
Robert Leeb*
Claudia Keinrath
Laboratory of Brain-Computer
Interfaces
Institute for Knowledge Discovery
Graz University of Technology
Graz, Austria

Doron Friedman
Department of Computer Science
University College London
London, UK

Christoph Guger
g.tec—Guger Technologies OEG
Graz, Austria

Reinhold Scherer
Laboratory of Brain-Computer
Interfaces
Institute for Knowledge Discovery
Graz University of Technology
Graz, Austria

Christa Neuper
Department of Psychology
University of Graz
Graz, Austria

Maia Garau
Angus Antley
Anthony Steed
Department of Computer Science
University College London
London, UK

Mel Slater
Department of Computer Science
University College London
London, UK
and
ICREA
Universitat Politècnica de Catalunya
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Walking by Thinking:
The Brainwaves Are Crucial,
Not the Muscles!

Abstract

Healthy participants are able to move forward within a virtual environment (VE) by
the imagination of foot movement. This is achieved by using a brain-computer in-
terface (BCI) that transforms thought-modulated electroencephalogram (EEG) re-
cordings into a control signal. A BCI establishes a communication channel between
the human brain and the computer. The basic principle of the Graz-BCI is the de-
tection and classification of motor-imagery-related EEG patterns, whereby the dy-
namics of sensorimotor rhythms are analyzed. A BCI is a closed-loop system and
information is visually fed back to the user about the success or failure of an in-
tended movement imagination. Feedback can be realized in different ways, from a
simple moving bar graph to navigation in VEs.

The goals of this work are twofold: first, to show the influence of different feed-
back types on the same task, and second, to demonstrate that it is possible to
move through a VE (e.g., a virtual street) without any muscular activity, using only
the imagination of foot movement. In the presented work, data from BCI feedback
displayed on a conventional monitor are compared with data from BCI feedback in
VE experiments with a head-mounted display (HMD) and in a high immersive pro-
jection environment (Cave). Results of three participants are reported to demon-
strate the proof-of-concept. The data indicate that the type of feedback has an in-
fluence on the task performance, but not on the BCI classification accuracy. The
participants achieved their best performances viewing feedback in the Cave. Fur-
thermore the VE feedback provided motivation for the subjects.

1 Introduction

“Yes he was walking! The illusion was utterly convincing” experienced
the leading character from Arthur C. Clark’s book 3001, The Final Odyssey
(1997), when he was wearing a “Braincap” connected to the “Brainbox.”
Thereby he could experience this science fiction technology and explore differ-
ent virtual and ancient real worlds. Has this dream become real? This question
was addressed by the presented work which shows that participants are able to
move forward—to walk—within a VE by imagining movements of their foot.

The improvement of seamlessness and naturalness of human-computer in-
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terfaces is a necessary task in virtual reality (VR) devel-
opment. One interesting research problem is to realize
locomotion through a VE using mental activity or
thoughts. Generally, participants navigate in VEs by
using a hand-held device, such as a joystick or a wand.
This could present the user with contradictory stimuli.
On the one hand the world around them is moving,
which generates the illusion of walking, but on the
other hand the participant is thinking about his action
to press the button on the joystick. This results in a re-
duced sense of being present in the VE (Slater, Usoh, &
Steed, 1995), and can cause simulation sickness (Het-
tinger & Riccio, 1992).

A possible step towards next-generation interfaces
could be achieved by exploiting a BCI which represents
a direct connection between the human brain and the
computer (Wolpaw, Birbaumer, McFarland, Pfurtschel-
ler, & Vaughan, 2002). The electroencephalogram
(EEG) of the human brain contains different types of
oscillatory activities. The oscillations in the alpha and
beta band (event-related desynchronization, ERD;
Pfurtscheller & Neuper, 2001) are particularly impor-
tant to use in discriminating between different brain
states (e.g., imagination of movements). A BCI trans-
forms thought-modulated EEG signals into control
commands (Wolpaw et al., 2002). Classical applications
of BCI include the restoration of communication for
individuals who have lost the ability to communicate by
speech or other muscular activities (i.e., patients in a
“locked-in state”) and the control of a neuroprosthesis
in patients with a spinal cord injury (Pfurtscheller &
Neuper, 2001; Wolpaw et al., 2002).

Recently, the BCI has been used to control events
within a VE, but most of the previously conducted VR-
BCI research is based on two types of visually evoked
responses; either the steady-state visual evoked potential
(SSVEP; Lalor et al., 2005; Middendorf, McMillan,
Calhoun, & Jones, 2000) or the event-related P300
potential (Bayliss, 2003). These methods typically force
the subjects to perform a visual task that might be un-
natural (e.g., to gaze at a blinking object). In contrast,
our research uses a different BCI paradigm for VR con-
trol based on motor imagery (Leeb, Scherer, Keinrath,

Guger, & Pfurtscheller, 2005; Pfurtscheller & Neuper,
2001).

The goals of this work are twofold: first, to demon-
strate that it is possible to move through VEs (e.g., a
virtual street) without any muscular activity, using only
the imagination of foot movement recorded with a BCI;
and second, to show the influences of different feedback
types on the same task.

VR provides an excellent testing ground for proce-
dures that may someday be used in the real world. In
the future VEs could be an important tool for people
with disabilities. If it is possible to show that people are
able to control their movements through space within a
VE, it would justify the much bigger expense of build-
ing physical devices like a robot arm controlled by a
BCI. Bayliss (2003), for example, enumerates the gen-
eral advantages of VR for BCI as follows: “it is a safe
environment, it can be used to control the experience
and reduce distractions, and it can be highly motivat-
ing.” Further applications include the use of VR as a
feedback medium with the goal of enhancing the classi-
fication accuracy and reducing the time needed for BCI
training sessions. This feedback medium could be used
for improving the rehabilitation of stroke victims by us-
ing virtual body parts as feedback and for motor rehabil-
itation of patients with brain injuries or Parkinson’s dis-
ease (Holden, 2005).

2 Background

Direct brain-computer communication is an ap-
proach to develop an additional communication channel
for human-machine interaction. In this case, the normal
communication channels such as speech and movement
are not used, but instead the brain activity is directly
recorded and transformed into a control signal. There-
fore, a BCI provides a new communication channel that
can be used to convey messages and commands directly
from the brain to the external world. During the opera-
tion of the BCI, the user’s task is to intentionally “pro-
duce” certain brain states (i.e., EEG patterns) that can
be detected by the system. This can either be achieved
by self-regulation of the relevant EEG features (Bir-
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baumer et al., 2000) or by using a specific mental strat-
egy, for example, the mental imagery of movements
(Wolpaw et al., 2002).

2.1 Neurophysiological Background

Populations of neurons can form complex net-
works in which feedback loops are responsible for the
generation of oscillatory activity. In general, the fre-
quency of such oscillations becomes slower with increas-
ing numbers of synchronized neuronal assemblies. Two
types of oscillations have importance for the EEG-based

BCI: the Rolandic mu rhythm in the range of 7–13 Hz
and the central beta rhythm above 13 Hz, both origi-
nating in the sensorimotor cortex (see Figure 1b). Sen-
sory stimulation, motor behavior, and mental imagery
can change the functional connectivity within the cortex
and result in an amplitude suppression (event-related
desynchronization, ERD) or in an amplitude enhance-
ment (event-related synchronization, ERS) of mu and
central beta rhythms (Pfurtscheller & Lopes da Silva,
1999). The dynamics of brain oscillations associated
with sensory and cognitive processing and motor behav-
ior can form complex spatiotemporal patterns. For ex-

Figure 1. (a) EEG-electrode positions of the international 10/20 system in side view and top view. In the presented experiments

only the positions C3, Cz, and C4 have been used. (b) Sensorimotor representation of body parts on the cerebral cortex. (c) Time

frequency maps (ERD/ERS-Maps) of the electrodes C3, Cz, and C4 during right hand motor imagery and during (d) foot motor

imagery. Event-related desynchronization (ERD) is plotted in red and event-related synchronization (ERS) in blue. The data used for

these maps are marked with asterisks in Figure 5, later in the paper.
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ample, a synchronization of higher frequency compo-
nents embedded in a desynchronization of lower
frequency components can be found on a specific elec-
trode location at the same moment of time. Simulta-
neous desynchronization and synchronization of 10 Hz
components are possible on different scalp locations.
Preparation and planning of self-paced hand movement
results in a short-term desynchronization (ERD) of
Rolandic mu and central beta rhythms. The general
finding is that similar to the mu rhythm (around
10 Hz), beta oscillations desynchronize during the
preparation and execution of a motor task. However,
alpha and beta frequency components differ with re-
spect to temporal behavior.

2.2 Motor Imagery

Motor imagery is described as the mental rehearsal
of a motor act without any overt motor output (Decety,
1996). It is broadly accepted that mental imagination of
movements involves similar brain regions that are used
in programming and preparing such movements (Jean-
nerod & Frak, 1999). According to this view, the main
difference between motor performance and motor im-
agery is that in the latter case execution would be
blocked at some corticospinal level. Indeed functional
brain imaging studies monitoring changes in the metab-
olism revealed similar activation patterns during motor
imagery and actual movement performance (Lotze et
al., 1999). Motor imagery, defined as mental simulation
of a movement, has been shown to represent an efficient
mental strategy to operate a BCI (Pfurtscheller, Neuper,
& Birbaumer, 2005). The imagination of different types
of movements, for example, right hand, left hand, foot,
or tongue movement, results in a characteristic change
of the EEG over the sensorimotor cortex of a partici-
pant (Pfurtscheller & Neuper, 2001).

As an example for the dynamics of brain oscillations,
time-frequency maps (ERD/ERS maps; Graimann,
Huggins, Levine, & Pfurtscheller, 2002) of right hand
and foot motor imagery are presented in Figures 1c and
1d. The imagination of a right hand movement results
in a desynchronization of mu (8–12 Hz) and central
beta rhythms (13–28 Hz) over electrode C3 and in an

enhanced 24 Hz component at channel Cz. The red
color in each map marks a significant power (amplitude)
decrease or ERD and the blue color a significant power
(amplitude) increase or ERS of the corresponding fre-
quency component. During the imagination of foot
movement the 10 Hz, 20 Hz, and 30 Hz components
were enlarged (characteristic of the arch-shaped mu
rhythm). In summary, it can be stated that foot motor
imagery synchronized and induced brain oscillations in
the hand representation area (channels C3 and C4) and
hand motor imagery in the foot representation area
(channel Cz).

2.3 Basic Principle and Components of
a Brain-Computer Interface

A BCI system is, in general, composed of the fol-
lowing components: signal acquisition, preprocessing,
feature extraction, classification (detection), and ap-
plication interface (Figure 2). The signal acquisition
component is responsible for recording the electrophysi-
ological signals and providing the input to the BCI.
Preprocessing includes artifact reduction (electrooculo-
gram, EOG, and electromyogram, EMG), application
of signal processing methods, that is, low-pass or high-
pass filter, methods to remove the influence of the line
frequency and in the case of multichannel data the use
of spatial filters (bipolar, Laplacian, common average
reference). After preprocessing, the signal is subjected to
the feature extraction algorithm. The goal of this com-
ponent is to find a suitable representation (signal fea-
tures) of the electrophysiological data that simplifies the
subsequent classification or detection of specific brain
patterns. There are a variety of feature extraction meth-
ods used in BCI systems. A less than exhaustive list of
these methods includes amplitude measures, band
power, Hjorth parameters, autoregressive parameters,
and wavelets. The task of the classifier component is to
use the signal features provided by the feature extractor
to assign the recorded samples of the signal to a cate-
gory of brain patterns. In the simplest form, detection
of a single brain pattern is sufficient. This can be
achieved by using a threshold method. More sophisti-
cated classifications of different patterns depend on lin-
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ear or nonlinear classifiers (Pfurtscheller & Neuper,
2001). The classifier output, which can be a simple on-
off signal or a signal that encodes a number of different
classes, is transformed into an appropriate signal that
can then be used to control a VR system.

Further information about the physiological back-
ground of motor imagery and ERD (Pfurtscheller &
Lopes da Silva, 1999; Pfurtscheller & Neuper, 2001),
about signal processing, feature extraction and the
Graz-BCI (Guger et al., 2001; Pfurtscheller, Neuper, et
al., 2003), and generally about various BCI systems
(Vaughan et al., 2003; Wolpaw et al., 2002) can be
found elsewhere.

3 Methods

3.1 Graz Brain-Computer Interface

The Graz-BCI detects changes in the ongoing
EEG during the imagination of hand or foot move-
ments and transforms them into a control signal
(Pfurtscheller et al., 2003). Three EEG-electrode pairs

were placed 2.5 cm anterior and posterior to positions
C3, Cz, and C4 of the international 10/20 system (Jas-
per, 1958; see Figure 1a). The EEG was recorded with
a sampling frequency of 250 Hz (sensitivity was set to
50 �V) and bandpass filtered between 0.5 and 30 Hz.
The ground electrode was positioned on the forehead
(position Fz).

The logarithmic bandpower (BP) was calculated for
each of the three channels by digitally bandpass filtering
the EEG (using a Butterworth filter of order 5) in the
upper alpha and beta band (using subject-specific fre-
quency bands), squaring and log-transforming the sig-
nal, and averaging the samples over a 1-s epoch. The
resulting 6 BP features were transformed with Fisher’s
linear discriminant analysis (LDA; Bishop, 1995) into a
single control signal. Finally, the computed control sig-
nal was used to control/modify the feedback (FB). It
was either visualized on the same PC as a bar graph (see
Figure 2a) or sent to the VE as a locomotion input in-
side a virtual world (see Figures 2b and 2c; Leeb et al.,
2005).

Figure 2. Schematic model of the used BCI-VR system with the participant wearing the

electrode cap. Three different visual feedback modalities are displayed: (a) standard feedback

whereby a vertical bar is controlled by the BCI output. (b) The participant is wearing an

HMD. A screenshot of the virtual environment as seen by the participant is displayed at the

far right. (c) Picture of one participant during the experiment in a Cave-like system. The

surrounded projected environment creates the illusion of being in a virtual street.

(b, c) Navigation through the VE is controlled by the output of the BCI.
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The experimental paradigm in the Graz-BCI can be
divided into the following steps:

1. Training without feedback to acquire subject spe-
cific data for the used imaginations.

2. Setup of the classifier based on the data of step 1.
If the classification accuracy is above 70%, move
on to the next step, otherwise continue with step 1.

3. Training with feedback (online processing of EEG
signals).

4. Search for optimal frequency bands.
5. Classifier update, if the frequency bands have been

modified or the EEG patterns have been changed.
6. Application to virtual reality.

In general, multichannel recordings using various
mental strategies could be performed in the beginning.
Furthermore offline optimization could be applied to
determine the best mental strategies, electrode posi-
tions, and frequency bands. In the experiments re-
ported, the mental strategies and the electrode positions
were fixed.

A BCI with feedback consists of two adapting sys-
tems, the computer (classifier) and the human subject
(brain); see Figure 3. The so called man-machine learn-
ing dilemma (MMLD) implies that two systems (man
and machine) are strongly interdependent but have to
be adapted independently (Pfurtscheller & Neuper,
2001). The starting point of this adaptation is the train-
ing of a machine to recognize certain EEG patterns of a
man. During this phase, no feedback is given. As soon
as feedback is provided, each cycle results in an adapta-
tion of man to machine: man tries to repeat success and
avoid failure. Wrong feedback can elicit frustration, a
response likely to be associated with a widespread EEG
desynchronization (unspecific activation), whereas a cor-
rect feedback reinforces the desired EEG patterns (spe-
cific and localized activation). In both cases, the feed-
back could introduce noise and deteriorate the
classification performance. Therefore the machine (in
our case the classifier) is not updated after every run or
session as long as the performance of the subject was
similar to the previous sessions and as long as the newly
calculated classifier would not dramatically increase the
performance (improvement � 5%). If the subjects are

well trained (classification accuracies above 90%) they
can produce the same EEG patterns over a long period
(many years; Pfurtscheller, Guger, Müller, Krausz, &
Neuper, 2000; Pfurtscheller, Müller, Pfurtscheller,
Gerner, & Rupp, 2003).

The complete biosignal analysis system used consisted
of an EEG amplifier (g.tec, Graz, Austria), a data acqui-
sition card (National Instruments Corporation, Austin,
USA) and a recording device running under Win-
dowsXP (Microsoft Corporation, Redmond, USA) on a
commercial desktop PC (Guger et al., 2001). The BCI
algorithms were implemented in MATLAB 6.5 and
Simulink 5.0 (The MathWorks, Inc., Natick, USA) us-
ing rtsBCI (Scherer, 2004–2006) and the open source
package BIOSIG (Schlögl, 2003–2006).

3.2 Participants and Experimental
Paradigm

Three healthy participants (between 23 and 30
years old) took part in these experiments over 5
months. All were right handed, without a history of
neurological disease, had normal or corrected to normal
vision, and were paid for participating in the study. The
subjects were familiar with the Graz-BCI (over a period
of between four month and two years), but had no prior
experience with VR (neither HMD nor Cave).

The performances of three different FB conditions are
compared: first the results of the standard BCI bar-FB
with a simple bar (see Figure 2a), secondly using an

Figure 3. A BCI consists of two adapting systems, the computer (C)

and the human brain (B). Both systems are strongly linked, but can

only be adapted independently.
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HMD as the FB device (see Figure 2b), and finally us-
ing a highly immersive Cave projection environment
(see Figure 2c). Each FB condition was measured multi-
ple times and the order of conditions was bar, HMD,
Cave, HMD, bar. Figure 5, to be discussed fully below,
displays which type of FB has been used in each run and
session, respectively.

In general all daily runs defined one session (between
3 and 8 runs). In each run the subject had to imagine
foot or right hand movement in response to an auditory
cue stimulus in form of a single beep (hand imagery) or
double beep (foot imagery). Each run consisted of 40
trials (20 foot cues and 20 right hand cues) and the se-
quence of the cues was randomized within each run.
The timing of the experiment was based on the standard
Graz-BCI paradigm (Pfurtscheller, Neuper, et al.,
2003). Each trial lasted about 8 s with a randomized
interval in the range of 0.5 to 2 s between the trials.
Therefore, a run lasted approximately 6.5 min and one
session lasted about an hour, including the time for
electrode mounting.

The EEG trials from the first two runs of the first ses-
sion without FB (marked with TR in Figure 5, discussed
fully later) were used to set up an LDA classifier able to
discriminate between the two different mental states and
the accuracy rates were estimated by a 10 times 10-fold
cross-validation LDA-training. For this initial classifier
standard frequency bands have been used (10–12 Hz
and 16–20 Hz). In further runs, visual FB was given to
inform the participant about the accuracy of the classifi-
cation during each imagery task. After the first two ses-
sions a new classifier based on these data was computed.
For the determination of the best frequency bands, the
data of the runs with PC-FB (of both sessions) were
used in an optimization process based on a genetic algo-
rithm (GA; Goldberg, 1989; Scherer, Müller, Neuper,
Graimann, & Pfurtscheller, 2004). The purpose of the
optimization task was to find two BP features for each
channel, with two nonoverlapping frequency bands best
suitable to discriminate between both mental tasks. The
optimized frequency bands were for participant P1
11–16 Hz and 22–26 Hz, for participant P2 10–15 Hz
and 20–27 Hz, and for participant P3 10–16 Hz and
19–27 Hz. For these optimized frequency bands a new

classifier was calculated and used in all the remaining
sessions, independent of the conditions. Further details
of BCI training with motor imagery can be found else-
where (Pfurtscheller, Neuper, et al., 2003).

3.3 Simple Standard BCI Feedback
(bar)

In each run the participant had to imagine foot or
right hand movement in response to a visual cue stimu-
lus presented on a computer monitor, in the form of an
arrow pointing downwards or to the right, respectively.
In addition to the visual cue, an auditory cue stimulus
was also given either as a single beep (hand imagery) or
as double beep (foot imagery). Visual feedback indi-
cated by a moving bar (see Figure 2a) was displayed
between 4.25 and 8 s to inform the participant about
the accuracy of the classification during each imagery
task (i.e., classification of right hand imagery was repre-
sented by the bar moving to the right, classification of
foot movement imagery made the bar move downward)
(Pfurtscheller, Neuper, et al., 2003). The length of the
bar was controlled by the LDA-classification output,
which corresponded to the distance to the decision hy-
perplane. A long bar informed the participant that the
classifier could identify the EEG patterns very well and a
short bar indicated that the identification was weaker.

3.4 Virtual Feedback with an HMD

Virtual reality FB was presented with VRjuggler
(VRjuggler, 2005) and a Virtual Research V8 HMD
(Virtual Research Systems, Inc., Aptos, USA) driven by
an ATI Radeon 9700 graphics card (ATI Technologies,
Inc., Markham, Canada). The task of the participant
was to walk to the end of the street inside the virtual
city, whereby any time the computer identified the par-
ticipant’s brain pattern as a foot movement a motion
occurred (see Figure 2b). The same BCI paradigm as in
the above described condition (Section 3.3) was used,
with the difference that the cue was given only acousti-
cally. Correct classification of foot motor imagery was
accompanied by moving forward with constant speed
(1.3 length units/s) in the projected virtual street and
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the motion was stopped on correct classification of hand
motor imagery (see Table 1). Incorrect classification of
foot motor imagery resulted in halting as well, and in-
correct classification of hand motor imagery resulted in
backward motion (Leeb & Pfurtscheller, 2004). Only
during the feedback time of the trial motions could oc-
cur and the feedback was updated 20 times per second.
The walking distance was scored as a cumulative
achieved mileage (CAM), which is the integrated for-
ward/backward distance covered during foot movement
imagination and was used as a performance measure-
ment (see Figure 7 later in this paper). Correct classifi-
cation during the whole feedback time of one trial re-
sulted in a motion of 5 length units and correct
classification during the whole run in a maximum mo-
tion of 100 lengths units.

3.5 Virtual Feedback in the Cave

Two sessions were performed in London in a mul-
tiprojection based stereo and head-tracked VE system
commonly known as a Cave (Cruz-Neira, Sandin, &
DeFanti, 1993). The particular VE system used was a
ReaCTor (SEOS Ltd., West Sussex, UK) which sur-
rounds the user with three back-projected active stereo
screens (three walls) and a front projected screen on the
floor (see Figure 2c). Left- and right-eye images are al-
ternately displayed at 45 Hz each, and synchronized
with CrystalEye stereo glasses. A special feature of any
multiwall VE system is that the images on the adjacent
walls are seamlessly joined together, so that participants
do not see the physical corners but see the continuous

virtual world that is projected with active stereo (Slater,
Steed, & Chrysanthou, 2002). The application imple-
mented in DIVE (Frecon, Smith, Steed, Stenius, &
Stahl, 2001) was a virtual main street with shops on
both sides (see Figure 4). The street was populated with
virtual characters who walked along the street and were
programmed to avoid collisions with the participant.
The task was to go straight forward as far as possible.
Communication between the BCI and the VR occurred
via the virtual reality peripheral network (VRPN, 2005).

The two street scenes (in the HMD and Cave condi-
tions) were slightly different; the first one was a street
through a typical neighborhood with large building
blocks on both sides and the second one was a high
street with shops and avatars (compare the pictures in
Figures 2b and 4). Nevertheless in both conditions the
subject was placed in the middle of the street and the
task was to walk (as far as possible) to the end of the
street. The same BCI paradigm, mapping of motions,
feedback update rate, and speed of walking was applied.

4 Results

All participants were able to navigate in the differ-
ent VE conditions and the achieved BCI performance in

Table 1. Dependency Between the Predetermined Cue
Classes and the Movements Imagined by the Subject and Their
Resulting Motions Performed in the Virtual Street

Cue class

Subject imagined

Foot
movement

Hand
movement

Foot movement Forward Stop
Hand movement Backward Stop

Figure 4. Participant in the virtual main street with shops and

animated avatars during the Cave-FB. The subject wears an electrode

cap (connected to the amplifier) and shutter glasses.
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the VR tasks was comparable to standard BCI record-
ings. The usage of VR as FB stimulated the participant’s
performance and provided motivation. Especially in the
Cave condition (highest immersion) the performance of
two participants was excellent (up to 100% BCI classifi-
cation accuracy of single trials), although variability in
the classification results between individual runs oc-
curred (see Figures 5 and 9, covered later in this paper).

In Figure 5 all performed runs over a period of five
months with simple standard bar-FB, HMD-FB, and
Cave-FB and the training runs without FB (TR) are in-
dicated in each subject. All runs following the indicated
date are performed at on that day and are called one
session. Concerning the difference between the various
feedback modalities, no statistical evaluation of the data
was possible, because only three individuals participated
in these experiments. Nevertheless, the proof-of-
concept could be demonstrated. Two different ques-
tions were investigated: one, the influence of the differ-
ent FBs on the BCI classification accuracy, and two, the
locomotion task performance.

4.1 BCI Classification

The BCI classification accuracy is a parameter, in-
dicating how well the two brain states could be identi-
fied in each run. A classification accuracy of 100% de-
notes a perfect separation between the two mental tasks
(right hand movement imagination and foot movement
imagination). A random classification would result in an
expected classification accuracy of 50%. The accuracy
varies over the 8 s of each trial (see Figure 6; the exam-
ple runs are indicated in Figure 5 with a black dia-
mond). At second 3, the participant received an acousti-
cal cue (single or double beep) and started to imagine
the indicated movement. The time of optimal classifica-
tion performance varies between measurements and be-
tween individuals (see Figure 6), but it was typically at
least 2 s after the trigger (Krausz, Scherer, Korisek, &
Pfurtscheller, 2003). Participant P3 achieved an espe-
cially long and stable brain pattern over nearly the
whole FB time (last row in Figure 6), which directly
corresponds to very high CAM in Figure 7, discussed in
the next section.

The results of all runs with FB over a period of five
months are displayed in Figure 5. The runs with bar-FB,
HMD-FB, and Cave-FB are separately indicated. A sec-

Figure 5. Classification accuracy (in percent) for all runs of the

three participants. Runs with bar-FB, HMD-FB, and Cave-FB and the

trainings runs without FB (TR) are indicated in each subject. A second

order interpolation shows the trend of the classification accuracy over

the time (black line). More than one run has been performed on each

day. Therefore, all data points following the indicated date are

performed at this day and are called a session. The runs marked with

a black diamond � (one in each subject) are analyzed in detail in

Figure 6 (classification accuracy) and in Figure 7 (CAM, task

performance). The runs marked with an asterisk are used for the

ERD/ERS maps in Figure 1.
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ond order interpolation has been performed to show
the trend of the classification accuracy over time (thick
black line). The time courses of the classification accu-
racy for each participant fluctuate considerably over
runs. Additionally, different trends are visible in the
three participants: in participant P1 the classification
accuracy shows a slightly decreasing trend over runs, in
participant P2 a maximum during the Cave experi-
ments, and in participant P3 a relatively constant level.
In Table 2 the mean and standard deviation (SD) of the
classification accuracy with bar-FB, HMD-FB, and
Cave-FB are given for each participant. No differences
in the mean BCI classification accuracy between the var-
ious conditions could be found in participant P1. Partic-
ipant P2 achieved enhanced accuracies in both VE con-
ditions. In contrast, participant P3 had a slightly
decreased accuracy in the HMD condition, with an in-
creased SD. Overall, no influence of the FB condition
on the classification accuracy could be found, because
the variability was too high in all conditions and sub-
jects.

4.2 Task Performance

The participants were able to achieve a grand aver-
age CAM of 49.2%. Single results of the first session

with the Cave-FB obtained for the three participants are
displayed in Figure 7 (the runs are indicated in Figure 5
with a black diamond and are the same as displayed in
Figure 6). The theoretically possible CAM is plotted in
a dashed line and the achieved CAM as a solid line. Be-
cause each participant had a different sequence of the 20
foot (F) and 20 right hand (R) motor imageries which
were randomly distributed to avoid adaptation, the the-
oretical pathways are different in all runs. Nevertheless
the numbers of trials for both classes are the same and
therefore the maximum possible CAM is the same. Par-
ticipant P3 achieved the best performance with a CAM
of 85.4%. A CAM of 100% corresponds to a correct
classification of all 40 imagery tasks over the entire feed-
back time. A random classification would result in an
expected CAM of 0%, because 50% of the trials with
foot motor imagery would be classified correctly (for-
ward movement) and 50% of the trials with hand motor
imagery would be classified wrongly (backward move-
ment). Therefore forward and backward movements
would compensate for each other and would result in a
CAM of 0%. For comparison reasons the CAM perfor-
mances of the bar-FB experiments have been simulated
offline, because during this type of FB the subject didn’t
walk, and therefore no CAM was available.

In Figure 8 the mean achieved CAM of all partici-
pants and conditions is plotted. The trend of each par-
ticipant over the FB conditions is plotted as a gray
dashed line. Figure 9 displays a detailed analysis of the
same data. Each box plot has lines at the lower quartile,
median, and upper quartile values. The whiskers are
lines extending from each end of the box to show the
extent of the rest of the performances. The trend of
each participant over the three FB conditions is indi-
cated with a gray dashed line. Two participants show an
increase over the condition, but participant P1 achieved
worse results with the HMD.

It is nearly impossible to achieve the maximum attain-
able CAM, because every small procrastination or hesi-
tation of the participant results in reduced mileage. For
a perfect outcome, a correct classification must occur
during the whole FB time of all trials. Therefore the
results are not directly comparable to normal BCI classi-

Figure 6. Mean classification accuracy (in percent) of one run

(marked with a black diamond in Figure 5) over the trial time of all

three participants. At second 3 the participant heard the cue (single

or double beep) and started to imagine the specified movement

during the FB period (between second 4.25 and 8).
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fication performance results, where only the value of a
single time point counts. Because a BCI classification of
100% corresponds to a perfect separation between the

two mental tasks at a time point, but a CAM of 100%
corresponds to a BCI classification of 100% over the
whole FB time.

Table 2. Mean � SD of the BCI Classification Accuracy in Percentage of All Three Participants and All Three Conditions (bar,
HMD, Cave)

FB conditions

Participants

P1 (%) P2 (%) P3 (%)

bar 87.7 � 6.6 88.8 � 6.1 94.3 � 2.6
HMD 86.8 � 7.7 93.1 � 2.6 91.3 � 5.2
Cave 86.9 � 8.4 94.7 � 5.4 96.8 � 2.1

Figure 7. Task performance measures of all three participants (P1, P2, and P3) displayed in the

theoretical possibility CAM (dashed line) and the real CAM (full line). The “cumulative achieved mileage”

(CAM) is the summed up distance which was walked forward during foot movement imagination. Each

subject had a different sequence of the 20 foot (F) and 20 right hand (R) motor imageries, therefore the

theoretical pathways are different in all pictures. On the right side of the diagrams the real achieved

CAM is written for each subject, with 63.6% for subject P1, 78.9% for P2 and 85.4% for P3. The small

picture in the bottom right corner shows a zoomed version of the performance measurements. The F and

R sections correspond to the 4 s feedback time during each trial. The cued-paradigm of the BCI has a

trial length of 8 s, as can been seen in the timing diagram in the upper right corner. The trigger cue is at

second 3 and feedback is given between seconds 4 and 8. Between the trials there is random pause

interval.
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4.3 BCI, Presence and Body
Representation

After completing the experiments in the Cave, the
participants were asked to fill in the Slater-Usoh-Steed
presence questionnaire (Slater, 1999) followed by an
unstructured interview. The results of the questionnaire
and interview data have been evaluated separately
(Friedman et al., 2004). After the standard BCI experi-

ments and after the HMD experiments no presence
questionnaires and interviews were conducted. How-
ever, subjects reported that the BCI may be considered
as a very unusual extension of the body and since the
BCI control became more automatic, they gradually
became more absorbed in the VR and felt more present.
One subject stated: “it was more like in a dream—you
move but you do not feel your body physically move.
And just like in a dream—at that moment it seems real.”

5 Discussion and Conclusion

The data indicate that EEG recording and real-
time single trial processing is possible with an HMD or
in a Cave-like system, and furthermore foot motor im-
agery is an adequate mental strategy to control locomo-
tion or other events within VEs. Imagination of foot
movement is a mental task very close to natural walking.
Relatively good performances are obtained with the vir-
tual FBs (Cave better than HMD), excepting some out-
liers. One reason for some inferior classification results
of individual runs, especially in the Cave condition (see
Figure 9; e.g., CAM of 9.5% in participant P3) could be
the loss of concentration in association with a moving
visual scene. This might be due to the fact that percep-
tion of moving objects can have an impact on neurons
in the motor area (Rizzolatti, Fogassi, & Gallese, 2001).
Another possible explanation for the poor results of par-
ticipant P1 (upper diagram in Figure 7) could be that
the participant was asked to imagine the “standing
class” (right hand movement) for several trials (trials 14
to 17 and trials 20 to 25) and wasn’t able to remain
stationary for such a long period. A similar effect can be
observed at the end of the run displayed in the middle
diagram of Figure 7. A faster alternation between the
two classes might achieve better results, but the se-
quence of cues was randomized automatically for each
run. This long standing period leads to the problem
that the feedback doesn’t change over a long time,
which again leads to the subjective feeling of receiving
no feedback about the actual performance. Because of
this it is not intentional on the participant’s part that
thoughts are drifting away and maybe the wrong move-

Figure 8. Mean CAM values of all participants and all three FB

conditions. The trend of each participant over the FB conditions is

plotted as a gray dashed line.

Figure 9. Distribution of the achieved CAM of all participants and

all three FB conditions. Each plot has lines at the lower quartile,

median, and upper quartile values. The whiskers are lines extending

from each end of the box to show the extent of the rest of the data.
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ment is imagined (foot movement) which leads to walk-
ing backwards. In that case the subject immediately real-
izes that his or her thoughts drifted away and focuses
again on the desired motor imagery. It could also be
observed that walking backwards happened mostly in
short and single steps, compared to long-lasting periods
of walking forward within a trial.

The data indicate that the type of feedback has an
influence on task performance (see Figures 8 and 9),
but not on the BCI classification accuracy (see Figure 5
and Table 2). The participants achieved their best task
performances during Cave-FB. The argument that only
the task experience triggered this result can be dis-
proved, because the conditions were recorded in a dif-
ferent sequence. Furthermore the classification accuracy
decreased in participant P1 over time (see Figure 6),
which would be contradictory to that argument. Fur-
ther research is necessary to address the question of
whether a VE or an immersive VE as feedback has an
impact on the performance or can even shorten the
training time. All subjects reported that the Cave ses-
sions were more comfortable than the HMD and both
were preferred over BCI training on a monitor.

In principle it should be possible to achieve the same
performance in both VE conditions, the HMD and
Cave. Participants reported that the limited field of view
(FOV) of the HMD and the weight on the head were
irritating and bothersome. Also the optical resolution of
the HMD was less than in the Cave. The Cave was
compared to the HMD as a VE-FB that was much more
natural and hence preferable.

The main reason why VR was preferred is that it pro-
vided motivation. During the Cave condition the street
was treated as a sort of racecourse and each subject
wanted to get further than the previous subjects. The
motivation seemed to greatly improve BCI perfor-
mance, with the drawback that too much excitement
might have a negative impact, as it makes it harder to
concentrate on BCI control. Two subjects had some-
times nearly perfect runs until the last two or three trials
of the run. At that time they already realized that they
could achieve a new distance record, but this excitement
reduced their concentration and therefore the last trials
were performed badly. This reduced task performance in

such a way that no new record could be achieved. The
aspects of motivation and mental effort during the ex-
periment have a great influence on the BCI performance
and must be taken into consideration in all further BCI
experiments.

The next important step in this research is a change in
the experimental paradigm and to eliminate cue stimuli.
In this way the participant could decide to start walking
at will. Such an asynchronous or uncued BCI system,
however, is more demanding and more complex than
BCIs operating with cue stimuli and a fixed timing
scheme (Borisoff, Mason, Bashashati, & Birch, 2004;
Scherer et al., 2004). In the case of an asynchronous
BCI, not only the discrimination between the different
motor imagery tasks (control states) is necessary, but
also the noncontrol state (resting or idling state) has to
be detected correctly. It can be expected that such an
asynchronous BCI control would facilitate the sense of
presence.

The research reported in this paper is a further step to
the long-range vision for multisensory environments
exploiting only mental activity. EEG-based BCI systems
have a bad signal-to-noise ratio and display a drop of
classification accuracy when more than two or three
mental states have to be classified (Pfurtscheller et al.,
2005; Scherer et al., 2004; Wolpaw et al., 2002). A pos-
sible solution was discussed by Nicolelis (2001). He
suggested using direct implants into the brain for com-
puter control by directly analyzing the activity of single
neurons. Such brain implants (e.g., the Utah array,
Maynard, Nordhausen, & Normann, 1997) are already
temporarily in use in totally paralyzed patients (Dono-
ghue, 2002; Friehs, Zerris, Ojakangas, Fellows, & Do-
noghue, 2004) and commercial products are in clinical
trials at the moment (e.g., Cyberkinetics Neurotechnol-
ogy System Inc., Foxborough, USA). In this case the
signal-to-noise ratio is excellent and more than two
mental states can be classified with high accuracy.
Therefore in a long range vision it is possible that such
implants will be used in healthy subjects as well. In this
way the vision of the science fiction authors using the
brain as the ultimate interface will become reality some-
time in the future.
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