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Abstract— Intelligent sensor/motor allocation is
gaining in importance in many areas of robotics and
autonomous systems. It allows the autonomous en-
tity to allocate its resources for solving the currently
most critical task depending on the entity’s current
state, its sensory input and its acquired knowledge
of the world. Such architectures which support dy-
namic motor allocation are invaluable for systems
with limited resources. Biological systems also build
and maintain a world-model to enable intelligent
motor decision making. Based on recent advances
in attention research and psychophysiology we pro-
pose a general purpose push-pull selective attention
mechanism for building a world model and intelli-
gent motor action control. We implement and test
an architecture called A-BID, which is guided by a
neural network implementation of a selective atten-
tion mechanism that is used to build a probabilistic
world model. Using A-BID, the system performs
at each time step the action that is optimal in the
Bayesian sense.

Index Terms— Attention,
sensor fusion

autonomous systems,

I. INTRODUCTION

Selective attention has recently become a key concep-
tual inspiration from neurobiology that motivates de-
sign of powerful information processing systems [3,4,7].
In such frameworks, an attentional window or ”spot-
light of attention” usually contains a subset of the sen-
sory data perceived by the information processing sys-
tem [6]. This ”spotlight of attention” is forwarded to
higher-order processes that plan and trigger responses
of the system. Such architectures are vital for systems
with limited resources. Often such systems are also de-
signed to learn by acting, under utilization of atten-
tional strategies [7]. Nevertheless, it is often unclear
how the data-flow between the different components of
such complex systems should ideally be modelled.

Based on psychophysiological studies a push-pull
mechanism for selective attention in the human extras-
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triate cortex has recently been proposed [1]. Such a
mechanism allows for optimal data-flow between the
different subsystems and allows load balancing. Here
we propose a general purpose push-pull mechanism of
selective attention for a system that learns through ac-
tion. Attentional spotlight is generated by a winner take
all neural network and this is used as a goal-oriented
attentional behavior. In our experiments we explore
how, for a given complex task, attention guided world
model is used to perform actions that are optimal in the
Bayesian sense. We propose a general-purpose archi-
tecture named A-BID (Attention-Bayesian-Intelligent-
Decision) which employs biologically inspired mecha-
nisms enabling it to alternate between volitional, top-
down and reflex level actions to maintain coherence of
action. Our model was inspired by the distributed adap-
tive control (DAC) architecture proposed earlier for con-
trolling behavioral systems that learn to act optimally
to solve a given task [11,12]. Here we propose how DAC
could be improved using attentional modulation of sen-
sory data. In the next sections we lay the mathematical
foundations for A-BID’s data association, world model
building and decision making and introduce our neural
network implementation for selective attention. Finally
we discuss a concrete robot simulation task to validate
the systems performance.

II. MANAGING BoTTOM-UP MULTIMODAL SENSORY
DAta

The question we address in this section is how an
autonomous entity manages the amount of multimodal
sensory information it receives continuously. In the fol-
lowing, stimulus refers to a single modal observation (or
data unit) and target means a well-defined physical ob-
ject that also exists in the same space as the autonomous
entity. Targets are perceived by the autonomous entity
through the multimodal stimuli they evoke. The stimuli
first have to be associated to existing targets, or if the
stimuli is spatiotemporally distant from existing targets
new targets have to be created. In this section we dis-
cuss the so called data association (or data alignment)
problem.

A. Joint Probabilistic Data Association

Joint probabilistic data association (JPDA) is a pow-
erful tool for solving data association problems, which
arises in many applications such as computer vision,
surveillance, mobile robots etc. JPDA is a single-scan
approximation to the optimal Bayesian filter, which as-

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on December 9, 2008 at 04:37 from |IEEE Xplore. Restrictions apply.



sociates latest observations to known targets sequen-
tially. JPDA enumerates all possible associations be-
tween observations and targets at each time step and
computes the association probabilities 3;, which is the
probability that the j-th observation originated from
the k-th target. Given such association probabilities,
the target state is estimated by Kalman filtering [9] and
this conditional expectation of the state is weighed by
the association probability. Let z¥ indicate the state of
target k at time step ¢, wj;, the association event where
the observation j is associated to target k and Y;.; stays
for all the observations from time step 1 to time step t.
Then the state of the target can be estimated as

E(@f|Yie) = ) E(af|w, Y1) P(w] Vi) (1)

= ZE(mf|wj;€,Y1;t)P(ij|Y1:t) (2)

where wj;, denotes the association event where ob-
servation j is associated to target k and wgr denotes
the event that no observation is associated to target k.
Therefore the event association probability is

Bik = P(wjk|Y1:t) (3)

JPDA computes a validation gate for each target using
the kalman innovation of new observations. It only con-
siders observations inside the validation gate for each
target. For further mathematical details of JPDA see
[9].

The computation of §;; requires a summation over the
posteriors and its exact calculation is NP-hard and is the
major drawback of JPDA [5]. The number of associa-
tion events rise exponentially in relation to the number
of observations. We therefore implemented a Markov
Chain Monte Carlo method to compute (3;; in polyno-
mial time similar to the proposal by Oh and Sastry in
[15].

B. Markov Chain Monte Carlo Computation of B

In our system, the Markov Chain Monte Carlo
(MCMC) method is used to estimate the association
event probabilities §;; in polynomial time and with
good stability as shown in [15]. For this the problem
is reformulated as a bipartite graph. Consider the bi-
partite graph G = (U,V, E), where U is a vertex set
of predicted observations, V is vertex set of observa-
tions and E is mapping predicted observations (or in
other words a target) to an observation. We thereby
only consider feasible mappings, i.e. the ones that re-
spect the validation gate criteria for the JPDA. The
algorithm starts with one such feasible mapping and a
Markov chain is generated. For details of the MCMC
approximation of (3;i, its convergence and stability see
Oh and Sastry [15]. The polynomial time complexity
with respect to the number of targets allows MCMC to
be used for computing 3, in real-time.

III. GoAL ORIENTED SELECTIVE ATTENTION

Biological nervous systems are still intriguingly su-
perior to what can technically be implemented today
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for sensory data processing. Recent research has shown
that the retina transmits between one and ten million
bits per second, which is about the same rate as an Eth-
ernet connection could support, to the brain [13]. Here
we explore how attentional selection can add functional
advantages to behavioral systems that deal with large
amounts of sensory data. In particular, we consider here
goal-oriented top-down selective attention as an infor-
mation bottleneck that filters the most relevant sensory
data, depending on the current task of the system [14],
[1]. Such an information bottleneck, that changes dy-
namically with the system task, is critical for the sur-
vival of biological organisms as the incoming sensory
data clearly overwhelms the available limited computa-
tional resources. In the next subsections we discuss our
neural network implementation of such a goal-oriented
selective attention mechanism and a load-dependend
push-pull mechanism for optimal load balancing.

A. Attentional Spotlight Generation

For the implementation of the selective attention
mechanism we use the IQR system for distributed large-
scale real-time real-world neuronal simulations [18].
IQR allows implementing large neural networks for real-
time applications and interfacing them to real world de-
vices. As suggested by Itti and Koch [6], we imple-
mented a set of neuronal feature filters and excitatory,
inhibitory and time-delayed connections between them
for saliency point computations. The selection of the
feature filters depends on the current state of the sys-
tem. E.g. if the system is running out of power, the fea-
ture filters for the charger have stronger excitatory in-
fluence on the salience computation. In the experiment
section examples of such feature filters are discussed in
more detail. This computation delivers goal-dependend
salient target locations which are a subset of the total
number of targets the data association mechanism has
computed before (see figure 1).

B. Load-Dependend Push-Pull

Recent psychophysiological research suggests that the
selective attention is load-dependend, i.e. how many
unattended stimuli are processed depends on the de-
gree to which attentional resources are engaged by an
attended stimulus [1]. This provides evidence for a load-
dependent push-pull protocol of selective attention op-
erating at intermediate processing stages of the sensory-
data. Such a push-pull protocol has behavioral effects
for an autonomous system: when the attentional load
is low the system can allocate motor and computa-
tional resources for unattended targets. Our architec-
ture makes use of this load-dependend push-pull mech-
anism and this allows the acting system to switch be-
tween volitional, reflexive and explorative behaviors.

IV. WORLD MODEL AND BAYESIAN DECISION
MAKING

The world model of an attention-guided behaving sys-
tem should ideally consist of the targets it attends to,
but also if possible the unattended targets. Such a world
model, or dynamic memory, allows the system to plan
its actions depending on the top-down attentional load
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Fig. 1.  Goal-oriented saliency computation from multi-
modal sensory input: The multimodal sensory input (A)
to the JPDA-MCMC algorithm is associated to existing tar-
gets (B). If the stimuli are distant enough from already ex-
isting targets, new targets are created. The goal-dependend
saliency computation filters output the most salient targets
depending on the current state of the system and the task
at hand (C) .

and the bottom-up sensory input. In this section we
discuss the building, maintenance and the use of such a
world model for decision making.

A. A Dynamic Transient World Model

The data association and the attentional mechanisms
deliver constant input to the world model. Our world
model contains the spatial and temporal information of
a total set of targets with the attended ones being rep-
resented more relevantly than the unattended ones. We
write O for relevance of a certain target s at time ¢, and
are interested in the following conditional probability:

P(OL|F{(©5") Ay(s)) (4)

where F!(©!71) and A;(s) are two time-dependend
functions which weigh the target s. For example
F!(©!1) evaluates the spatial proximity of the target
if there is at least one onset stimulus associated to this
target and decays the current weight of the target other-
wise. Whereas A;(s) evaluates the goal-dependend at-
tentional saliency of this target. By computing the joint
distribution of these relevance probabilities for all tar-
gets s the system can perform the motor action appro-
priate for the most relevant targets. The following sub-
section elaborates the update of these relevance proba-
bilities. In the experiments section a concrete example
for the world model and the Bayesian decision making
is discussed.

B. Optimal Bayesian Decision Making

Let us assume that we can compute relevance prob-
abilities of individual targets as shown above in eq. 4.
Given these individual target relevances we are inter-
ested in the fused relevance distribution:
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P(O'|F'(©'1)Ay) (5)

We express this probability as the normalized sum of
probabilities of individual relevances:
P(OF|F{(0,1)Ai(s)S)

Z P(s
(6)

where random variable S € 1...n, n being the num-
ber of targets and P(s) indicates the probability of this
target. As P(s) is uniformly distributed over all targets
this allows for normalization.

P(O'|F (0" 1)

V. A-BID ARCHITECTURE

The above sections discussed the individual computa-
tional modules of the A-BID architecture. This section
elaborates on a general overview with all its subparts.
The bottom-up multimodal sensory data is continuously
pushed by the individual sensors to the data association
mechanism, which aligns the multimodal stimuli to al-
ready existing targets or creates new targets. The re-
sult of this is forwarded to the world-model but also to
the saliency computation module. In parallel the goal-
oriented attentional spotlight generation modulates the
relevance of target representations in the world model so
that depending on the current task the representation
of relevant targets are enhanced. In the world model
the relevance of the individual targets are represented
probabilistically. The Bayesian decision making mod-
ule operates on this world model and generates motor
actions which are optimal in the Bayesian sense.

_decision World-Model
maklng

update

modulation

motor
acﬂon

multimodal
pull data association | ————»
(JPDA-MCMC)

|

(1) Bottom-up Sensory Data

attentional
“spotlight”
(saliency map)

Sensor2

Fig. 2. A-BID Architecture and the Push-Pull Data Flow:
1) The bottom-up multimodal sensory data are pushed as
they become available. 2) The data association mechanism
aligns the multimodal stimuli to already existing targets or
creates new targets. 3) The goal-oriented attentional spot-
light generation mechanism modulates the relevance of tar-
get representations in the world model so that depending on
the current task the representation of relevant targets are
enhanced. 4) The world model is a probabilistic representa-
tion of the relevance of the targets at hand. The Bayesian
decision making grounds on this world model and generates
motor actions that are optimal in the Bayesian sense.

VI. METHODS

To test the above discussed architecture we consider
the following robot swarm scenario. A swarm of robots
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are on a common mission in a given environment. One of
the robots named A-BID is involved in the specific task
of aiding expired (i.e. broken-down or out of charge)
agents. This means that A-BID first has to localize the
expired agents using its sensors and approach them for
repair or recharge. A-BID is equipped with a limited
number of distance-measurement sensors like sonar and
laser range scanners. With the range-scanners A-BID
has to scan the environment and recognize the agents
to accomplish the given task. From time to time, A-
BID has to go back to the base station to recharge it-
self. Solving this multiple goal task involves multimodal
data association, goal-driven selective attention gener-
ation and maintaining a world model, which is used to
compute the optimal action in the Bayesian sense. We
simulated this real-world scenario and used the A-BID
system for solving the given task (figure 3).

Base
Station

[ A-BID O Agents

Fig. 3. A-BID experiment setup: A-BID can only perceive
the world inside the indicated circle as the range of its sen-
sors is limited. Nevertheless, A-BID’s world model contains
agents outside of its sensory range, if it had perceived them
in the past. The probability about the certainty of the state
of such targets outside A-BID’s sensory range will constantly
decay with time, which allows A-BID to slowly forget what
it had seen in the past. All the involved entities are con-
stantly in motion. A-BID has the task to locate non-moving
agents and approach them to recharge and/or repair.

A. A-BID Experiment: World Model and Bayesian De-
ciston

We simulate the data from different range sensors and
use this as multimodal stimuli to the JPDA-MCMC al-
gorithm. This creates targets of which the relevance
probability has to be computed. In the following we
derive the necessary concrete equations for the general
ones shown in 4.

The general forms of equations 4, 5 and 6 have to
be instantiated for this concrete experiment as in the
following. Let us assume that the motor action consists
simply of choosing a direction of motion v € 0..360 and
a distance ¥ € 1..10. The best action is then chosen in
the direction v of the most relevant target at distance
1 in the world-model. We are interested in computing
the most relevant direction of motion v and distance .
Therefore we are interested in the probability:
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P(yp|F{ (05 A(s))

As F is a function of distance d and time ¢t we can
express F' as the known quantities for a single target.
These quantities are, the distance d to A-BID, the time
t since the time of a previous stimulus associated to
this target, the orientation ~; relative to A-BID and
the attentional weights a; for each target. This lets us
formalize the above probability as:

(7)

First we consider the conditional probability 7 as if
there were only one target ¢ and without attentional in-
puts a;. Assuming conditional independence for angle
and distance domains we do the following decomposi-
tion:

P(vylditivi) = P(ylditivi) P(Y|ditivi) P(tidivvi)

P(yldy, ...dntyy  tn Y1y - YnQ1y -y Gp)

The probability distributions P(vy|d;t;7y;) and P(1)|d;t;v;)

are Gaussian distributions with the following means and
standard deviations:

diti
N(%a 7)
C1

N (cad;, cstid;)

P(v|ditivi)

P(y|dtivi)
and we assume the uniform distribution

(®)
(9)

(10)

where c¢q, ¢ and c3 are constants.
The semantics of the above equations are the follow-
ing:

Equation 8 : this Gaussian is centered on the angle ~;
at which the agent ¢ is located. The standard deviation
is a function of time ¢; at which this agent was last per-
ceived and the distance d; at which this agent is. This
allows A-BID to gradually forget (time decay) what it
had seen in the past, as past information is always prone
to change in a dynamic world.

Equation 9 : analogously for the distance domain, the
Gaussian is centered on the distance d; of the agent and
the standard deviation is again a function of time ¢;,
allowing a time decay.

Equation 10 : this joint probability is uniform as we
do not have any prior information about possible corre-
lations between those random variables.

Now to consider the relevances of all the targets for
the computation of the total relevance as shown in equa-
tion 6, which we bring back the attentional components
a; and consider the following conditional probability dis-
tribution:

(11)
(12)

P(yldy, ...dnty, . tny1, o YnQ1y -y ) =
a;
> = Pylditins) P(4lditi) P(tidiny)

tot

where azo¢ is the sum of all attentional components
a;.
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This means that the attentional components a; weigh
the shares of the individual agents to the joint condi-
tional probability distribution. In other words, atten-
tion modulates the world model, which is expressed as a
probability distribution that changes in each step with
the sensory input.

B. A-BID Experiment: Selective Attention Computa-
tion

The robot A-BID can have several goals at any given
time. When it is not running out of charge its goal
is to localize other robots which are not moving and
approach them for aid. On the other hand, when A-
BID is running out of power, its goal is to get back
to the base-station for recharging itself. Therefore the
top-down goal-oriented saliency computation takes the
current state of A-BID into account. Different feature
detectors were implemented to code for selected features
such as motion, density of targets etc. The saliency com-
putation basically delivers the a; attentional component
for the probability computation in equation 12. Fig-
ure 4 describes the neural network implementation for
saliency computation, done using the large-scale neu-
ronal simulator [18].

multimodal sensory data

\l
data association JPDA-MCMC

\J
targets

feature filter 1 feature filter-n

Feature Enhancement / Inhibition via
Lateral Connections

IQR

Attentional
Saliency map

Fig. 4. A-BID Neural Network Implementation for Atten-
tional Spotlight Computation: The large-scale neuronal sim-
ulator IQR is used to compute the saliency map using the
feature detectors. The target data (after data association
using JPDA-MCMC) is filtered using various feature filters.
Some feature filters like, motion, density, loneliness etc. are
used here to compute salient points.

For the Bayesian probability computations, the
ProBT library was employed [19]. All implementations
were done in a C++ Linux environment on a Pentium
M 1.7 GHz processor.

VII. RESULTS

We used 10 agents who move around the experimen-
tal field of a 600 by 600 pixels window. They start
with a maximum speed and maximum energy but slow
down as the energy drops. The energy-drop is propor-
tional to the covered distance. Their direction of motion
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is arbitrary but always inside the field. A-BID always
starts from the base station and alternates between ex-
plorational and exploitational time slots. During ex-
ploration it moves about the field randomly to detect
the agents. Thereby the multimodal sensor fusion and
attentional saliency computation delivers input to up-
date A-BID’s world model. During the exploitational
time slot, A-BID performs intelligent motor action as
described in the methods section. We compare the per-
formance of A-BID in two categories: use the world
model in the exploitation phase and in the lack of it.
When the world model is not used to compute an intel-
ligent action, A-BID is in constant exploration. For each
category 5 trials each with 5000 time-steps were carried
out. Figure 5 illustrates the performance during the
simulation. The probabilistic world model computed
for this instance is shown in figure 6.

expired agents

/\

xXaw /  \

(18] &

R0

/Q
7 \

running agents

base
station

ABID

Fig. 5. Snapshot from A-BID Experiment: The bigger cir-
cle surrounding A-BID shows the sensory range of A-BID.
Everything outside this range is not perceived by A-BID.
The smaller circles surrounding some of the agents signify
that the corresponding agents are expired. See figure 6 for
the computed probabilistic world model for this situation.

Figure 5 shows a snapshot of the A-BID simulation
GUI. The probabilistic world model for this particu-
lar situation is shown in figure 6. This Bayesian world
model allows A-BID robot to choose the probabilisti-
cally best motor action.

We look at the number of recharged agents during
each trial and also at the total expiry time of all agents
together in each run and observe a significant improve-
ment when A-BID uses the probabilistic world model
and motor action selection (WM indicates the use of
world model and non-WM indicates the use of a re-
active system that explores the robot arena without a
world-model or attentional mechanisms)). (See figures
7 and 8).

VIII. CoNCLUSION AND FUTURE WORK

Here we introduced our first mathematical framework
and computational architecture of a Bayesian world
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plTabulatedDistribution(Distance, Angle)

P(Distance Angle)

0.0009
0.0008
0.0007
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0.0005
0.0004
0.0003
0.0002
0.0001

Fig. 6. Example of A-BID world model probability mani-
fold: Figure shows the probability distribution computed for
the instance shown in figure 5. Angles range from 0..360 in
anti clockwise direction and distances range from 1 to 10..
As A-BID had ”seen” before that there are some slow agents
(higher saliency) along the 90 degree direction, the probabil-
ities for those areas are higher. The peak is at 85 degrees and
distance 6, which corresponds to the positions of the clutter
of expired agents in figure 5. This world model of A-BID
suggests the most probable action as the one that leads to
the agents, which were perceived to be running slow in the
past. This probability distribution is computed at each time
step before A-BID takes an intelligent motor action decision.

(o)
o

o]
(=]

~
o

D ~
(&) o

D
(=]

# recharged agents

[,
o1

[$2)
(=]

R .

WM non-WM

Fig. 7. Number of recharged agents were significantly higher
(left boxplot) when using the A-BID world-model architec-
ture than when not using it (right boxplot).

model, which uses multimodal data association and se-
lective attention mechanisms to enable intelligent motor
action selection. Our probabilistic model was validated
using a multi-goal robotic swarm simulation. In future
we plan to validate our model on real robots for solv-
ing real world tasks under limited resources and time
constraints.
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Fig. 8. The total expiry time of the agents, i.e. their in-
active time as they had run out of charge, is significantly
less when using the A-BID world-model architecture (left
boxplot) than when not using it (right boxplot).
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