated online case. CSP, on the other hand, yielded significantly lower classification accuracies than Infomax for the cross-vali-
dated results, whereas there is no statistically significant difference when it comes to simulated online data. Performing PCA before ICA
improved the results in the case of FastICA, whereas the classification accuracies dropped significantly for Infomax.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Independent components analysis (ICA) is an unsuper-
vised statistical method used for decomposing a complex
mixture of signals into independent sources (Vigário
et al., 2000). It is especially suitable for preprocessing mul-
tichannel electroencephalographic (EEG) data in brain–
computer interface (BCI) research because it can remove

a number of different artifacts such as electromyogram
(EMG) or electrooculogram (EOG) signals (Jung et al.,
2000a,b). It can also be used to separate different rhythmic
EEG components, such as right- and left-hemispheric mu
rhythms, from ongoing EEG (Makeig et al., 2004).

In this study, a feature selection algorithm automatically
selected a small number of ICA components that are opti-
mally suitable to differentiate between different brain states
associated with four motor imagery tasks in a BCI experi-
ment. The main goal behind this strategy was to improve
the single trial EEG classification accuracy by using ICA
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for spatial preprocessing and a subsequent feature selection
algorithm for selecting the most relevant components.
Here, bandpower features in a number of different bands
between 8 Hz and 30 Hz were calculated from the prepro-
cessed data. For comparison, the well-known spatial filter-
ing method called common spatial patterns (CSP) (Koles,
1991; Müller-Gerking et al., 2000) was applied to the same
data. In contrast to ICA, CSP is a supervised method that
requires additional a priori information about the class of
the data. As another reference method, bipolar derivations
(which are simply differences between two monopolar EEG
channels) were calculated. All preprocessing methods were
compared with the results obtained from the original
(monopolar) raw EEG data.

2. Subjects and experimental paradigm

In this study, the EEG data of eight subjects (three
females and five males with a mean age of 23.8 years and
a standard deviation of 2.5 years), recorded during a cue-
based four class motor imagery task, was analyzed. Two
sessions on different days were recorded for each subject,
each session consisting of six runs separated by short (a
couple of minutes) breaks. One run consisted of 48 trials
(12 for each of the four possible classes), yielding a total
of 288 trials per session.

The subjects were sitting in a comfortable armchair in
front of a computer screen. As mentioned above, the para-
digm consisted of four different tasks, namely the imagina-
tion of movement (motor imagery) of the left hand, right
hand, foot, and tongue, respectively. At the beginning of
each trial (t = 0 s), a fixation cross-appeared on the black
screen. In addition, a short acoustic warning tone was pre-
sented at this time instant. After two seconds (at t = 2 s), a
cue in the form of an arrow pointing either to the left, right,
down or up (corresponding to one of the four classes left
hand, right hand, foot or tongue) appeared for 1.25 s,
prompting the subjects to perform the desired motor imag-
ery task. No feedback (neither visual nor acoustic) was pro-
vided. The subjects were asked to carry out the mental
imagination until the fixation cross-disappeared from the
screen at t = 6 s. A short break followed, lasting at least

1.5 s. After that, the next trial started. The paradigm is
illustrated in Fig. 1 (left).

Twenty two Ag/AgCl electrodes (with inter-electrode
distances of 3.5 cm) were used to record the EEG, the setup
is depicted in Fig. 1 (right). Monopolar derivations were
used throughout all recordings, where the left mastoid
served as reference and the right mastoid as ground. The
signals were sampled at 250 Hz and bandpass-filtered
between 0.5 Hz and 100 Hz. An additional 50 Hz notch fil-
ter was enabled to suppress line noise.

Although a visual inspection of the raw EEG data was
performed by an expert, no trials were removed from the
subsequent analysis in this study in order to evaluate the
robustness and sensitivity to outliers and artifacts of each
method. The fraction of artifacteous trials over all subjects
was rather low anyway, namely 7.5% on average (median
value of 6.1%).

3. Methods

3.1. Preprocessing

3.1.1. Spatial filters

The contamination of EEG signals with a variety of dif-
ferent artifacts such as EOG or EMG is an important issue
in EEG data analysis. Appropriate precautions have to be
taken in order to deal with this problem. Furthermore, the
spatial resolution of EEG signals is compromised due to
volume conduction through the scalp, skull and other lay-
ers of the brain. In the field of BCI research, these factors
influence the classification accuracy of task-related activity.
To address these problems, various spatial filtering tech-
niques, for example common average reference (CAR),
orthogonal source derivations, common spatial patterns
(CSP), principle components analysis (PCA) and indepen-
dent components analysis (ICA), can be utilized.

All these spatial filtering methods seek to solve the prob-
lems mentioned above by creating new components from
the original data channels. In general, a spatial filter tries
to estimate a so-called unmixing matrix W = [w1, . . .,wn]
such that the obtained components y(t) = [y1(t), . . .,yn(t)]
are as representative of the underlying sources as possible.

Fig. 1. Timing scheme of the BCI paradigm (left) and electrode setup of the 22 channels with inter-electrode distances of 3.5 cm. Some locations
corresponding to the international 10–20 system are labeled (right).
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These components can be calculated by multiplying the
unmixing matrix W to the raw EEG signals x(t):

yðtÞ ¼WTxðtÞ:

Here, the vector of EEG signals x(t) consists of n channels,
therefore the unmixing matrix W is, in general, a square
n · n matrix. However, if the number of components is re-
duced to k by applying PCA as a first step, the unmixing
matrix is only k · n-dimensional.

3.1.2. Independent components analysis

Independent components analysis (ICA), like the loosely
related principal components analysis (PCA), is a blind
source separation technique (Vigário et al., 2000). The goal
of these techniques is to recover sources from mixtures
(observations) of signals with no information about the
mixing matrix under certain assumptions and conditions.
In other words, ICA is an unsupervised method, which
means that there is no a priori information available – in
the field of BCIs this implies that the class labels of the
motor imagery data are not known to the method. The fun-
damental assumption employed by ICA for source extrac-
tion is statistical mutual independence (in contrast to PCA,
which merely assumes uncorrelatedness). However, inde-
pendence is only a concept, represented by different ICA
algorithms in the form of a suitable contrast function that
provides a measure of the degree of independence. The
optimization of these contrast functions through iterative
processes estimates the unmixing matrix W and ultimately
yields the distinct independent components. Another
assumption ICA makes is the non-gaussian distribution
of the components.

In this paper, the specific ICA algorithms employed
were Infomax, FastICA and SOBI (Second Order Blind
Identification). One of the reasons for this choice was the
large number of successful applications in various fields
of data mining, particularly medical signal processing
(Makeig et al., 2004; Tang et al., 2005a). The other factors
were the broad availability of the algorithms and the diver-
sity in the way the unmixing matrix is estimated.

The information maximization algorithm, or short Info-
max (Bell and Sejnowski, 1995), maximizes the joint
entropy H(y) of the outputs, thereby minimizing the
mutual information I(y) among the output components.
The minimization of the mutual information therefore
resolves output variables into independent components.
The FastICA algorithm (Hyvarinen and Oja, 1997)
extracts independent components by separately maximiz-
ing the negentropy J(y) of each mixture. In contrast to
Infomax and FastICA, which are linear instantaneous ver-
sions of ICA, SOBI (Belouchrani et al., 1997) exploits the
time structure of the data for source extraction. Further-
more, SOBI relies only on stationary second order statistics
that are based on a simultaneous diagonalization of a set of
covariance matrices for the computation of an estimate of
the unmixing matrix.

FastICA has two algorithmic approaches available for
the estimation of the unmixing matrix: one is the symmetric
approach and the other is the deflationary approach where
independent components are estimated one by one like in
projection pursuit (Hyvarinen and Oja, 2000). Infomax,
on the other hand, has only a symmetric approach avail-
able where all the sources are extracted in parallel whereas
source estimation in SOBI is accomplished by the process
of joint diagonalization.

There are a number of parameters available that can be
tuned in order to optimize the performances of both Fas-
tICA and Infomax. For this study, FastICA was using a
tangent hyperbolic as its non-linearity instead of the
default third order polynomial, which was not found to
be a robust parameter, because it is only recommended
when there are no outliers. This was not the case for the
data analyzed in this paper, because all trials were retained
and no artifacts were rejected. Moreover, the deflationary
approach was used in favor to the symmetric approach.
In the case of Infomax, all default parameters were used
– for example, instead of the optional extended ICA algo-
rithm, the logistic ICA algorithm with natural gradient fea-
tures was used. On the other hand, SOBI has only the
number of temporal delays as an adjustable parameter
(Tang et al., 2005b). For this study, the default value of
50 delays ranging from 4 ms to 200 ms was used, which
proved to be a good choice based on preliminary variations
of the parameter between 2 and 250 delays (Naeem et al.,
2006).

For both Infomax and FastICA, the number of compo-
nents was also reduced by applying PCA and retaining only
the 10 components containing most of the signal variance;
these two additional variants were also analyzed in this
paper.

Before calculating the spatial filters with all three ICA
algorithms, all data sets were triggered (meaning that data
epochs between the trials were thrown away) and detr-
ended by a second order polynomial as a first step.

3.1.3. Common spatial patterns

The method of common spatial patterns is another spa-
tial filtering technique that calculates new signals in such a
way that the variances of these components contain the
most discriminative information with respect to the differ-
ent motor imagery classes (Müller-Gerking et al., 1999).
This is accomplished by jointly diagonalizing the two cor-
responding covariance matrices, which means that in its
original form this method can only be applied to binary
(i.e., two classes) problems. However, extensions to multi-
class problems have already been developed (Dornhege
et al., 2004) by combining two or more spatial filters,
thereby reducing the multiclass problem to several binary
decisions. For the data analyzed in this study, four filters
in a one-versus-the-rest scheme were necessary (one for
each imagery type versus the remaining three classes).
These four matrices were calculated within a time segment
of 4.5–5.5 s inside a trial because a screening of different
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one-second time windows within a trial revealed this epoch
to yield the best discriminability of the data.

As a first step, the raw data was bandpass filtered
between 8 Hz and 30 Hz, which is a good general choice
for EEG data (Ramoser et al., 2000). In order to be com-
parable with the other methods, the variance was calcu-
lated within a one second time window. Three different
feature subsets were created by taking only the first and
the last column of the filtered data for the first subset
(i.e., the projections corresponding to the largest and small-
est eigenvalues), while the second set contained the second
and second last columns in addition, and the third set com-
prised also the third and third last columns. In contrast to
the ICA methods, the data filtered with CSP already consti-
tutes features that can be directly used as input for the fol-
lowing classifiers.

3.1.4. Bipolar derivations

A very simple spatial filter can be constructed by calcu-
lating bipolar derivations, which means subtracting a sig-
nal originating from one electrode site from a signal
stemming from a different place. In order to compare the
two sophisticated methods described above (ICA and
CSP) with this commonly used derivation, three bipolar
channels were created from the original 22 channels. Elec-
trode positions C3, Cz, and C4 were approximated by sub-
tracting the signal anterior from the signal posterior to the
corresponding site, because from physiological knowledge
these sites over the motor cortex are known to contribute
highly distinguishable information in this four class motor
imagery task (Pfurtscheller et al., 2006).

3.1.5. Spatial filter variants

Summing up, the following spatial filter variants were
analyzed and compared in this paper:

• Infomax.
• PCA and Infomax.
• FastICA.
• PCA and FastICA.
• SOBI.
• Bipolar derivations.
• CSP.
• Monopolar (unfiltered) data.

3.2. Feature extraction

After multiplying the spatial filters (calculated by the
various ICA algorithms and the bipolar derivations) with
the raw EEG signals, logarithmic bandpower features were
calculated. The power was computed in a number of fre-
quency bands within the range of 8–30 Hz, namely 21
bands with width 2 Hz, 19 bands with width 4 Hz, 15 bands
with width 8 Hz and 7 bands with width 16 Hz, yielding a
total of 62 overlapping bands. Finally, a one second mov-
ing average window was applied to the data.

As already mentioned above, EEG signals filtered with
CSP matrices can readily be used as features, therefore
no further processing was necessary here. However, by cal-
culating the CSP features in a one second window, we
made sure that all methods receive the same amount of
information about the data.

3.3. Feature selection

Each method using bandpower features (i.e., all ICA
variants, bipolar derivations and raw monopolar data)
was subjected to an optimization process. As already men-
tioned above, 62 different frequency bands for each of the
22 ICA components were calculated. Out of these 1364 fea-
tures (due to the number of channels, the bipolar data com-
prised only 186 features), a feature selection algorithm was
used to find the best combination consisting of up to 10 dif-
ferent features. To this end, we used the so-called sequen-
tial floating forward selection (SFFS) algorithm, which
was shown to yield very good results within a short amount
of calculation time (Pudil et al., 1994). The algorithm is
based on a bottom–up approach, which means that it starts
with an empty feature set. In each step, one feature is
added based on a certain performance criterion, which in
our case was the maximum of the cross-validated classifica-
tion accuracy c (number of correctly classified trials over
the total number of trials). In the next step, the algorithm
tries to remove one feature and keeps the reduced set if
the performance improved. Then another feature is added
and the whole procedure is repeated until the desired num-
ber of features is reached.

The feature selection algorithm was not applied to the
CSP-filtered data, instead, three separate subsets were cal-
culated (see Section 3.1.3) to optimize this method.

3.4. Classification

In order to classify the feature vectors, a set of Fisher’s
linear discriminant analyses (LDAs) was used to discrimi-
nate between the four motor imagery classes. Four of these
statistical classifiers were combined into a one-versus-the-
rest scheme without a majority voting strategy involved –
the class was assigned to the classifier yielding the largest
discriminant value (Devijver and Kittler, 1982; Duda
et al., 2001).

Before doing that, the optimal time slice for training the
classifiers was determined by a so-called running classifier
(Müller-Gerking et al., 2000), which means that the trials
were segmented into overlapping one-second slices and a
classifier was trained and tested on the same data segment.
That way it was possible to choose the segment yielding the
highest classification accuracy for each subject separately.

In order to avoid overfitting, a 10 · 10 cross-validation
strategy was used, meaning that the data was divided into
10 equally-sized portions. The training of the four LDAs
was carried out only on nine segments (i.e., 90%) of this
data, whereas the testing was done on the remaining unseen
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segment (10%). This procedure was repeated such that each
segment was used as the testing set once. In addition, this
random partitioning into 10 segments was repeated
another 10 times, which yielded a total of 100 training
and test sets, respectively. The estimated classification
accuracy c was then computed by averaging over all results.

In this paper, two different calculations were performed,
first the cross-validated classification results for each sub-
ject and session separately with the corresponding opti-
mized feature sets and second, simulated online results.
The latter is an important measure for actual BCI systems,
since everything (the optimized features, the spatial filter
matrix and the corresponding classifier) is set up using only
training data and is then applied to the completely unseen
test data, which was recorded on a different day. For this
purpose, the complete first session of each subject was
taken to train the system. The second session was then
the unknown test data – this procedure was also repeated
the other way round, i.e., the second session was the train-
ing set and the first the test set.

4. Results

4.1. Feature optimization

In most of the subjects, 10 different bandpower features
were used because they showed the highest classification
accuracy in the feature selection process. However, there
were some exceptions where less than 10 features were nec-
essary, but that was mostly the case for the subjects with
poor performance. It is very difficult and not even very
interesting to present the results in all its details here (show-
ing the optimal feature sets for each subject), since the main
purpose of this procedure was to automatically construct
an optimal basis of features that can be used in the subse-
quent analysis. Fig. 2, for example, shows the number of
selected features versus classification accuracy for all sub-

jects and sessions in the case of Infomax. It can clearly
be seen that the maxima are reached at the end of the scale,
but the steepness decreases after three selected features.
For CSP, the results of the three different feature sets are
presented in the next section.

4.2. Cross-validated results

4.2.1. CSP

One preliminary goal was to find out how many col-
umns of the CSP-filtered data are necessary to obtain good
classification results. To this end, results were calculated
with 2 columns (first and last), 4 columns and 6 columns
(see Table 1). As can readily be observed, using only the
columns corresponding to the largest and smallest eigen-
values yields significantly lower results as compared to four
or six columns (in both cases a two-sided t-test was per-
formed, which resulted in p < 0.05). There is no significant
difference (the t-test yielded p = 0.15) between four and six
components, but since there is still a higher mean classifica-
tion accuracy for six components, this feature set was cho-
sen as a representative and optimized CSP result. The time
instants when the maxima occur within a trial is about the
same for each variant (about second 4.9).

4.2.2. ICA algorithms
The results of the comparison of the three different ICA

variants as well as bipolar derivations were twofold (see
Fig. 3). First, Infomax (75.53%) greatly improves the mean
classification accuracy over all subjects as opposed to the
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Fig. 2. Number of features (abscissa) versus classification accuracy
(ordinate) for all subjects and sessions calculated for Infomax.

Table 1
Maximum classification accuracies max(c) and corresponding time instant
t (s) for each of the three different CSP-filtered data sets

Subject CSP2 CSP4 CSP6

max(c) t (s) max(c) t (s) max(c) t (s)

s1–1 0.7159 4.2 0.7176 4.2 0.7309 4.2
s1–2 0.7219 4.6 0.7345 5.1 0.7313 5.0
s2–1 0.5625 6.5 0.5564 6.5 0.5443 6.5
s2–2 0.5013 6.7 0.4977 6.8 0.4888 6.8
s3–1 0.7976 4.3 0.7917 4.7 0.8015 4.7
s3–2 0.7449 4.0 0.7824 4.5 0.7823 4.7
s4–1 0.4908 4.6 0.4968 4.4 0.5039 4.5
s4–2 0.5601 4.5 0.5783 4.1 0.5755 4.1
s5–1 0.3719 4.6 0.3863 4.6 0.3810 4.6
s5–2 0.3912 6.4 0.4182 6.4 0.4105 6.4
s6–1 0.6628 5.1 0.6850 4.8 0.6924 4.7
s6–2 0.7851 4.5 0.7728 4.6 0.7805 4.4
s7–1 0.7153 5.2 0.7369 4.6 0.7448 4.6
s7–2 0.6320 4.0 0.7267 4.6 0.7564 4.6
s8–1 0.6060 4.2 0.7174 4.2 0.7675 4.2
s8–2 0.8146 4.0 0.8328 4.1 0.8340 4.2

Mean 0.6296 4.84 0.6520 4.89 0.6579 4.89
STD 0.1398 0.91 0.1416 0.88 0.1490 0.87

CSP2 means that only the first and last column of the filtered data was
used, CSP4 and CSP6 use additional 2 and 4 columns, respectively. The
last two rows show the means and standard deviations (STD) of each CSP
result. The best value for each subject and session is marked with a
boldface font.
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monopolar data (59.62%) – the chance level is at 25% in a
four-class problem. Bipolar derivations show only a slight
improvement of the results (62.02%). More specifically,
Infomax reaches much higher results for each single sub-
ject, whereas the accuracies for the bipolar derivations
are sometimes better and sometimes worse, depending on
the subject. Infomax performs significantly better than
bipolar derivations and yields by far the highest accuracies
of all algorithms. Performing Infomax on PCA-filtered
data did not improve the classification accuracies – on
the contrary, the results dropped to 66.12%.

Second, FastICA and especially SOBI yielded worse
results as compared to unfiltered data with average classi-
fication accuracies of 58.71% and 47.06%, respectively.
The difference is not extremely pronounced for FastICA
– the fact that this ICA variant performed slightly worse
on average is due to its complete failure for subject s4,
where it reached accuracies of about 40%, whereas mono-
polar data was much better with 54% and 60%. On the
other hand, the classification results obtained with SOBI
were always worse than those obtained with monopolar
data.

The performance of FastICA could be greatly improved
by PCA. By only providing the first 10 PCA components,
FastICA reached classification accuracies of 65.17% on
average – this is significantly higher than the results with-
out PCA, which was only 58.71%.

Taking also into consideration the cross-validated
results from the CSP-filtered data, it is clear that Infomax
outperformed all other algorithms by far. In second place
comes CSP with a still competitive result (65.79%, about
10% lower than Infomax but still about 6% higher than
monopolar data). It can be noted that for subject s5,

CSP yielded a much lower classification accuracy than
Infomax – for all other subjects, this difference is not that
pronounced. Approximately the same good performance
could be reached by combining PCA with Infomax and
FastICA – in the first case, the results dropped to
66.12%, whereas in the latter case the accuracy greatly
improved to 65.17%. The other algorithms performed sig-
nificantly worse, with the bipolar derivations being better
than monopolar data, FastICA, and lastly SOBI. In addi-
tion to the boxplot, the means and standard deviations of
each method are summarized in Table 2.

The time instants where the maximum classification
accuracy occurred are not presented, because they were
all in a similar range of around 4.2–4.9 s. The only small
outlier is SOBI, where the maximum occurred after 5 s
on average.

4.3. Simulated online results

The same analysis was also performed for the simulation
of an online experiment (Fig. 4). It is not surprising that the
overall classification performance decreased as compared
to the cross-validated results for all subjects. However,
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Fig. 3. Boxplots showing the cross-validated performance of each
method. The upper and lower lines of a box show the upper and lower
quartile, respectively, while the median corresponds to the line within the
box. The whiskers are lines that indicate the range of the rest of the data.

Table 2
Mean and standard deviation of the maximum classification accuracies
max(c) of the different preprocessing algorithms for cross-validated data

Mean Standard deviation

Infomax 0.7553 0.1361
PCA and Infomax 0.6612 0.1360
FastICA 0.5871 0.1677
PCA and FastICA 0.6517 0.1247
SOBI 0.4706 0.1075
Bipolar 0.6202 0.1219
CSP 0.6579 0.1490
Monopolar 0.5962 0.1305

Infomax PCA+Infomax FastICA PCA+FastICA SOBI Bipolar CSP Monopolar
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Fig. 4. Boxplots showing the simulated online performance of each
method, for a description see Fig. 3.

962 C. Brunner et al. / Pattern Recognition Letters 28 (2007) 957–964



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Infomax still performed best on average, but with CSP now
very close behind. Actually, a two-sided t-test was not able
to reject the null hypothesis that the means of those two
methods differ, which means that it can be assumed that
both methods perform equally well on completely unseen
data. There are no outliers any more where Infomax per-
formed much better than CSP, as was the case for the
cross-validated data.

FastICA, bipolar derivations and monopolar data give
approximately the same results (51.48%, 52.95% and
49.85%, respectively), whereas SOBI is again performing
worst. Applying PCA before FastICA improved the per-
formance of this algorithm to 55.95%. Infomax, on the
other hand, does not benefit from reducing the dimension-
ality with PCA – the classification accuracy drops to
46.96%, which is worse than monopolar data and only
slightly better than SOBI. In addition to the boxplots,
the means and standard deviations of all methods are pre-
sented in Table 3.

5. Discussion

Most BCI experiments are based on the following strat-
egy: First, the untrained (naive) subjects have to take part
in a training session where they do not receive feedback in
any form. The purpose of this procedure is to record data
and afterwards calculate a classifier that is adapted to the
specific subject’s brain patterns. After that, this classifier
can be used in a new online session, where feedback pro-
portional to the output of the classifier can be provided.
In order to simulate such a real-world situation, session-
to-session transfer results were calculated in addition to
cross-validated accuracies. When the two best performing
methods, namely Infomax and CSP, are compared, notable
differences between cross-validated and simulated online
behavior can be observed.

First of all, it is quite surprising that Infomax performs
significantly better than CSP in the cross-validated case,
since CSP is a supervised method and gets a priori informa-
tion about the data. In contrast, ICA does not need class
label information since it is an unsupervised method. Still,
there is another difference between those two spatial filter-
ing techniques in our study, namely that ICA received the
data of the whole trials (but no class labels), whereas CSP
got only one second epochs per trial. This potential differ-

ence in the amount of information is not relevant, since the
time slice between second 4.5 and 5.5 was found to contain
the most discriminative information in the data. Moreover,
ICA filter matrices from the same one-second epochs were
also calculated, but the results did not change significantly.

Obviously, the potential advantage of CSP being a
supervised method could not be exploited, at least with
the data analyzed in this paper. A reason for this might
be that this method could further benefit from additional
optimizations, such as subject-specific bandpass filters
(instead of 8–30 Hz) or time segments (instead of 4.5–
5.5 s). Although taking into consideration only the col-
umns corresponding to the largest eigenvalues (i.e., the first
and the last column) would be sufficient, significantly better
results can be obtained when choosing one or two addi-
tional components. On the other hand, as the online results
of CSP became much better (or rather, the performance of
Infomax decreased) such that both Infomax and CSP
yielded similarly good results as opposed to cross-validated
results, these predefined parameters did not seem to be bad
choices at all. It rather seems that despite of having done a
proper cross-validation, the results of Infomax seem to be
slightly overfitted and components are extracted that are
not present in the subjects’ second sessions anymore.

Another way of improving the performance of CSP
would be to train the filters on artifact-free data. However,
a prerequisite in this paper was that all methods should
receive the whole amount of data including artifacts in
order to evaluate the robustness to outliers. In fact, CSP
performed very well in comparison to the various ICA
algorithms, especially in the case of simulated online data,
which is a suitable measure for real-world BCI
applications.

The results of the other two ICA algorithms (FastICA
and SOBI) are a bit disappointing, especially those of
SOBI. The latter performed even worse than unprocessed
monopolar data, thus it must be concluded that this ICA
variant exploiting the time structure of the data is not very
suitable for improving the classification accuracy of multi-
channel EEG data. Another reason could be the sensitive
dependence of SOBI to a proper choice of the time delays
(number and range) (Tang et al., 2005b), which can be sub-
ject-specific. The difference in performance between Info-
max and SOBI is also an interesting point, because they
are very similar and are mathematically equivalent. How-
ever, when applied to real EEG data, the different optimi-
zation algorithms perform differently and Infomax seems
to yield more robust results. That said, both Infomax
and CSP can be recommended for online BCI applications
where multiple channels are available.

Using PCA to reduce the dimensionality of the data
yields different results for the ICA algorithms Infomax
and FastICA, respectively. In the first case, the perfor-
mance is reduced, whereas in the case of FastICA, PCA
significantly improves the classification accuracy. This is
true for both cross-validated results as well as simulated
online data.

Table 3
Mean and standard deviation of the maximum classification accuracies
max(c) of the different preprocessing algorithms for simulated online data

Mean Standard deviation

Infomax 0.6196 0.1534
PCA and Infomax 0.4696 0.0956
FastICA 0.5148 0.1496
PCA and FastICA 0.5595 0.1515
SOBI 0.4460 0.1056
Bipolar 0.5295 0.1397
CSP 0.6179 0.1383
Monopolar 0.4985 0.1235
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Finally, bipolar derivations yielded slightly better results
in general as opposed to monopolar data, but they are
nowhere near to Infomax or CSP. However, the amount
of electrodes used is significantly lower, which might be a
very practical advantage in BCI applications that involve
patients. The importance of bipolar derivations over left
and right sensorimotor cortical areas (close to electrode
positions C3 and C4) has recently been demonstrated
(Schlögl et al., 2005; Pfurtscheller et al., 2006). However,
in addition to optimizing the frequency bands, also the
exact bipolar locations could be optimized in order to fur-
ther improve the performance of this method.
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