
real-time character engines 1

Running head: REAL-TIME CHARACTER ENGINES

Comparing and evaluating real-time character engines for virtual environments

Marco Gillies1, Bernhard Spanlang2

1 Department of Computing, Goldsmiths, University of London, London, UK,

m.gillies@gold.ac.uk

2 ICREA-University of Barcelona, Barcelona, Spain, bspanlang@lsi.upc.edu

real-time character engines 2

Abstract

As animated characters increasingly become vital parts of virtual environments, then the

engines that drive these character increasingly become vital parts of virtual environment

software. This paper gives an overview of the state of the art in character engines, and

proposes a taxonomy of the features that are commonly found in them. This taxonomy

can be used a tool for comparison and evaluation of different engines. To demonstrate this

we use it to compare 3 engines. The first is Cal3d, the most commonly used open source

engine. We also introduce two engines created by the authors, Piavca and HALCA. The

paper ends with a brief discussion of some other popular engines.

real-time character engines 3

Comparing and evaluating real-time character engines for

virtual environments

Human-like characters are increasingly becoming an integral part of virtual

environments. These could be members of large crowds that are added to an architectural

Virtual Environment in order to give a sense that it is inhabited. On the other hand it

could be a single character that is designed to have detailed social interactions with people

entering the environment. In between these two extremes there are simulations involving

varying numbers of characters with very diverse levels of graphical realism and complexity

of behaviour. Mostly the character will aim to provide a sense that an environment is

inhabited and also a form of social or non social interaction. Many characters will act as

avatars, representations of real people that visit an environment. Avatars are generally

directly controlled by their users and many of the issues relating to them are to do with

providing powerful but easy to use controls, as well as the ability to customise their

appearance. Other characters are computer controlled and autonomous. They must

interact with the environment, other characters, and real people without any human

intervention. Control methods might be relatively simple for members of a large crowd

but might have to involve very sophisticated artificial intelligence for characters that

closely interact with humans. Given their importance, there is an increasing number of

software engines for animating and rendering characters in virtual environments. This

paper will give an overview discussion of contemprorary character engines and an in depth

analysis of two specific engines.

There are many requirements on a character engine. One of the most obvious is that

the engine should provide an appropriate level of realism. This is a more complex issue

than it at first seems. Firstly, a high level of photorealism is not appropriate to all

applications. More subtly, realism of characters is far from being one dimensional.

real-time character engines 4

Realism of graphical appearance is important, but how the character moves and behaves

is also a vital component of realism. Garau et al. (2003) present results that suggests that

ensuring that the levels of realism of these different aspects match is as important as the

level of realism itself. Another requirement is that the character must be able to interact

with its environment appropriately. For avatars this might mean that its user has a

suitable interfaces for controlling its behaviour, while for agents this means having

sufficient AI to respond to the environment. Both these types of control require that the

animation of the character must be able to adapt to new situations. Finally, character

engines for virtual environments must work in real time. This means that the engine must

be effcient but also that it must run robustly without any human intervention other than

the control of avatars.

The rest of this paper will discuss the design and implementation of character

engines. The next section will give an overview of the state of the art and propose a

taxonomy of features for character engines. This taxonomy can be used to analyse and

compare engines. We will use it to provide a detailed analysis of three engines. The first is

Cal3d a popular open source engine, that gives a good implementation of what is

considered the standard functionality in a contemporary engine. The second is Piavca, an

engine developed by the authors (Gillies and other authors) that proposes a new

architecture model for some aspects of a character engine. The third is HALCA

(developed by Spanlang) which extends Cal3d across a number of dimensions of our

taxonomy. Finally, we will give a shorter overview of some other popular engines.

Virtual Character Engines

Virtual Character engines are generally complex pieces of software that peform a

number of different functions. If we are to analyse and compare different engines we need

a common structure which brings out the commonalities and differences between engines.

real-time character engines 5

In this paper we will analyse engines in terms of four basic functions/components that are

to be found in most engines:

Appearance: the static appearance of the character, including modelling and rendering.

Rigs: the basic control structures that are used to move the character.

Animation Generators: the methods that are used to generate the movement data

that animates the rigs.

Control: how the engine can be controlled by higher level process, either by user

interfaces or artificial intelligence simulations.

In many engines these are explicitly represented in the architecture as a hierarchy of

layers with appearance as the lowest and control as the highest (as shown in figure 1).

Higher levels control the activity of lower levels (possibly with some feedback). However,

other engines are not explicitly structured in this way, and the different levels of our

taxonomy are combined in together in a single software module (e.g. rigging and

appearance might be combined in a shader architecture or animation generators can

include aspects of control), so the elements presented here are better thought of as classes

of feature than necessarily layer of a generic engine.

For each component an engine can be analysed in terms of whether the component

is present at all, how powerful the components is (which advanced features it supports),

how flexible it is (how easy it is to alter the functionality), and suitability for typical

Virtual Environments applications.

In the rest of this section we will discuss the state of the art for each component,

both in terms of features that are commonly implemented in current engines and current

research that is likely to find its way into future engines. In the next section we will

analyse a number of animation engines in terms of these features.

real-time character engines 6

Appearance

The appearance of the characters is created with much the same computer graphics

techniques as other aspects of virtual environments. Polygon meshes are the most

common underlying representation of characters. The appearance is generally enhanced

with texture mapping and other more advanced mapping techniques such as displacement

mapping. The increasing use of GPU based shaders allow for more complex rendering

effects and image based effects are more common. While characters are generally hand

modelled, scanning techniques now allow for automatic capture of surfaces and

appearance properties. As this aspect is not particularly unique to character engines (with

the exception of work on rendering based on the reflectance properties of human skin e.g.

Donner, Weyrich, d’Eon, Ramamoorthi, and Rusinkiewicz (2008)), and has considerable

overlap with general graphics we will discuss it in less detail than the more character

specific aspects.

Rigs

A rig is the commonly used name for the control structures that are used to move a

character. At this level the actual movement over time is not considered, only the

mechanisms that make it possible. A rig typically reduces the full complexity of a

character mesh to a small number of degrees of freedom that accurately represent the

movements of the human body. Types of rig are generally divided between those for body

animation and those for facial animation.

Body animation is now almost entirely performed using skeletal rigs. Though some

early engines used direct animation of the character mesh, as far as we are aware, skeletal

rigging is current the only widely used method. A skeletal rig is an abstraction of the

human skeleton consisting of a number of rigid bones linked by rotational joints, forming a

hierarchy. Typically only the top of the hierarchy (the root) has a translational

real-time character engines 7

component. The rig is animated by rotating the individual joints and translating the root.

The fact that a skeletal rig can map, at least approximately, onto the human skeleton, and

therefore the real movement structures of the body, explains the success of the method.

The movement of the skeleton is normally transferred to the character mesh by a process

called smooth skinning. This consists of giving a number of bones weighted influences on

each vertex of the mesh. The movement of the vertex is the weighted sum of the

movements of the bones that influence it. This method is popular and can easily be

implmented on a GPU making it efficient, but it can lead to unrealistic distortions. There

have been recent attempts to improve on it, including better mathematical formulation of

the technique such as Dual Quaternion Skinning (Kavan, Collins, Zara, & O’Sullivan,

2007) and data driven methods that make it possible to model more detailed deformations

of the body, such as Pose Dependent Skinning (Allen, Curless, Popović, & Hertzmann,

2006).

Facial animation rigs are more varied than for body animation, due to the lack of

natural representation like the skeleton. However, two basic methods predominate. The

first is facial bones. This is the same basic technique as skeletal animation and skinning

for body animation, though in this case the bones do not correspond to real structures in

the body, they are merely convenient control handles for creating realistic facial

movements. Whereas the joints in skeletal animation are mostly rotational, facial bones

are mostly animated by translation. The other facial rigging technique, and by far the

most popular is called Morph Targets or Blend Shapes (Parke, 1972). This is a holistic

technique in which examples of complete facial expressions are created. These examples

are blended together to produce new expressions. A final method that has been

investigated in research but has yet to be used in real time engines is the physically

realistic modelling of facial muscles (Terzopoulos & Waters, 1990). The movement is

controlled with muscle activations. Though these methods have the potential for very

real-time character engines 8

accurate modelling of facial movements, the muscularture of the face is extremely complex

making the methods difficult in practice.

Animation Generators

Animation is change of the properties of a character over time. This is achieved by

changing the parameters of the rig over time. This can be done by a wide variety of

methods that can generate time varying rig parameters; we call these methods “animation

generators”. They often function as mapping from high level control input to low level rig

parameters. While in some cases it can be enough to directly control low level rig

parameters (for example, when using morph targets that directly correspond to

meaningful expressions), generally more complex animation generators are used.

Data driven animation. The most common source of animation in real time engines

is to replay animation data that has been created off-line. This data typically takes the

form of a sequence of discrete frames each containing a set of rig parameters. These

frames are interpolated to obtain the final animation. The data is typically created either

by hand animation or through motion capture (recording the movement of a person in a

form that can be applied to an animated character). Data driven methods have the

advantange of high levels of artistic control, realism and expressivity. Motion capture is

more often used when the the focus is on realistic animation while hand animation is used

for more expressive animation.

The main drawback of data-driven animation is inflexibility. As it consists of

replaying pre-existing data, the details are difficult to change in the real time engine. This

makes it difficult to adapt animation to new situations, for example, the animation of

picking up an object will depend on the relative positions of the character and object.

Solving this problem has been the major research topic in data-driven animation in recent

years. The following are some of the most commonly studied:

real-time character engines 9

Constraint based editing. This task consists in adding new constraints to a piece of

motion data, or altering existing ones. Examples include altering a picking up

motion given a new position of the object, or ensuring that the feet remain planted

on the floor when walking over uneven terrain.

Style based editing. Altering the style of an animation or transferring the style of one

animation to another. Style can mean many things, for example, the mannerisms of

an individual or a particular emotional tone of an animation (e.g. a happy walk).

Transitioning and Sequencing. Playing a number of clips one after the other in a new

order so as to get a new sequence of actions.

General Parameterization. Exatracting useful parameters from a large data set of

similar motions. For example, parameterising a kicking motion but the target of the

kick.

A variety of methods have been used to tackle these problems. Some act on single

motions, for example time and space warping (Witkin & Popović, 1995). It is now more

common to use large databases of motion data, and to use methods that combine different

animation clips to achieve new effects. The most commonly used method is to perform a

weighted interpolation on a number of methods for example Rose, Cohen, and

Bodenheimer (1998)’s work on style based editing or Kovar and Gleicher (2004)’s work on

general parameterization. Other approaches include stitching together different animations

on different parts of the body (Heck, Kovar, & Gleicher, 2006). Recent research has

applied machine learning to a number of these problems, particularly style based editing

(Brand & Hertzmann, 2000). Transitioning and sequencing is generally not problematic if

the end pose of the first motion is similar to the start pose of the second (taking velocities

into account). A smooth transitions can be achieved by transforming the root of the

second animation so that it starts at the end position of the first and then blending

real-time character engines 10

between the two clips over a short overlapping window. However, transitioning between

very different poses is very difficult and no satisfactory general solution has been found.

The normal approach is to enforce constraints that only similar poses can be transitioned.

This is typically done by storing them in a graph structure in which only clips with similar

start and end poses are linked. Traditionally these structures have been created manually,

but Motion Graphs have provided a way of automaticaly creating these graph structures

(Arikan & Forsyth, 2002; Kovar, Gleicher, & Pighin, 2002; J. Lee, Chai, Reitsma, Hodgins,

& Pollard, 2002). Thus, there are a number of commonly used data driven techniques that

can be reapplied to a number of different problem. This implies that a character engine

can be structured around a few basic methods while allowing variations in their use.

Procedural animation. As we have seen data driven animation can be inflexible,

making it difficult to achieve precise effects. An alternative approach is to generate

animation on the fly, algorithmically, in order to precisely match a set of requirements.

This approach is called procedural animation. Much early work on animation took this

approach for example the work of Zeltzer and Johnson (1991) or Perlin (1995), but this

approach lost popularity due to its inabilty to match the realism and expressiveness of

data driven animation. However, recent years have seen a partial revival for example

Kopp and Wachsmuth (2004)’s work on generating gesture based on a statistical model of

movement or Neff and Fiume (2006)’s work on aesthetic stance. This new generation has

yet to influence mainstream real time engines, but we will discuss some methods that have

remained popular over the years.

The first is inverse kinematics. The inverse kinematics problem is finding a set of

joint rotations that bring and end effector (e.g. hand or foot) to a specific position in

space, while keeping the limbs involved in a natural looking state. It has a wide range of

applicability, from the interaction with object to walking over varying terrain. For general

skeletal structure the problem is underdetermined and there are no closed form solutions.

real-time character engines 11

This has lead to optimisation and other iterative solution methods (Korein & Badler,

1982). While common in animation tools, the computation cost of these methods have

generally made them unpopular in real time engines. However, there have been many

proposed analytic solutions that are specific to human limbs (J. Lee & Shin, 1999; ?, ?;

Vinayagamoorthy, Garau, Steed, & Slater, 2004). These can give realistic results at a low

computational costs. A related area is the simulation of gaze behaviour, which involves

pointing the head and eyes to a location. It is very challenging to capture data of gaze

behaviour, but simple to animate procedurally (S. P. Lee, Badler, & Badler, 2002;

Vinayagamoorthy et al., 2004; Steptoe et al., 2008; Chopra-Khullar & Badler, 1999; Gillies

& Dodgson, 2002).

One potentially powerful approach is to physically simulate the dynamics of human

movement. For example the work of Hodgins, Wooten, Brogan, and O’Brien (1995) or

Faloutsos, Panne, and Terzopoulos (2001). Current use of physical simulation in real time

engines is mostly restricted to simulating highly dynamic movement with little conscious

control, e.g. the “ragdoll” movements popular in game engines.

Combining Methods. It should be clear from the above discussion that there is a

great diversity of methods that can be used for character animation. Moreover there is no

single best method for all applications. If the character is performing a pre-recorded

speech then replaying motion capture is likely to be the best option, while walking might

require interpolating and transition between motion clips and detailed object interaction

would require inverse kinematics. As all of these tasks might occur in a single scenario a

general engine must support all of them. In fact, different methods of animation must

often be combined concurrently. For example, even when simply replaying a pre-existing

piece of motion capture data, a character is likely to need gaze animation which must be

generated procedurally. This means that it should be possible for an engine to combine

very diverse styles of animation on a single character.

real-time character engines 12

A number of hybrid methods that combine data driven and procedural animation

have been suggested. One example is the work of J. Lee and Shin (1999) that applies

inverse kinematics constraints to motion capture data. They use spline curves to smoothly

blend the frames at which inverse kinematics is applied with the rest of the motion, an

approach (Gleicher, 2001) calls “Per-frame IK + Smoothing”. There have also been many

techniques that use physical simulation as a way of manipulating motion data. Typically

these methods are used to either alter dynamic parameters of motion or apply balance

constraints when editing motion. A good example is the work of Zordan and Hodgins

(2002) that provides a physical simulation of movement. During normal movement the

physical simulation is completely driven by motion capture data. However, when a highly

dynamic event like an impact occurs a response is automatically generated by the

simulation.

Control

The requirements on an animation engine are highly dependent on the style of

control, whether the control is by a person via a user interface or by an AI system. In fact

many of the key research problems in animation come down to making real time

animation effectively controllable while maintaining realism of animation.

As described in the introduction, characters can be divided into avatars, which are

controlled by humans and agents that are autonomous (though the distinction is not

absolute as we shall see). Avatars can be controlled with simple sets of commands such as

”move forward” or ”turn left”. However, recently with more sophisticated forms of input

device, whether they are sensetive analog joysticks or full body motion tracking, the types

of control can be much more diverse. Control schemes can, however, broadly be divided

into two types, discrete control which consists of triggering a actions or events from a

finite set (e.g. “jump”, “wave”) and continuous control, responding in real time to a

real-time character engines 13

continuously changing, possibly multi-dimentional, control signal. Autonomous characters

require some Artificial Intelligences techniques to control them which can range from ad

hoc to sophisticated AI techniques such as as natural language control (Badler et al.,

2000), logic based reasoning(Funge, Tu, & Terzopoulos, 1999), planning(Aylett, Dias, &

Paiva, 2006), agent based AI(Brom et al., 2006) and the control of crowd using path

planning (Pelechano, Allbeck, & Badler, 2007). One particularly active area of research in

AI for character control has been has been non-verbal communication and emotional

expression (Vinayagamoorthy et al., 2006). To add to this complexity more sophiticated

avatars can have their own autonomous behaviour (Vilhjálmsson & Cassell, 1998; Gillies

& Ballin, 2004), which combines this issues of both human controlled and autonomous

characters.

Other consideration

Implementation Issues. The evaluation of a character engine will also include a

discussion of its implementation. This will discuss the general architecture of the engine,

its interfaces to other aspects of a virtual environment, and how it is designed to be used.

The previous discussion has mostly been in terms of implementing engines for high

level character animation concepts. However, most of the methods are highly generic and

re-usable across different software engines. A worthwhile aim is therefore, not only to

develop individual engines but also standards by which high level animation concepts can

be shared between engines. In particular it is important to develop generic interchange file

formats. The file format is related to the issue of content pipelines, the sequence of tools

and file formats used to create the character data and import it into the real time engine.

This have generally been complex, with a number of different types of data (e.g. character

meshes, skeletons and motion capture) being created with separate tools and requiring a

number of additional tools and operations to combine them. The situation has been

real-time character engines 14

improving somewhat in recent years with commercial tools such as 3DStudio Max

providing an integrated environment for many of these task.

Uses. The final part of our evaluation of a character engine will be a brief discussion

of some uses of the engine, demonstrating the types of application it is suited to.

Case Study: Cal3d.

Cal3D is an open source character animation engine that is very commonly used in

open source and virtual environment projects. It originated as part of World Forge, an

open source multi-user virtual worlds project, however, is has become an independent

project. It provides a full range of animation functionality and is designed to be easily

integrated with other engines.

Appearance

Cal3D itself does not have a renderer so its appearance depends heavily on the

graphics engine it is used with. The characters themselves are modeled as polygon meshes

and texture maps are supported. While there is no built in renderer Cal3D is distributed

with an example program that includes a renderer and this example renderer is commonly

used as the basis of the renderer in projects that use Cal3D. This renderer uses standard

OpenGL functionality (though there is also a DirectX version) and is able to produce

good quality rendering, though it lacks advanced features.

Rigs

Cal3D supports skeletal rigs and also morph targets. An engine for skeletal

animation, skinning and morph targets is included, as is file format support for skeletons

and bone weights. Both a software implementation of skinning and support for GPU

based hardware implementation as provided. Morph Targets, though present, as

real-time character engines 15

somewhat less well supported than skeletal animation. They are not supported in the file

format or the hardware skinning model.

Animation Generators

Cal3D primarily works with stored animation data rather than procedural

animation. The main mechanism for combining animation is interpolation, different

animations can be blended together with user specified blend weights. This is controlled

by a module called the ”mixer”. There are two modes in which animations maybe

triggered, as an ”action” or as a ”cycle”. Actions are played once and then end when

completed. Smooth sequencing of actions is achieved by gradually increasing its blend

weight from zero when in begins and gradually returning it to zero before it ends. Cycles

are repeated animations that loop continuously until they are stopped. Cal3D therefore

supports interpolation and (to a degree) sequencing, two of the most fundamental data

driven animation techniques. However, the order in which they can be applied and the

way they are combined is fixed, which may make it impossible to implement some

advanced animation methods.

Control

Controlling the character in Cal3D consists in triggering actions and cycles. Any

higher level control methods are left to the client program.

Implementation

Cal3d is a C++ software library that is designed to be integrated with other engines

rather than be used in a stand alone manner. As shown in figure 2, Cal3d is designed to

sit on top of a renderer that is provided by the graphics engine used and to be controlled

by the main Virtual Environment engine. This architecture makes it easy to combine with

existing system. Cal3d provides a file format for importing mesh, skeleton and animation

real-time character engines 16

data. Exporters for this format are provided for popular 3D tools such as 3DStudio Max

and Blender. This provides Cal3D with an integrated content pipeline via these tools.

Uses

The fact that Cal3D provides complete animation functionality while being easy to

integrate with other engines makes it a popular choice for VE projects. The distribution

comes with a simple demo program that shows off the functionality (see figure 3), but this

is not generally useful as a stand alone program, it is more intended as a guide to how to

use the library. IMVU uses and extends the Cal3d engine for the popular 3D chat room.

The most common use of Cal3D is to integrated it into an existing Virtual Environment

or game engine. For example, it has been successfully integrated into OpenSG (Reiners,

2004) and now acts as its default character animation engine. In this case a Cal3D

character has been wrapped as an OpenSG node and the character can be controlled

(actions and cycles can be triggered) via OpenSG’s field mechanism. The fact that the

two libraries can be so closely combined shows the flexibility of Cal3D’s basic architecture.

Cal3D has also been used as the basis of other animation libraries that expand its

functionality, for example Piavca and HALCA, both of which are discussed later in this

paper.

Discussion

The ease of integrating Cal3D with other VE engines, together with its robust

implementation of standard character animation functionality make it a popular choice.

Its methods for combining animations provide most of the basic requirements for a typical

character. However, the fixed functionality for animation generation can be some what

limiting.

real-time character engines 17

Case Study: Piavca

Piavca (the Platform Independent Architecture for Virtual Character and Avatars)

is a character engine developed by one of the authors (Gillies) for use in virtual reality

research. It was originally developed at University College London but is now in use at a

number of other institutions. The current implementation is built on top of Cal3D

(described in the previous section), it uses Cal3D’s rigging functionality but provides a

new, more flexible model for animation generators. Piavca is available for use under an

open source licence.

Appearance

The renderer used in Piavca is based on the renderer provided with the Cal3D

demos, and so shares the same features. A few minor additions have been made, such as

support for transparent textures.

Rigs

Piavca uses Cal3D’s rigging system and so the functionality is the same. Better file

format support and a hardware implementation have been added for Morph Targets.

Animation Generators

The main innovation of Piavca over and above Cal3D is a new, more modular model

for animation generators. This allows more flexibility in the generators that are available

and how they are combined.

Two key object oriented techniques are vital to the implementation of the Piavca. If

we are to combine very diverse animation methods then we must be able to handle them

in the same way. This mean that each method must be an implementation of a single

abstract representation of animation. Designing an abstract interface that is suitable for

all animation methods is therefore key to the design. This design also allows us to create

real-time character engines 18

an inheritance heirarchy of animation methods. This is very well suited to the situation

described above where there is a great diversity of methods but many are variants of a few

basic techniques that may act as intermediary base classes. The central concept of the

model is a single abstract representation of all possible animation generation process. We

call this representation a Motion. A Motion can be thought of as a data stream,

representing the changing values of joint rotations, morph targets or marker positions over

time. Each Motion can control multiple items, whether these are joints, morph targets or

other animation primitives. The basic operation on a Motion is to get the value of a

particular item at a given time. All Motions are accessed using the same, global,

continuous time representation, rather than, say, a discrete keyframe representation

specific to one Motion type.

The object oriented design has a further advantage. Not only can two animation

methods with the same abstract interface be combined effectively, but the combination

itself can implement the same interface and therefore can be combined in new ways. The

same can be done for operations on a single animation, for example scaling or

time-warping. This makes it possible to easily build up complex animation systems by

composing simple operations. Operations are evaluated on a frame-by-frame basis, rather

than being calculated when the operator is first applied. This allows for a reasonably

constant frame rate.

Motion generators that have been implemented include a data driven keyframe

animation Motion, a procedural gaze Motion and a Motion based on real time tracking

data. A number of operators have been created. For example, unary operators, acting on

a single Motion include:

• time warping

• looping

• a sub time range of a Motion

real-time character engines 19

• transformation of representation (e.g. the Exponential Map (Grassia, 1998))

• masking off certain joints/Morph targets so that are not animated

Operators that combine more than one motion include:

• interpolating multiple Motions

• transitioning between a set of Motions (called a ChoiceMotion)

• Prioritized combining, joints are animated by high priority motion, if they are

present in them, otherwise by the lower priority ones.

There are numerous subclasses of these Motion classes, for example, there are

numerous types of ChoiceMotion which differ in the way in which they choose the next

Motion to transition to.

These operators can be combined to produce produce complex behavior types. For

example, a MotionGraph (Arikan & Forsyth, 2002; Kovar et al., 2002; J. Lee et al., 2002)

has been implemented in Piavca (Gillies, Pan, Slater, & Shawe-Taylor, 2008) by using the

sub time range operator to break up the motions and using multiple ChoiceMotions, one

for each node. Two algorithms need to be provided, one for selecting, at creation time,

which time ranges to use and another for choosing, at run time, which child of the choice

motion to play. This framework can be used for implementing sophisticated behavior. An

example described below is an implementation of Proxemics behavior (see below).

Another useful property of this animation model is that interpolation in different spaces

can be simply implemented by performing a transformation operator onto the inputs to

the interpolation Motion.

Control

Piavca supports both discrete and continuous control types. In our model discrete

control is event driven. Any Motion can receive events which take the form of textual

labels, and respond to them. In hierarchies of Motions events are propagated from parents

real-time character engines 20

to children. Events can, for example, be used to trigger particular actions (e.g. ”Wave”,

”Jump”) or to switch between different types of behavior (e.g. walking to running).

In continuous control the character will respond to a constantly varying signal. This

signal may be multi-dimensional and consist of different items that vary over time (for

example, the position and orientation of a head tracker). This representation of a control

signal is very similar to our original representation of an animation stream. In fact, we can

simply use the Motion class to represent our control signals as well as our animation. This

simplifies the general architecture. For example, when dealing with interacting character it

is possible to use the Motion that animates one character as the control signal of the other.

Implementation

Piavca is implemented as a C++ library using Cal3d for the basic rigging

functionality. A Python interfaces is also provided that provides a scripting interfaces as

well as greater functionality. Piavca is designed to be integrated with Virtual

Environment engines and it has been used with XVR (Tecchia, 2006) and OpenSG

(Reiners, 2004). A number of stand alone applications have also been created using the

Python interface. The overall architecture is shown in figure 4.

One of the stand alone applications is a design tool for character behavior, shown in

figure 5. It provides a graphical environment for creating and editing combinations of

animation generator (Motions). An XML-based file format is also provided to save and

load combinations of Motions. The combination of the tool and file format make possible

to create complex behaviors without programming, greatly speed up the process of

creating a character and making it available to non-programmers. The content pipeline for

Piavca is therefor the following Motion data is created via motion capture and integrated

with mesh data in 3DStudio Max. The result is then exported to the Cal3d file format.

This data is then imported into the Piavca design tool where additional animation

real-time character engines 21

generators are added. The result of this is a Cal3d file format and an additional Piavca

XML format which can then be imported into the Piavca real time engine.

Uses

A Virtual Reality Experimental Framework. Piavca has been used to create software

for virtual reality experiments that involve interaction with a virtual character (Pan,

Gillies, & Slater, 2008). The experiments are run in a partially Wizard of Oz manner, an

experimenter controls the speech of the character, but much of the non-verbal interaction

is automatic. Figure 6 show the behaviors that are used.

The characters’ speech consists of an number of “utterances”, these are audio data

of the speech, combined with facial and body animation. The experimenter can directly

trigger these utterances, which override certain other behaviors. Once triggered the

utterances are sequenced with smooth transitions.

The rest of the character’s behavior is automatic. The character responds to the

behavior of the experimental subject based on two sensors, a head tracker and a

microphone. The head tracker is used to direct the character’s gaze towards the

participant but also to implement proxemic behavior. This means that the character will

maintain an appropriate social distance to the participant as well as turning to face him

or her. The second use of the head tracker is to detect when the participant shifts posture.

This is done so that the character can synchronize its posture shifts with those of the

participant, a behavior that is believed to increase rapport (Kendon, 1970). The

microphone is used to detect when the participant in speaking so that the character can

display appropriate feedback behavior, in this case nodding. Figure 7 shows some still

frames from an interaction with our virtual character, the accompanying video shows the

actual interaction.

real-time character engines 22

A real time non-verbal interaction environment. Piavca has also been used to create

a large screen environment for studying multi-party gestural interaction (Healey,

Frauenberger, Gillies, & Battersby, 2009). A participant interacts with two virtual

characters on a large screen display (see Figure 9). The participant is tracked using a

VICON motion capture system and the data is used to influence the behavior of the

characters. The motion capture data is used to detect specific actions by the participant

to which the characters respond. When the participant approaches the screen the

character also move towards the plane of the screen, so that they appear to be

approaching for a conversation with the participant. A number of gestures are also

randomly triggered. All of these actions are triggered using a Choice Motion. The

characters also turn their gaze towards the participant. This is done by representing the

real time motion capture data as a Motion. This Motion is then used as an input control

signal for a gaze behavior. The behaviors that the character can perform are shown in

figure 8, any of which can be altered depending on the experimental context. This system

significantly extends the range of possible experimental studies of non-verbal behaviors. It

can be used to create real-time manipulations of a variety of aspects of non-verbal

interaction ranging from large scale manipulations of body position to small-scale

manipulations of the position, timing and form of gestures.

Discussion

Piavca provides a far more flexible architecture for motion generators than the fixed

functionality of engines such as Cal3d. This, in combination with the general control

scheme, makes it possible to create a wide variety of complex behavior patterns with little

or no programming. This provides a major advantage over most current real time engines.

However, there are some difficulties with this approach that need to be mentioned. Firstly,

greater flexibility come at a cost of greater complexity. When the set of behavior

real-time character engines 23

generators and ways of combining them is fixed, the possible combinations can be tested

exhaustively. However, with a large and extensible number of generators and

combinations there are a huge number of possible interactions, all of which could be

problematic. We have found that a number of combinations of operators do give

undesirable results. This can create difficulties when trying to create new behaviors. A

number of idioms have been developed to work around difficulties, and these idioms are

gradually being enshrined in standard motion creation scripts to make it easier for

novices. One particular combination issue that has caused considerable issues in the past

has been the relative timing of motions. In many cases, most obviously when

transitioning, motion with different start times had to be combined. This resulted in each

motion having its own local time (i.e. a local 0 time relative to the global time of the

environment). This resulted in a considerable overhead and complexity of having to keep

track of local times and converting between local and global time when combining

motions. It was eventually decided that all motions should use global time but keep track

of their start time. This simplified matters but it is still a complex issue.

Problems also occur due to the assumption that all animation generators can share

a common representation, while in fact some generators lack features that others possess.

The most important example has been access to past and future times in a Motion. With

stored animation data it is a simple matter to access future or past animation data,

however, this is not possible with procedural animation that is generated on the fly or

animation based on real time tracking data. Looking backwards or forwards is too useful a

feature to completely ban, but it can only be applied to certain Motions. No elegant

solution has been found as yet. In practice it seems that decided which operators can be

applied to which Motions is a fairly common-sensical decision and does not seem to have

caused problems for users up to now.

Finally, perhaps the simplest problem to solve in the Piavca framework is the lack of

real-time character engines 24

animation generators. For example, there is currently no support for Inverse Kinematics.

The modular nature of the architecture makes it possible to add new generators relatively

easily so they can been added as and when they are needed.

Case Study: HALCA

HALCA (Hardware Accelerated Library for Character Animation) is developed in

the EU project PRESENCCIA at the Universtat de Catalunya and the Universitat de

Barcelona (Spanlang, 2009). It’s main goal is to allow the user to animate and visualize

several (up to a few hundred) realistic looking characters on single display PCs, in HMD

(head mounted displays) and CAVE like systems. HALCA is being used for experimental

studies in Neuroscience and Presence by partners within the EU project PRESENCCIA

but has also started to be used in several other national and European projects. HALCA

is closely related to Cal3D, extends Cal3D’s animation and visualization functionalities

and allows the user to script it from VR applications such as XVR.

Appearance

The visualization engine of HALCA can be run in different modes. In its simplest

form HALCA uses the basic OpenGL features of the Cal3D demo implementation. This is

a highly portable OpenGL implementation and to our knowledge runs on any graphics

card that supports OpenGL. If HALCA is switched to shader based mode then it can

either load and activate GLSL shader programs from a text file or it assumes that a

shader program of the OpenGL context was activated by the hosting application. If more

complex render effects such as shadows or environment maps that require multiple

rendering passes are used HALCA can handle dynamically changing shaders. For example

if shadow buffers are used the first render pass will be a view from a light source and the

shader will generate an OpenGL FBO (Frame Buffer Object) of the depth information

from there. In the second render pass the shader is changed to one that renders from the

real-time character engines 25

current camera view that can use the previously generated depth information to mix

shadows with the shaded and textured model. In HALCA multiple image map files can be

loaded for each material of a character in order for example to simulate per pixel diffuse,

opacity, gloss or bump properties of a character’s skin. Such maps can also be used to

interactively deform the characters mesh by using them as displacement maps in the

vertex shader by GPUs that support VTF (Vertex Texture Fetch) More complex global

illumination effects such as those created in the Virtual Light Field Project (Mortensen et

al., 2008) have also been used in combination with HALCA. This is described in more

detail in the Uses section below.

Rigs

HALCA uses the Cal3D rigging system. For more visually pleasing and efficient skin

deformations (that avoid the candy wrapping effect of linear blend skinning) on hardware

skinned models HALCA extends Cal3D’s CPU Dual Quaternion implementation to GLSL

shaders. In shader mode HALCA can deliver the skeletal joint transformations to the

GPU either as transformation matrices or as dual quaternions. HALCA provides two

basic GLSL shader programs that can handle linear blend skinning or dual quaternion

skinning(Kavan et al., 2007) to deform the mesh of a character according to pose of the

skeleton. These basic shaders can be easily extended to create specialized effects. During

the initialization, when characters are loaded the mesh information along with morph

target information is loaded into OpenGL Vertex Buffer Objects (VBO)s on the GPU.

HALCA has functionality to minimize the amount of data loaded to the GPU by reusing

vertex and map image data as much as possible. For example if the same character is

added to the scene twice the VBOs and texture maps are transferred to the GPU only

once. Morph targets were added to the file format and their data can be passed on to

VBOs so that they can be processed by the shader. Morph targets can be combined with

real-time character engines 26

both Linear Blend Skinning and Dual Quaternion skinning methods.

Animation Generators

HALCA extends Cal3D’s abstract mixer class to add to the basic animation

functionalities of Cal3D.

HALCA adds animation functions that can

• play and blend animations of different avatars at different speeds

• play and blend temporal parts of an animation

• go through an animation not by time but by an external value (see Control

section). We call such animations morph animations not to be confused with morph

targets.

• play or go through an animation only on specified body parts.

• directly access and manipulate joint rotations and translations on top of blend

and morph animations.

• efficiently access and manipulate the whole skeletal state (One function call is

required to accessed the skeleton or to set it to a particular pose by passing the skeletal

state vector of a character to or from HALCA)

Owing to its simple access to every joint state of the character several Inverse

Kinematics algorithms have been added to HALCA in the XVR scripting language.

HALCA gives access to properties of an animation such as the duration, frame rate,

etc. to the hosting application. Such information can be useful to compute for example

the actual walking speed of a character when animated.

Breaking up animations into motion graphs is something that is not done in

HALCA because such a process may require manual intervention and can be done in an

application dedicated for this purpose off line.

As with all animation mixers not every motion blended with another creates natural

real-time character engines 27

looking movements. Therefore for mixing tasks where the outcome is not clear it is

preferable to use the animation facilities of the preferred animation modeling application

such as 3D Studio Max, Motionbuilder, Blender or Maya.

Control

HALCA provides 3 types of control mechanisms.

As in Cal3D events can be sent to HALCA to blend or play one ore more motions at

a time. In addition, as mentioned in the previous section, an animation can be controlled

by an external value as opposed to playing through time. This functionality has turned

out to be very useful to control the motions of an avatar, for example, by data of a human

physiology measuring device. For example an animation of the movements of the spine

can be linked to respiration data to animate a virtual character to mimic the breathing of

a user.

If 3D tracking data is used then direction control can be used, for example, for head

rotations, tracking data can be directly mapped by manipulating the neck joint rotation of

an avatar. If the number of degrees of freedom tracked is high, for example from a Motion

Capture system is used then the functions to change the whole body state can be used for

efficient control. Integration with a data glove where the data glove sensor output was

mapped directly to finger joint rotations is another example of direct control. For arm or

upper body movements controlled by trackers the inverse kinematics implementations that

use direct joint rotation manipulation have been useful.

To control facial expressions based on morph targets HALCA provides functionality

to dynamically modify the weights of each target. However, if lip synchronization is

required HALCA assumes the animation to be made available from a modeling

application such as 3DS Max or from real time input of a specialized program.

HALCA computes bounding volumes of the skeletal segments of an avatar in order

real-time character engines 28

to make an integration with an existing physics engines such as PhysX, Havok, ODE, etc.

possible. Positional and rotational changes of the bounding volumes can be exchanged

between physics engine and animation system to make a combination of data driven

animation and physical simulation possible.

Since the characters are rendered by shaders HALCA provides functionality to also

control other properties of the character, for example to change the color of the skin, to

dynamically create wrinkles, to make areas of the body invisible dynamically or to expand

areas of the body have been added.

Implementation

HALCA is implemented in C++ with heavy use of STL and shaders written in

GLSL (Rost, 2006). HALCA is provided as a windows dll that can be loaded into any

hosting application that supports OpenGL2.0. Since it is independent of the windows

operating system it can also be compiled for other operating systems. It has been mainly

used in XVR but also stand alone applications based on GLUT have been developed.

The HALCA content pipeline integrates Motion Capture with the Cal3D pipeline.

Motion Capture is processed and integrated with the character data using the

MotionBuilder tool, and the resulting data is then exported to the Cal3D format using

3DStudio Max. Further behavior can be scripted in the XVR scripting language, resulting

in run time behavior.

Uses

Fire Experiment. The fire experiment which was designed for the PRESENCCIA

project was the first use of HALCA (Spanlang & Torsten Fröhlich and Vanessa Descalzo

Fernandez and Angus Antley and Mel Slater, n.d.). For this experiment motion capture

data was acquired in the Vicon system at UCL and animations were edited in Character

Studio of 3D studio Max. Pre designed Animation Clips were merged by scripting in XVR

real-time character engines 29

and HALCA. The goal of this experiment was to identify whether interactively controlled

characters can influence how much a human participant gets scared by a virtual fire.

Virtual Light Field. The flexibility of HALCA that makes it possible to render the

scene with different shaders was used for the light field approach of global illumination

(Mortensen et al., 2008) in order to interactively visualize virtual characters while taking

global illumination effects such as shadows and mirror reflections into account. For this

setup the CAVE like system at UCL was used and the hosting VR engine was XVR.

Avatars were controlled interactively by the inverse kinematics functions built for HALCA

which were connected to real time tracking input in order to move the body, head and the

arms to mimic the movements of the user. The avatar was not rendered directly in the 3D

environment, since in a CAVE system the user can see her own body, but was visible

through mirror reflections and shadows in the virtual environment.

Body Ownership Experiments. At the time of writing several body ownership

experiments are being carried out, the goal of which is to identify how much a human

participant can be made to believe that the whole or parts of an avatars body is his body

(M.Slater & Sanchez-Vives., 2008). For these experiments an integration with the optical

motion capture system Optitrack was developed to control the whole skeleton of

characters in real time with HALCA. In addition several inverse kinematics functions were

created to control the upper body of a character with just 2 or 3 trackers or with

respiration physiology measurements. The integration of HALCA with a data glove is

another example that was used for body projection experiment (Slater, Spanlang, Frisoli,

& Sanchez-Vives, 2008)

Crowds. Owing to HALCA’s efficient and flexible rendering capabilities it is being

combined with the HiDAC crowd simulation module described by Pelechano et al

(Pelechano, Allbeck, & Badler, 2008). In this integration the main functions used are

real-time character engines 30

motion blending and direct root joint manipulation to control the walking behavior of the

crowd members as well as their orientation and location.

Our current tests have shown that it is possible to visualize more than 200

characters that are constructed with about 5000 polygons by using HALCA in GPU mode.

Discussion

HALCA displays a different approach to extending the functionality of Cal3d.

Whereas Piavca’s extensions were narrowly focused, largely on the animation generation

level, HALCA provides a wide range of extensions across all the level. The shader

architecture allows for great flexibility at the appearance level and for a range of advanced

visual effects which are not possible with the other engines described in this paper. It also

allows extensions at the rigging level (dual quaternion skinning) and for greater efficiency

(allowing for large scale crowd simulation). The extensions at the animation generator

and particularly the control level have a strong focus on using real time data from trackers

and other sources (e.g. physiological data). This makes the engine particularly useful for

immersive virtual reality applications.

HALCA’s functionality was successively extended for the new requirements that

were given in the VR experiments in which it was used. Therefore the main architectural

drive was to add as little to the existing functionality in order to fulfill the new

requirements. For example in HALCA there is no attempt to abstract real time tracking

data to an internal motion representation but instead direct joint manipulation is used.

This strategy may not be as pretty from an architectural point of view but has shown to

be useful to get animation tasks done efficiently in VR applications. As opposed to Piavca

(for example), HALCA builds on the existing animation framework of Cal3D. It is

arguable if HALCA’s ad hoc strategy is of advantage in the long run or if it is better to

adapt real time motion merging problems to a more general animation framework.

real-time character engines 31

In HALCA it would be useful to be able to exploit the great flexibility that is gained

by allowing the user to dynamically modify the shader program that renders a character

also brings flexibilities that could benefit if they were controllable by the animation

framework. For example changing the skin color of an avatar dynamically by using a

shader could be done more intuitively if it was possible to use an animation controller

rather than having to directly modify a shader variable by scripting. Such tighter

integration between the flexibility of shaders and animation control is work in progress.

Other Engines

This section will give a short analysis of some other character animation engines.

Built in animation systems.

Many VE and game engines have their own character engines built in. These

generally, have animation functionality that is similar to, or more restricted than Cal3D.

Most support skeletal animation, though Morph Targets are rarer, and have some support

for combining animations. The appearance of the character is determined by the graphics

engine and so is generally more varied than the animation functionality. The control of

the character will also depend a lot on the rest of the engine. An example is the Horde3D

graphics engine which includes skeletal animation, morph targets, and blending of

animation data or the Ogre engine which includes skeletal animation and playing of

animation data. Many open source engines VE engines use Cal3D as their character

engine (including OpenSG as described above).

NB discuss UREAL

Jack

Jack was one of the first fully featured character engines(Badler, Philips, & Webber,

1993), and is still used, particularly for simulation of the ergonomic properties of

real-time character engines 32

architectural and industrial designs. It contains a number of procedural animation

generators and control methods. While the main focus is not on character appearance it is

possible to extensively change the dimensions of the character in order to perform

ergonomic tests with different sized individuals.

VHD++

VHD++ (Ponder, Papagiannakis, Molet, Magnenat-Thalmann, & Thalmann, 2003)

is a general Virtual Environment and character engine. It has a very full set of features at

all levels of our engine. Appearance is modeled through a complete rendering engine as

well as hair and cloth simulation. They have both skeletal body animation rigs and facial

animation including morph targets. The engine can mix numerous animation generators

including keyframe animation; procedural generators (including inverse kinematics, gaze

and a walk generator), and real time data tracking. The control level is based on a general

Virtual Reality framework that has extensive capabilities for real time tracking input, as

well as AI methods for path planning and controlling crowds etc. The engine is designed to

be extensible so that it is a simple matter to add to this already impressive list of features.

Commercial character engines

Havok animation is a character animation library that is shipped with the Havok

game physics engine. It supports a sophisticated set of tools at the rig and animation

generator level. At the rig level it supports skeletal rigs and morph targets. It supports

data driven animation including transitioning, interpolation, addition and mirroring of

animations. It also supports a number of different inverse kinematics methods, from a

general CCD method to a specific solver for footsteps. Finally, being part of the Havok

Physics engine it has extensive support for physics based animation and integration of

data driven and physics based animation. At the animation generator level it therefore

exceeds most of the engines we have seen. While Piavca, has more flexible support for

real-time character engines 33

combining and transforming animations, Havok animation provides a wider range of types

of animation generator, such as inverse kinematics and physics based animation. Havok

animation is designed to be integrated with a game engine and so all appearance and

control aspects will be handled by the main engine.

Natural Motion provide a number of tools and engines for virtual characters in

computer games and visual effects. Their engines only provide animation generation

functionality with control, appearance and skinning being provided by client engines.

Their Morpheme engine includes powerful techniques for data driven animation including

state machine based transitioning, multi-way interpolation and inverse kinematics. While

morpheme has fewer inverse kinematics methods than Havok physics they generally have a

wider range of data driven methods than any of the other engines that are considered here

(though they are not as arbitrarily composable as those of Piavca). Natural Motions

Euphoria and Endorphin systems add a wide range of procedural animations including

extensive physical simulation. They also have numerous methods for combining physically

simulated and data driven animation.

Both Havok Animation and the Natural Motion systems are expensive commercial

systems and they are mostly used for high end computer games.

SAIBA

A final project that should be mentioned is SAIBA(Kopp et al., 2005). This is not

an engine, rather it is an attempt to standardize interfaces between AI and animation

systems, with a particular focus on communicative non-verbal behavior. Two interface

languages have been defined. One, called the Behavior Markup Language (BML) roughly

corresponds to the interface between the control and animation generator levels presented

here, while the Function Markup Language (FML) interfaces higher and lower level AI

processes.

real-time character engines 34

Engines are beginning to emerge that are implementing the SAIBA framework. One

example is Greta (Bevacqua, Mancini, Niewiadomski, & Pelachaud, 2007), a character

engine with special focus on expressive non-verbal behavior. Unlike most of the other

engines we have discussed Greta has a stronger emphasis on facial animation than body

animation as reflected by a sophisticated facial rig. The animation generator and control

levels include a number of specialized features for communicative and conversational

non-verbal communication. These include methods for planning and executing complex

facial expression, which have been on psychological studies of expressive behavior. Other

engines that have fed into the development of SAIBA include the Rea character (Cassell

et al., 1999), Spark (Vilhjálmsson, 2005) and Max (Kopp, Jung, Lessmann, & Wachsmuth,

2003), all of which have a particular focus on the integration of conversation and gesture.

Discussion and Evaluation

This paper has presented a comparison of a number of character engines for virtual

environments, a summary is shown in figure 10. A taxonomy of the different features of an

engine was presented and used in the comparison. This taxonomy has help to elucidate

some of the similarities and difference between engines. It is clear that while some engines

different only in the presence or absence of individual features, some tackle substantially

different aspects of the problem. It also helps explain how certain engines fit together. For

example, both Piavca and HALCA extend Cal3d but they do so in very different ways.

Piavca directly replaces the animation generator functionality of Cal3d with a completely

new module which adds greater flexibility, but leaves the other levels largely unchanged.

On the other hand HALCA focuses primarily in adding functionality at the levels in which

Cal3d is lacking: appearance and control.

We hope that this analysis and taxonomy can help the future development of the

engines discussed, and of future engines, by identifying areas in which the current state of

real-time character engines 35

the art is lacking.

real-time character engines 36

References

Allen, B., Curless, B., Popović, Z., & Hertzmann, A. (2006). Learning a correlated model

of identity and pose-dependent body shape variation for real-time synthesis. In Sca

’06: Proceedings of the 2006 acm siggraph/eurographics symposium on computer

animation (pp. 147–156). Aire-la-Ville, Switzerland, Switzerland: Eurographics

Association.

Arikan, O., & Forsyth, D. A. (2002, July). Interactive motion generation from examples.

ACM Transactions on Graphics, 21 (3), 483–490.

Aylett, R., Dias, J., & Paiva, A. (2006). An affectively-driven planner for synthetic

characters. In Icaps 2006. AAAI Press.

Badler, N., Bindiganavale, R., Allbeck, J., Schuler, W., Zhao, L., & Palmer, M. (2000).

Parameterized action representation for virtual human agents. In J. Cassell,

J. Sullivan, S. Prevost, & E. Churchill (Eds.), Embodied conversational agents (p.

256-284). MIT Press.

Badler, N., Philips, C., & Webber, B. (Eds.). (1993). Simulating humans: Computer

graphics, animation and control. Oxford University Press.

Bevacqua, E., Mancini, M., Niewiadomski, R., & Pelachaud, C. (2007). An expressive eca

showing complex emotions. In Aisb workshop on language, speech and gesture for

expressive characters.

Brand, M., & Hertzmann, A. (2000, July). Style machines. In Proceedings of acm siggraph

2000 (pp. 183–192).

Brom, C., Gemrot, J., B́ıda, M., Burkert, O., Partington, S., & Bryson, J. (2006,

November). Posh tools for game agent development by students and

non-programmers. In 9th international conference on computer games: Ai,

animation, mobile, educational & serious games.

Cassell, J., Bickmore, T., Campbell, L., Chang, K., Vilhjálmsson, H., & Yan, H. (1999).

real-time character engines 37

Embodiment in conversational interfaces: Rea. In Acm sigchi (p. 520-527). ACM

Press.

Chopra-Khullar, S., & Badler, N. (1999). Where to look? automating visual attending

behaviors of virtual human characters. In Autonomous agents conference.

Donner, C., Weyrich, T., d’Eon, E., Ramamoorthi, R., & Rusinkiewicz, S. (2008). A

layered, heterogeneous reflectance model for acquiring and rendering human skin.

ACM Trans. Graph., 27 (5), 140.

Faloutsos, P., Panne, M. van de, & Terzopoulos, D. (2001). Composable controllers for

physics-based character animation. In Siggraph ’01: Proceedings of the 28th annual

conference on computer graphics and interactive techniques (pp. 251–260). New

York, NY, USA: ACM.

Funge, J., Tu, X., & Terzopoulos, D. (1999, August). Cognitive modeling: Knowledge,

reasoning and planning for intelligent characters. Proceedings of SIGGRAPH 99,

29–38.

Garau, M., Slater, M., Vinayagamoorhty, V., Brogni, A., Steed, A., & Sasse, M. (2003).

The impact of avatar realism and eye gaze control on perceived quality of

communication in a shared immersive virtual environment. In Proceedings of the

acm sig-chi conference on human factors in computing systems.

Gillies, M., & Ballin, D. (2004, July). Integrating autonomous behavior and user control

for believable agents. In Third international joint conference on autonomous agents

and multi-agent systems. Columbia University, New York City.

Gillies, M., & Dodgson, N. (2002). Eye movements and attention for behavioural

animation. Journal of Visualization and Computer Animation, 13, 287-300.

Gillies, M., Pan, X., Slater, M., & Shawe-Taylor, J. (2008). Responsive listening behavior.

Computer Animation and Virtual Worlds, 19, 1-11.

Gleicher, M. (2001). Comparing constraint-based motion editing methods. Graphical

real-time character engines 38

Models(63), 107-134.

Grassia, F. S. (1998). Practical parameterization of rotations using the exponential map.

Journal of Graphics Tools, 3 (3), 29–48.

Healey, P. G. T., Frauenberger, C., Gillies, M., & Battersby, S. (2009). Experimenting

with non-verbal interaction. In S. Kopp & I. Wachsmuth (Eds.), 8th international

gesture workshop.

Heck, R., Kovar, L., & Gleicher, M. (2006, September). Splicing upper-body actions with

locomotion. Computer Graphics Forum, 25 (3), 459–466.

Hodgins, J. K., Wooten, W. L., Brogan, D. C., & O’Brien, J. F. (1995). Animating human

athletics. In Siggraph ’95: Proceedings of the 22nd annual conference on computer

graphics and interactive techniques (pp. 71–78). New York, NY, USA: ACM.

Kavan, L., Collins, S., Zara, J., & O’Sullivan, C. (2007, April/May). Skinning with dual

quaternions. In 2007 acm siggraph symposium on interactive 3d graphics and games

(pp. 39–46). ACM Press.

Kendon, A. (1970). Movement coordination in social interaction. Acta Psychologica, 32,

1-25.

Kopp, S., Jung, B., Lessmann, N., & Wachsmuth, I. (2003). Max–a multimodal assistant

in virtual reality construction. KI-Knstliche Intelligenz, 3 (4), 11–17.

Kopp, S., Krenn, B., Marsella, S., Marshall, A., Pelachaud, C., Pirker, H., et al. (2005,

September). Towards a common framework for multimodal generation in ecas: The

behavior markup language. In Proceedings of the 6th international working

conference on intelligent virtual agents (p. 205-217). Springer.

Kopp, S., & Wachsmuth, I. (2004). Synthesizing multimodal utterances for conversational

agents. The Journal Computer Animation and Virtual Worlds, 15 (1), 39–52.

Korein, J. U., & Badler, N. I. (1982). Techniques for generating the goal-directed motion

of articulated structures. IEEE Computer Graphics and Applications, 71-81.

real-time character engines 39

Kovar, L., & Gleicher, M. (2004, August). Automated extraction and parameterization of

motions in large data sets. ACM Transactions on Graphics, 23 (3), 559–568.

Kovar, L., Gleicher, M., & Pighin, F. (2002, July). Motion graphs. ACM Transactions on

Graphics, 21 (3), 473–482.

Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., & Pollard, N. S. (2002, July).

Interactive control of avatars animated with human motion data. ACM Transactions

on Graphics, 21 (3), 491–500.

Lee, J., & Shin, S. Y. (1999, August). A hierarchical approach to interactive motion

editing for human-like figures. In Proceedings of siggraph 99 (pp. 39–48).

Lee, S. P., Badler, J. B., & Badler, N. I. (2002, July). Eyes alive. ACM Transactions on

Graphics, 21 (3), 637–644.

Mortensen, J., Yu, I., Khanna, P., Tecchia, F., Spanlang, B., Marino, G., et al. (2008).

Real-time global illumination for vr applications. IEEE Computer Graphics and

Applications, 28, 56-64.

M.Slater, H. E., D. Perez-Marcos, & Sanchez-Vives., M. (2008). Towards a digital body:

The virtual arm illusion. Front. Hum. Neurosci., 2 (6), 110-117.

Neff, M., & Fiume, E. (2006). Methods for exploring expressive stance. Graph. Models,

68 (2), 133–157.

Pan, X., Gillies, M., & Slater, M. (2008). Male bodily responses during an interaction

with a virtual woman. In (p. 89-96).

Parke, F. I. (1972). Computer generated animation of faces. In Acm’72: Proceedings of

the acm annual conference (pp. 451–457). New York, NY, USA: ACM.

Pelechano, N., Allbeck, J., & Badler, N. (2007). Controlling individual agents in

high-density crowd simulation. In Acm siggraph / eurographics symposium on

computer animation.

Pelechano, N., Allbeck, J., & Badler, N. (2008). Virtual crowds methods, simulation, and

real-time character engines 40

control. Morgan and Claypool Publishers.

Perlin, K. (1995, March). Real time responsive animation with personality. IEEE

transactions on visualization and Computer Graphics, 1 (1), 5-15.

Ponder, M., Papagiannakis, G., Molet, T., Magnenat-Thalmann, N., & Thalmann, D.

(2003, July). Vhd++ development framework: Towards extendible, component

based vr/ar simulation engine featuring advanced virtual character technologies. In

Proc. of computer graphics international (p. 96-104). IEEE Publisher.

Reiners, D. (2004). Special issue on the opensg symposium and opensg plus. Computers

& Graphics, 28 (1), 59-61.

Rose, C., Cohen, M. F., & Bodenheimer, B. (1998, September - October). Verbs and

adverbs: Multidimensional motion interpolation. IEEE Computer Graphics &

Applications, 18 (5), 32–40.

Rost, R. (2006). Opengl(r) shading language (2nd edition) (opengl). Addison-Wesley

Professional.

Slater, M., Spanlang, B., Frisoli, A., & Sanchez-Vives, M. V. (2008, Sept). Virtual hand

illusion induced by visual-propioceptive and motor correlations.

Spanlang, B. (2009). Halca a library for presence research (Tech. Rep.). event lab,

Universitat de Barcelona, www.event-lab.org.

Spanlang, B., & Torsten Fröhlich and Vanessa Descalzo Fernandez and Angus Antley and

Mel Slater, b. . A. y. . . p. . . o. . P., title = The Making Of A Presence Experiment:

Responses to Virtual Fire. (n.d.).

Steptoe, W., Wolff, R., Murgia, A., Guimaraes, E., Rae, J., Sharkey, P., et al. (2008).

Eye-tracking for avatar eye-gaze and interactional analysis in immersive collaborative

virtual environments. In Cscw ’08: Proceedings of the acm 2008 conference on

computer supported cooperative work (pp. 197–200). New York, NY, USA: ACM.

Tecchia, F. (2006). Building a complete virtual reality application. In M. Slater,

real-time character engines 41

Y. Kitamura, A. Tal, A. Amditis, & Y. Chrysanthou (Eds.), Vrst (p. 383). ACM.

Terzopoulos, D., & Waters, K. (1990, August). Physically-based facial modelling, analysis,

and animation. Journal of Visualization and Computer Animation, 1 (2), 73–80.

Vilhjálmsson, H. H. (2005). Augmenting online conversation through automated discourse

tagging. In 6th annual minitrack on persistent conversation at the 38th hawaii

international conference on system sciences.

Vilhjálmsson, H. H., & Cassell, J. (1998). Bodychat: Autonomous communicative

behaviors in avatars. In second acm international conference on autonomous agents.

Vinayagamoorthy, V., Garau, M., Steed, A., & Slater, M. (2004, March). An eye gaze

model for dyadic interaction in an immersive virtual environment: Practice and

experience. Computer Graphics Forum, 23 (1), 1–12.

Vinayagamoorthy, V., Gillies, M., Steed, A., Tanguy, E., Pan, X., Loscos, C., et al.

(2006). Building expression into virtual characters. In Eurographics conference state

of the art reports.

Witkin, A., & Popović, Z. (1995). Motion warping. In Acm siggraph (p. 105-108).

Zeltzer, D., & Johnson, M. B. (1991). Motor planning: An archetecture for specifying and

controlling the behavior of virtual actors. The Journal of Visualization and

Computer Animation, 2, 74-80.

Zordan, V. B., & Hodgins, J. K. (2002). Motion capture-driven simulations that hit and

react. In Sca ’02: Proceedings of the 2002 acm siggraph/eurographics symposium on

computer animation (pp. 89–96). New York, NY, USA: ACM.

real-time character engines 42

Author Note

We would like to thank the funders of this work, including the EU Future and

Emerging Technologies Integrated Projects PRESENCIA and PRESENCCIA, the EPSRC

project Empathic Avatars and BT plc. We would also like to thank the members of the

UCL Department of Computer Science Virtual Environment and Computer Graphics

group for their help and support, and also the following people who have helped with the

development of PIAVCA and HALCA: Mel Slater, Anthony Steed, David Swapp, Insu

Yu,Pankaj Khanna, Adelaida Papadianaki, Angus Antley, Xueni Pan, William Steptoe,

Christoph Groenegress, Joan Llobera, Nuria Pelechano, Ausias Pommes, Alejandro

Beacco Porres, Daniel Marcos Perez, Elias Giannopoulos, Robert Leeb, Stuart Battersby,

Christophe Frauenberger and Patrick Healey

real-time character engines 43

Figure Captions

Figure 1. Different layers in a character engine. .

Figure 2. The basic architecture of Cal3D.

Figure 3. The characters included in the Cal3D demo program.

Figure 4. The basic architecture of Piavca.

Figure 5. Piavca’s graphical design tool.

Figure 6. The behaviors used in the virtual reality experimental framework.

Figure 7. A real and virtual human interacting in an immersive virtual environment

Figure 8. The behaviors used in the non-verbal interaction environment.

Figure 9. A Human Participant Interacting with Two Avatars

Figure 10. A summary of the comparisons made in this paper

 Engine

 Cal3d

 Renderer

 Piavca C++ API

 Cal3d

 Renderer

 Python API

 Python Apps

Appearance Rigs Animation Generators Control

Cal3d a basic polygon

renderer

skeleton and

morph targets

animation data and

basic blending

N/A

Piavca as Cal3d as Cal3d +

hardware morph

targets

generic motion

generation and

combining system

event based and

continuous control

methods

HALCA as Cal3d + plugable

shader architecture

as Cal3d +

dual quaternion

skinning

numerous data driven

and procedural

generators

event based, real

time tracking

and physics based

interaction

UNREAL ? ? ? ?

Jack a basic polygon

renderer

skeleton numerous procedural

generators

various, including AI

and speech driven

interaction

VHD++ fully featured

renderer including

hair and cloth

skeleton, facial

bones and morph

targets

data driven and

procedural generators

+ real time tracking

real time input and

AI

Havok N/A skeleton and

morph targets

extensive data driven,

inverse kinematics

and physics based

generators

N/A

Natural

Motion

N/A skeleton extensive data driven

and physics based

generators

N/A

SAIBA +

GRETA

polygon renderer complex facial rig complex procedural

controllers tailored

to non-verbal

communication

via the BML

language

