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Categorization of colour has been widely studied as a window into human 
language and cognition, and quite separately has been used pragmatically 
in image-database retrieval systems. This suggests the hypothesis that the 
best category system for pragmatic purposes coincides with human 
categories (i.e. the basic colours). We have tested this hypothesis by 
assessing the performance of different category systems in a 
machine-vision task. The task was the identification of the odd-one-out 
from triples of images obtained using a web-based image-search service. 
In each triple, two of the images had been retrieved using the same search 
term, the other a different term. The terms were simple concrete nouns. 
The results were as follows. (1) The odd-one-out task can be performed 
better than chance using colour alone. (2) Basic colour categorization 
performs better than random systems of categories. (3) A category system 
that performs better than the basic colours could not be found. (4) It is not 
just the general layout of the basic colours that is important, but also the 
detail. We conclude that (i) the results support the plausibility of an 
explanation for the basic colours as a result of a pressure-to-optimality, 
and (ii) the basic colours are good categories for machine vision 
image-retrieval systems. 
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1. Introduction 
 
The question of why the continuously-variable quality of colour is linguistically 
segregated into the categories of the basic colours (red, blue, etc.) has been studied by 
anthropologists, linguistics and psychologists for 50+ years. Recently, researchers in 
machine vision have also considered colour categorization; not for communication but to 
facilitate retrieval from image databases. We have investigated whether these two fields 
of study have an overlap, by assessing whether optimal categories for machine vision 
agree with human linguistic categories. Our results are consistent with this agreement. 
Thus the contribution that we hope to make to the debate on the origin and nature of 
human colour categories, is to increase the plausibility of a pressure-to-optimality 
explanation. In this introduction we review work on colour categorization by human- and 
machine-vision. 
 
 
1.1 Nature of the Basic Colours 
 
Although the quality space [1] of colours form a continuous manifold [2], superficially 
free of landmarks and sub-divisions, human language contains colour words that 
reference particular colours or regions of colour. These colours names vary in status; 
typically there are a special few that: (i) are not defined primarily by reference to others, 
(unlike, for example, ‘yellowish-green’), and (ii) have unrestricted applicability (unlike, 
for example, ‘blond’). Such names are said to be ‘basic colour terms’, and their referents 
are ‘basic colours’. Since being proposed, the criteria for ‘basic-ness’ have been refined 
beyond the simple statements above and added to [3], but difficult cases still arise [4]. 
However, interest in basic-ness does not primarily revolve around asking which or why 
some terms are basic, rather the focus is on whether and why the basic colours of 
different languages are the same. 
 
An extreme position that can be taken on these questions is ‘linguistic relativism’ which 
maintains that the basic-ness or not of colours are facts that are grounded completely in 
language, and as such should be expected to vary between cultures dependent on local 
concerns and idiosyncratic history. At the other end of a spectrum of positions is 
‘semantic universalism’ which holds that the basic colours are widely agreed upon across 
cultures, so simple and correct translation is possible. This debate, now in its fifth decade, 
is often characterized as a battle [5-7] with both sides sometimes suspecting the other of a 
more substantial agenda than settling a question in colour science. 
 
Central to the debate is Berlin & Kay’s landmark study [3] of colour words in 20 
languages. On the basis of that study they claimed that the “basic color terms of any 
given language are always drawn” from a universal inventory of eleven: black, grey, 
white, red, orange, yellow, green, blue, purple, pink and brown (see figure 1). These 
eleven colours are now often referred to as the basic colours. 
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Figure 1. This refinement of a previously published diagram [8], shows the 
psychological structure of the eleven basic colours. 

 
 
Berlin and Kay’s thesis has been challenged on several grounds. Including: 
 

• Criticism of the methodology used [9-11] 
• Identification of counter-examples in non-industrialized societies. For example, 

the language of the Berinmo, a Melanesian people, has only five basic colour 
categories, but two of them - ‘nol’ and ‘wor’ – have a shared boundary that lies 
firmly within the English ‘green’ region [11, 12]. 

• Identification of counter-examples in industrialized societies. For example, the 
French  term ‘pourpre’ does not include violet colours as the English term 
‘purple’ does [13], and Russian has arguably an additional basic colour terms for 
light blues [4]. 

• Small but significant inter-cultural variation in the colour chosen as the most pure 
exemplar of a category, even between cultures with superficially the same system 
of categories [14, 15] . 

 
However, despite these evidential challenges the findings of the recently completed 
World Colour Survey of 110 languages broadly support the thesis that there is a strong 
tendency towards basic colour terms with similar referents to the Berlin and Kay 11 
BCTs [16, 17]. It remains to be seen whether the improved methodology of the World 
Color Survey will answer all the criticisms levelled against the original Berlin and kay 
study. 
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1.2 Explanations of the Basic Colours 
 
Assuming that one accepts the evidence for inter-cultural consensus on which colours are 
basic, then one must accept that some part of the explanation of this must reside in a 
universally-accessible locus. Shared neurophysiology, language, ecological optics and 
visual ecology have all been suggested and we review these below. The aim of this 
review is to convey the types of explanations that have been proposed, rather than to 
enumerate only those proposed explanations which have not yet been disproved. For 
example, the hypothesis that the basic colour terms might be explicable in terms of 
cone-opponent channels, although an historically important hypothesis, has been 
undermined by studies [14, 18, 19] that have shown that some unique hues (those judged 
to be pure yellow, green or blue) do not correspond to cone-opponent axes, though it is 
possible that they correspond to recently discovered non-opponent coding mechanisms 
[20]. 
 
Neurophysiological explanations tie the basic colours to the joint measurement span of 
the cone spectral-sensitivity functions [8, 21], to some later processing stage such as 
opponent channels [22-24], or to dedicated neural mechanisms [25]. Neurophysiology 
may also limit what categories are possible, for example we may lack cognitive structures 
capable of representing disconnected or non-convex regions of colour space [1].  
 
Explanations based on shared language appeal to factors such as: limitations of some 
language-acquiring brain module [26], effects of the process of achieving consensus on 
semantics [25], and advantages of agreement despite inter-individual variations in colour 
vision [27]. 
 
Explanations from ecological optics [28] consider how common physical processes affect 
colour, and what invariants exist despite these processes. Examples are: categories being 
shaped so that they exploit that neither shadowing nor highlights alter the hue of reflected 
light; and categories being such that they achieve reasonable stability despite variations in 
illuminant [29]. 
 
In explanations from visual ecology, the colour statistics of the environment are taken 
into account. For example, categories could correspond to clusters of naturally-occurring 
colours [30]. Another possibility is that categories are particular effective for certain 
types of interaction with the world, such as search, identification, recognition, 
discrimination or classification [31]. Effectiveness for classification ties in well to a 
recent suggestion about psychological categories in general: good systems of categories 
are those that effectively support induction [32]. In the context of colour, the argument 
would go like this. A ‘green’ category is useful as it allows inferences like the following: 
the majority of ‘green’ things that I have seen have been plants, therefore this ‘green’ 
thing is probably a plant. If instead of a ‘green’ category one had ‘turquoise’ and 
‘glaucous’ categories then this useful inference would no longer be so easily made. 
 
The various sources of explanation are not mutually exclusive. For example, categories 
could be tied to opponent channels and yet could also be particularly effective for 
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classification. In such a case one could speculate that the pressure to classify has worked 
through evolution to shape the opponent channels, or effective classification could simply 
be an epiphenomenon to other evolutionary pressures. Disentangling these possibilities 
and assessing whether they are truly causative of the categories is likely to be difficult. 
Easier to assess is whether the categories are consistent or not with some possible 
explanation. For example the hypothesis that basic colours are particularly stable under 
illuminant changes could be empirically assessed while remaining neutral on whether it 
explains them. We adopt this same neutral attitude when, in this paper, we investigate if 
the basic colour categories are particularly useful for classification: the most we can 
expect to do is change the plausibility of explanation-from-optimality. 
 
 
1.3 Colour Histograms in Machine Vision 
 
The use of colour for content-indexing into a large database of images was introduced by 
Swain & Ballard [33]. They showed that using an image-similarity measure based on the 
similarity of the histograms of pixel colours, was robust, efficient and effective at 
retrieving from a database pictures that agreed in content with a query image. They 
concluded that colour histograms are object representations that are stable in the presence 
of occlusion and viewpoint changes, and that they can differentiate among a large number 
of objects. 
 
Swain & Ballard used coarsely-binned RGB histograms with 64 bins defined by the cross 
product of the two most-significant bits of each of the three colour channels. The 
motivations given for using coarse histograms are: less storage, faster indexing and 
helpful towards making the histogram-similarity measure accord well to human 
perception. This final point has been taken up by other authors who have constructed 
similarly coarse histograms, but defined on more perceptually-uniform colour spaces 
such as HSV [34], Luv [35] and CIE-Lab [35]. The general idea of using these spaces is 
that, if histogram bins are such that all the individual colours within each bin are 
perceptually similar, then images whose colours differ in perceptually unimportant ways 
will automatically have similar histograms. The alternative is to use colour histograms 
with a fine binning structure and to incorporate information about colour similarity into 
the histogram comparison metric, but this is a far slower and more complex computation, 
and requires much more storage. More recently, several image-retrieval systems have 
taken this use of perceptually coherent colour histogram bins to the extreme of using just 
eleven bins based on the basic colours [36-39]. Unfortunately the use of colour 
histograms in these fulsome machine vision systems is only one of many factors that 
contribute to the computation of image similarity and so there is a lack of assessment of 
whether the use of such basic colour bins does actually improves retrieval performance 
compared to the other binning strategies previously used. The results reported in this 
paper can be regarded as filling this absence. 
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1.4 Hypothesis tested in this paper 
 
We hypothesize that the basic colours are optimal colour categories for classification. We 
can make this more precise as follows: 
 

OH: The colours of common things of the same general class are typically 
more similar than are the colours of common things of different class. 
This effect is maximized when colours are described using the basic 
colours. 

 
OH contains vague terms, in particular ‘similar’ and ‘described’. These terms can either 
be made more precise by relating them to a particular algorithm or by appealing to some 
ideal algorithm that optimally extracts useful information from colour signals. In this 
paper we follow the former course by testing OH for a particular algorithm that we 
implement in a machine vision setting. We claim that the particular algorithm used makes 
good use of colour data, but we make no claim to its optimality, nor to its similarity with 
the comparable algorithm used in human vision.  
 
 
2. Methods 
 
To test OH we used the following task: given descriptions of the colours of three things, 
two of which are instances of the same class (for example two fish) while the third is 
something else (for example a tree), decide which two of the descriptions are most 
similar, and so identify the remainder as the odd-one-out (o-o-o). OH predicts that the 
success rate at the o-o-o task will be maximized for colour descriptions based on the 
basic colours. 
 
To test OH we need to decide on: 

• a set of classes of thing,  
• a procedure for obtaining instances of each class,  
• a method of forming (relative to a system of colour categories) colour-based 

descriptions of instances, and 
• a dissimilarity-measure on colour-based descriptions. 

 
We describe our approach to these in the following sections. 
 
 
2.1 Preparation of Data 
 
The OH specifies that the hypothesized optimality of the basic colours is particularly for 
the commonly-encountered contents of the world. So, in an attempt to focus on common 
classes of thing, we used the 758 nouns (see appendix) from a children’s vocabulary book 
[40] (e.g. ‘acrobats’, ‘baby’, ‘cabbage’, etc.) as our classes. 
 



Griffin LD (2006) The Basic Colour Categories are optimal for classification. J Roy Soc: Interface 3(6):71-85  
 

As instances of our classes, we collected images using the web-based search engine 
‘Google Image’ in response to a query using one of the class nouns (see figure 2). The 
searches used modifiers that specified that only colour jpeg-format images should be 
returned; this mostly eliminates results which are web-page graphics (which are typically 
in .gif format) rather than images. After eliminating duplicates (approximately 1%) we 
used the first 80 images returned for each search. For convenience we used the thumbnail 
images that Google displays in its results page as our instances, rather than the indexed 
images themselves. These thumbnails varied in size between 602 and 1402. Figure 2 (left) 
shows typical results from a search. 
 

(a)

(c)

(b)
 

Figure 2 – Shows the use of ‘Google Image’ to create the test data. (a) The search term 
‘crocodile’ has been used. (b) The central quadrant of each image is then analysed to produce 
(c) a coarse-binned RGB histogram. The top row of (c) shows the 43 cells of the quantization 
of RGB that we use; the bottom row of (c) is laid out in the same manner, but shows the 
histogram, with intensity coding for frequency. 

 
 
For each instance, we computed and stored the RGB histogram of the central quadrant of 
the image. The logic of using only the central quadrant of each image was that, on 
average, the fraction of pixels closely related to the search term would be greater there 
than in the entire image. The RGB histograms were computed relative to a coarse 43 
quantization of RGB; figure 2 (right) illustrates the process.  
 
For the purposes of statistical analysis, the class-defining nouns were randomly divided 
into two sets – A and B – each of 379 nouns; and each set of 80 instances was randomly 
divided into two sets – 1 and 2 – each of 40 images. Thus we had four data sets: A1, A2, 
B1 & B2. How we make use of four smaller datasets rather than a single large one is 
described in detail later, but in brief they allow calculation of statistical measures that are 
not biased by over-fitting, they allow computation of confidence limits for our results, 
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and they allow us to assess whether the number of instances we have per class is 
sufficient. 
 
 
2.2 Systems of categories considered 
 
The systems of categories that we considered were the partitions, compatible with a 43 
quantization, of the RGB cube into two or more convex [41] categories. The definition of 
convexity that we use is as follows. A path is any sequence of cells, with consecutive 
cells adjacent in a 26-neighbour sense. A line is a shortest path between its endpoints. A 
set of cells is convex if and only if every pair of cells in the set can be connected by a line 
entirely in the set. 
 
 

2.3 Testing a system of categories 
 
The first step in testing a system of categories was to compute category-based colour 
descriptions for all instances. These colour descriptions were simply the histograms using 
categories (i.e. collections of one or more cells) as bins rather than individual cells. Such 
histograms are easily computed from the stored 64-bin histograms by totalling the 
weights of cells belonging to the same category. 
 
The next step was to subject all weights, of all category-based histograms, to a 
square-root transformation. This commonly-used procedure in histogram processing 
makes the distribution (across histograms) of the weights associated with any particular 
bin less skewed, more normally-distributed and so better behaved [42]. The final step was 
to whiten the square-rooted histograms so that the variance of the weights for different 
categories all equal unity. To achieve whitening, for each category we subtracted the 
mean and divided by the standard deviation of the distribution (across all histograms) of 
the square-rooted category-bin weights. We then treated each whitened square-rooted 
histogram as a point in n-dimensional space (where n is the number of categories) and 
used Euclidean distance as a measure of dissimilarity. 
 
We used a Monte Carlo method [43] to compute an o-o-o score for a category system. In 
each trial, two instances (A & B) from one class and a third (C) from a different class 
were randomly chosen. The three pair-wise dissimilarities (A-B, A-C, B-C) between the 
corresponding category-based histograms were calculated as above. The guessed o-o-o 
was the instance not involved in the smallest dissimilarity. When the guessed o-o-o was 
the instance which alone in the trial was from its class, the trial was rated a success, 
otherwise a failure (figure 3). Each o-o-o score was based on 106 trials, which resulted in 
a precision of ±0.05%. 
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Figure 3 – Illustrates the o-o-o task used in the study. (a) shows an example system of four 
categories. (b-d) show example instances from the classes ‘chimney’ (A, B) and ’doctor’ (C). 
Below the instances are the histograms of the central quadrants of the images using the 
categories from (a) as bins. In this particular case the distances between the histograms were 
computed as A-B = 0.89, A-C = 1.06 & B-C = 0.80. So, the o-o-o is incorrectly guessed to be 
A; the correct answer being C. 

 
 
2.4 Defining a basic colour category system 
 
To test OH we needed to identify a category system for the 43 quantized RGB-cube that 
closely approximated the partitioning of the colour solid into the basic colours. This was 
a multi-step process that we now describe. 
 
We made use of an assignment of colour names to 267 Munsell-coordinate-specified 
chips [44]. We will illustrate the following stages using one of these chips (5.3R, 5.9/3.5 
labelled a ‘light greyish red’) as an example. To assign the 267 chips to the Basic 
Colours, we considered only the primary designator of the associated colour name (‘red’ 
in the example). Eleven ‘violet’ chips were classified as ‘purples’, and six ‘olives’ as 
‘greens’. The Munsell coordinates of the chips were transformed into XYZ under 
illuminant ( 88.2, 90.0, 107.3XYZC = ) using the Munsell Company’s conversion 

software (v6.22); this gave 32.0, 28.9, 29.0XYZexample = . Then a von Kries transform 

[45] was used to transform to illuminant D65 ( 65 95.0, 100.0, 108.9XYZD = ); this gave 

34.5, 32.1, 29.5XYZexample = . Then CIE-Lab coordinates were computed; this gave 
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63.4, 14.4, 7.6Labexample = . We then computed the convex hull [46] of each of the 
eleven subsets of points to identify the CIE-Lab extents of the basic colours (figure 4a). 
 
 

(a)

(b) (d)

(c)

O

 
Figure 4 – Shows the stages in our mapping of the basic colours into RGB (a) CIE-Lab 
space with regions of definite colour label (eleven coloured polyhedra) and the edges of the 
monitor-typical RGB cube (grey). The orientation is similar to figure 1. (b) both panels show 
the same slice through a 323 quantization of RGB with the basic colour extents from (a) 
mapped into it; in the right panel, the labels have been extended to all sites. (c) a perspective 
view of the completely-labelled RGB cube in (b). The orientation is similar to (a), and the 
dotted line shows the position of the slice in (b). (d) below the line is O, the basic-colour 
category system we have defined, above the line is shown the same schematic of RGB as 
used for orientation in figures 2c and 3a. In the diagram of O, and in diagrams of other 
category systems in other figures, we colour the categories with the average RGB value of 
pixels (from the full set of instances) that fall within them. 

 
 
We then turned the colour extents in CIE-Lab space into data expressed over a uniform 
323 sampling of RGB. This was done by transforming each of the 323 RGB triples into 
CIE-Lab space by assuming a monitor gamma of 2.4 and standard phosphor 
chromaticities [47]; and for each transformed triple detecting which, if any, of the basic 
colour extents it lay within. If it did lie within one, then the RGB triple got the 
corresponding basic-colour label, if not it was unlabelled. We then settled the unlabelled 
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RGB triples by finding the closest basic-colour extent to the CIE-Lab image of the triple. 
Distance for this purpose was computed using the CIE94 colour metric [48]. The result 
was a fully-labelled cube as shown in figure 4b (right) and 4c. Although, as we have 
explained, we mapped RGB grid points in CIE-Lab, not vice versa, for completeness we 
note that the example colour that we were following through the sequence of 
transformations ends up at 184, 144, 141RGBexample = .  
 
The final step of our procedure was to consider the 512 basic-colour-labelled RGB-triples 
that corresponded to each cell of the 43 quantization. We could have simply seen which 
of the basic colours had the largest volume fraction for any given cell, but this would 
have produced an answer that corresponded poorly with expectation. Consider, for 
example, the cell [ ], , 0,63R G B∈ , which is the one that we  expected to receive the label 
‘black’. Although this cell contained 77 of the 78 RGB-triples that received the ‘black’ 
label, they accounted for only 15% of the cell’s volume; whereas the largest volume 
fraction was 34% for ‘green’ RGB-triples. Hence, with the volume-fraction approach, no 
cell would have been labelled ‘black’. So, instead of using raw volume-fractions, we 
computed the fraction of pixels of each label type that fell within the cell. Where the 
pixels considered were from the totality of all 60,640 images in our study. So in the case 
of the cell discussed, 59% of image pixels that have RGB values within this cell were 
labelled ‘black’, 2% were ‘red’, 13% ‘green’, 6% ‘blue’, 8% ‘purple’ and 12% ‘brown’. 
We labelled cells with the most common label that occurred within them, so the cell 
discussed was labeled ‘black’ as per expectation. The results of this procedure are shown 
in figure 4d. We will refer to this basic-colour category system as O. Each of the 
categories of O is convex, though this was not enforced in its construction. 
 
 

2.5 Finding optimal category systems 
 
We wished to find the category systems that maximize the o-o-o score. The Monte Carlo 
method of estimating o-o-o scores is however ill-suited to finding highest-scoring 
category systems because its imprecision can be larger than the score difference between 
partitions that are being pair-wise compared. Instead we used a faster, but approximate, 
method of scoring based on measures of within- and between-class dispersion. The 

approximate scores were given by – ( ) ( ) ( )
[ ]

2

2 2

,

, .n n
b ww

score n r r r w bχ χ
+ ∈ ∞∈

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ ∫ , where 

n was the number of categories, 2
nχ  is the pdf of a chi-squared distribution of n d.o.f., r 

was the ratio between the within- and between-class RMS dissimilarities, and w and b are 
integration variables that range across different distances between histograms. We will 
refer to scores so calculated as equational, to distinguish them from Monte Carlo scores. 
 
The equation was derived on the assumption that the histogram n-tuples of each class and 
of the entire set were each distributed like isotropic n-dimensional normal distributions. 
The square-rooting and whitening that was done on raw histograms gave this assumption 
some grounds. A comparison study of the equational and Monte Carlo scores found a 
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strong linear relationship (correlation coefficient, r2=0.76) between the two, for category 
systems of a given size. However, it was found that the regression parameters of the 
relationship varied with the number of categories, so use of equational scores was 
restricted to comparisons between systems of the same number of categories. We used 
equational scoring on dataset A1 to find the highest-scoring category system of a given 
size. In each case we started with a random category-system of the correct size and 
iteratively made changes to it, a single cell at a time. The change at each step was 
randomly chosen from the changes that (i) kept the number of categories constant, (ii) 
preserved category-convexity, and (iii) improved the equational score. The process 
terminated when no valid change was possible. For each category size we repeated the 
optimisation several times using a different random starting category system so that we 
could assess whether we were achieving convergence. From the systems that resulted 
from the multiple optimisations, the one that had the highest equational score was chosen. 
This system then had its Monte Carlo score assessed on datasets A2, B1 and B2. Our use 
of different datasets for optimisation and final evaluation was important as it prevented 
spuriously high scores due to over-fitting. 
 
 
2.6 Computations carried out 
 
The main computations that we carried out were to calculate o-o-o scores for random 
category systems, to find and score optimal category systems and to score the 
basic-colour system O. 
 
 
3. Results 
 
Figure 5 shows our results for random, optimal and the basic-colour systems of 
categories. We discuss these following the figure. 
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Figure 5 – Shows the main results of the study. The grey curve and surrounding pale green 
band show the mean score and one sd of variation for random category systems of different 
sizes. The black error bar shows the 95% confidence interval for the o-o-o score of a typical 
scoring 11-category partition (A) which is shown at the lower-right of the figure using the 
same format as figures 2a and 3d. The bright green curve shows the maximum likelihood 
estimates of the o-o-o scores of the optimal category-systems of size from 2 to 19. The bright 
green error bar shows the 95% confidence interval for the best optimal category system 
found (B) which is shown at the top-right of the figure. The red error bar is the 95% 
confidence interval for the basic-colour system O, shown at the right of the figure.  

 
 
3.1 Random System Scores 
 
In figure 5, the grey line surrounded by the pale green band shows the mean and one sd 
of scatter of the o-o-o scores of random category systems. The data for each size of 
category system was based on ten random systems each evaluated on the instance 
datasets B1, A2 and B2. The results in figure 5 show that the mean o-o-o score for random 
systems rose from the baseline pure chance score of 33.3% for one category to a 
maximum of 36.6% for 20 categories, it then declined with further increases in the 
number of categories, dropping to 36.1% for the unique partition of 64 categories. For all 
sizes of system greater than one, the mean o-o-o score is significantly greater than chance 
( 0.0005p < ). 
 
In figure 5 we also include a typical random system of eleven categories which we refer 
to as A. The estimated score for A is 36.5%, close to the average of 36.5% for random 
eleven-category systems. 
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3.2 Optimal System Scores 
 
To assess whether our computation of optimal category-systems was achieving 
convergence we compared the maximum equational-score achieved based on either five 
or (a distinct) ten optimisations. Finding no significant difference between these we 
concluded that five optimisations was sufficient; but even so the results in figure 5 are 
based on the highest equational scoring system of all 15 optimisations that we performed. 
The optimisations used A1 but we then computed Monte Carlo scores based on B1, A2 
and B2; and it is the means of these scores that are plotted in the figure as a bright green 
line. 
 
For systems of only two categories the optimal score was 35.5%, only slightly better than 
the mean random score for two-category systems (35.2%). The optimal score rises with 
the number of categories, peaking at systems of ten categories, and then falls; eventually 
going down to the performance of the unique 64-category system. The optimal 
ten-category system is denoted B and is shown in figure 5. The individual scores for B 
were 37.6%, 37.9% and 37.6%. Thus its maximum likelihood estimate is 37.7% with a 
95% confidence interval [37.3%, 38.2%]. The score of B and its confidence interval are 
shown in green in figure 5. The confidence intervals for other optimal systems are not 
shown but are of a similar size. 
 
 
3.3 The basic-colour category system (O) 
 
The o-o-o scores for the basic-colour system (O) were 37.3%, 37.7% and 37.4% for the 
three test datasets. This gives a maximum likelihood estimate of 37.5% and a 95% 
confidence interval [37.0%, 37.9%]. The score for O is significantly ( 0.005p < ) larger 
than the scores for random systems of categories. A test of whether the estimated scores 
for O and B are the same does not reject the null hypothesis that they are (p ≈0.08). 
 
 
3.4 Effect of dataset used 
 
All our results are based on computing three o-o-o scores (one for each of A2, B1 and B2) 
for each category-system considered. By using three datasets we get an estimate of the 
o-o-o scores averaged across a wider population of datasets than we have, and we get to 
bracket these estimates with confidence limits. We have compared the three o-o-o scores 
for a large number of category systems and find no significant difference in the variation 
of o-o-o scores that results from using different instances within the same classes (B1 vs 
B2) compared to using different classes (A2 vs B1, and A2 vs B2). This suggests to us that 
the number of classes we used, and the number of instances within those classes were 
well matched. 
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4 Control Computations 
 
We describe in the following six sub-sections the methods and results of control 
computations that we performed. 
 
 
4.1 Importance of classes 
 
Our first control computation was a check whether it was actually the grouping of 
instances into classes that underlay the greater than chance (33.3%) o-o-o scores we 
obtained, or simply some error in the design or execution of the computation. This we did 
by randomly shuffling the data so that instances were still in groups of 80 but now 
unrelated to the search terms used to index the classes. Using this shuffled data, the o-o-o 
scores of the three partitions shown in figure 5 were: B 33.3%, O 33.4%, A 33.3%. This 
confirmed the importance of the grouping of instances into classes. 
 
 
4.2 Optimisation starting at O 
 
The optimisation method used starts with a random category system. It is natural to 
wonder what will be found if O is taken as the starting point instead. We examined this 
by performing 15 optimisations starting at O, and looking more closely at the best of 
these (P). The estimated o-o-o score for P, when evaluated on our test datasets, was 
37.7% with a 95% confidence interval [37.2%, 38.3%]. This is not significantly different 
from either B (p≈0.43) or O (p≈0.06), and thus nothing is lost by starting optimisations at 
random systems. It is tempting to look in detail at the category differences between O and 
P, but since P failed to significantly improve on the score of O, any differences can be 
attributed to over-enthusiastic fitting to the dataset A1 used for optimisation rather than a 
genuine worthwhile tweaking of the structure of O. 
 
 
4.3 Relaxing the category-convexity constraint 
 
All of the results so far presented are for systems of convex categories. More relaxed 
conditions on categories could be imposed, for instance that they be connected but not 
necessarily convex. The most extreme relaxation is that the categories are unconstrained, 
and we have repeated our computation using such. The results in figure 6 show that it 
makes no important difference. 
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Figure 6 –A comparison between system of categories that are convex (green) and 
unrestricted (blue). The lower curves are for random systems, the upper optimal. 

 
 
4.4 Rotated Basic Colours 
 
We wished to assess whether the fine detail of the arrangement of the basic colours is 
important for their performance on the o-o-o task, or just their general layout. To this end 
we produced category systems that were like the basic colours in layout but different in 
detail. We did this by rotating the named Munsell colours that were the basis of our 
determination of O and then following the same steps as was done for O. Rotation was 
about the achromatic axis and was performed in the CIE-Lab space as its approximate 
perceptual uniformity helps preserve the basic-colour structure during rotation. We 
computed ‘rotated basic-colour’ systems for angles of rotation from - 165° to 180° in 15° 
degree steps. The o-o-o scores of these systems were then evaluated. 
 
Figure 7 shows the individual scores of the ‘rotated basic-colour’ systems as black points. 
The green curve is the maximum likelihood estimate (i.e. the mean of the three scores). 
By eye measure the curve peaks at close to 0° rotation and more weakly at 180°, and has 
poorly defined minima around 60° and –165°. To make this more precise we used a 
bootstrap re-sampling of the data to estimate that, with 95% confidence, the curve peaks 
in the interval [-90° , 0°] , as shown in red. The figure also shows the ‘60°-rotated 
basic-colour’ system, designated R, which had the lowest score. 
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Figure 7 – Shows o-o-o scores for category systems derived from rotating the basic colours. 
Zero rotation is just the system O. For each angle of rotation, the three black dots show the 
scores using the three test datasets A2, B1 & B2. The green line connects the mean scores for 
each angle. The red symbol shows the median and 95% CI for the position and o-o-o score of 
the maximum of the mean score curve. The lowest scoring ‘rotated basic-colour’ system, 
which occurs at a rotation of 60°, is shown and labelled R. 

 
 
4.5 Natural- vs. manufactured-classes 
 
We next addressed the concern that our methods were biased towards a high score for O 
because many of our images were of manufactured items, and the choice of colours of 
these may be influenced by the usage of the basic colours by producers and consumers. In 
particular, there could be a tendency towards ‘focal colours’. 
 
To assess this, we ordered the 758 class terms by the degree to which they were natural or 
manufactured, and bisected the list into manufactured and natural halves. The ordering 
(see appendix) was based on 6600 binary judgements of relative naturalness between 
random pairs of terms made by a group of 33 naïve subjects.  
 
An impression of the order is conveyed by listing every twentieth term, starting at the 
natural end: shell, sky, ostrich, milk, squirrel, snail, carrot, crocodile, winter, tomato, 
sheepdog, reindeer, chef, wall, walking stick, chips, chicken, bridge, signpost, gloves, 
axe, road, dinner, hole, cricket, tape measure, knives, bedroom, switch, railings, loft, 
forks, ghost train, car wash, bicycle, umbrella, train set, tablecloth. 
 
We would expect that if the o-o-o performance of O was enhanced by a 
manufactured-item focal-colour bias, then its o-o-o score using just manufactured classes 
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would be higher than using just natural classes. This hypothesis was not supported. The 
Monte Carlo score for O, using just the 50% of classes at the natural end of the spectrum, 
was 37.5%, and using just the manufactured classes was 37.2%.  
 
 
4.6 Photographs vs. pictures 
 
The database of images used included many that would be better characterized as pictures 
than as photographs. These pictures, having been produced by human artists, may bear a 
trace of the cognitive colour categories of those artists e.g. categorically-indistinct 
colours such as yellow-green might subconsciously be avoided. The presence of these 
cognitive traces could bias our results towards a high score for O. To assess this we 
identified the image in each class which most contributed to the score of O being higher 
than for random category systems. If the picture-bias hypothesis is correct then we would 
expect that these instances would contain an excessive number of pictures. The fraction 
of pictures was assessed by two subjects, unaware of the purpose of the experiment. They 
rated that, of the full database of images, the fraction of pictures was 19.4% and 31.2%; 
the difference in the fractions reflecting different attitudes to difficult cases such as 
photographs of painted shop signs. Of the images most positively contributing to the 
performance of O the fractions of pictures were 17.7% and 31.9% respectively. The 
fractions were not significantly different for either subject, which argues against the 
presence of pictures being an explanation of the performance of O. 
 
 
5. Discussion 
 
The results of our study are consistent with the hypothesis OH. First, the o-o-o scores for 
random category-systems were significantly better than chance, demonstrating that colour 
is a useable cue for classification. This is consistent with studies showing the benefit of 
colour for object recognition [49-51]. Second, a basic-colour system of categories 
performed significantly better than random systems, demonstrating that (i) not all systems 
of categories are equally effective for classification, and (ii) that a basic-colour system is 
one of the better ones. Third we showed that we could not find any system of categories 
significantly better than the basic-colour system, which is consistent with our hypothesis 
that the basic colours are optimal. In the following sections we tackle several aspects of 
the results and methods that threaten to undermine our conclusion. 
 
 
5.1 Significant but small effects 
 
Prior to our experiment there were several factors that made it doubtful whether 
better-than-chance performance at the o-o-o task would be achieved at all. In particular 
the highly variable nature of the images returned by ‘Google Image’, the pollution of the 
data with a substantial fraction of irrelevant images (for example the crocodile-wood 
image in figure 2a), the absence of a foreground/background segmentation step, and the 
complete discard of spatial information all made the task difficult. However the results of 
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figure 5 show that performance significantly better than chance is achievable, though it 
must be stressed that although significant the margin is very small. In fact the margin is 
so small that it is essential to rule out various possible explanations for it, other than the 
intended. 
 
The class-shuffling control computation of section 4.1, eliminated the possibility that the 
performance of O was due to an undiagnosed design flaw or bug in the computation and 
so completely artefactual. 
 
The second possibility was that performance was due to a small subset of ‘easy’ classes. 
To assess this we computed class-specific o-o-o scores for the system O. These scores, 
shown in figure 8, indicate that although there is a rightwards skew, it is mild; so the 
o-o-o score of O is not in the main due to a small number of easy classes. 
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clouds
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Figure 8 – Shows a histogram of class-specific o-o-o scores for the basic-colour system O. 
The ten highest-scoring classes are shown at right (‘tomato’ is the best), the four lowest 
scoring at left (‘mirror’ is the worst).  

 
 
5.2 What underlies differences in category system performance? 
 
To further understand how o-o-o scores are achieved, we have looked at some particular 
classes in detail. In figure 9 we show a selection of instances from the ‘lettuce’ class. This is 
a noteworthy class as (i) it is the second best class for system O, and (ii) it is the class whose 
score increases the most between systems A and O. Figure 9 also shows diagrams illustrating 
the dispersion of lettuce instance-histograms for systems O and A. These diagrams make it 
clear that the higher score of O compared to A is because the histograms for O significantly 
depart from the population mean along a dimension corresponding to the ‘green’ category. 
The prominence of pixels of various shades of green is apparent in the instances shown in the 
figure, and of course makes sense because lettuces are green. In contrast, A has several 
categories covering the green category of O, so in A the consistency of the lettuce images is 
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not captured. This is similar to the motivating example in section 1.2 concerning the 
usefulness for induction of a ‘green’ category. 

lettuce

A: 41%

O: 52%

 
Figure 9 – At right are typical instances of the ‘lettuce’ class. At left are shown the mean 
(coloured dots) and 1 sd of scatter (vertical line) of instance histograms for the class ‘lettuce’ 
when represented using the systems A and O. Note that these are not raw histograms, but 
square-rooted whitened histograms. The background horizontal lines show the means (red) 
and ±1 sd of variation (green) of the full population of instances. The colours of the dots are 
the same as in the category-system diagrams. The percentages are the class-specific scores 
for ‘lettuce’ with A and O. 

 
 
In figure 10 we compare B and O to understand how they achieve similarly high o-o-o 
scores despite being so different. The figure shows data concerning two classes: 
‘swimming pool’, for which B most outperforms O; and ‘raspberry’, for which O most 
outperforms B. The better performance of B for ‘swimming pool’ is explained by its 
bluish and light-bluish categories, both of which are different from the population mean 
for this class, whereas O only has a single bluish category which is comparably deviant. 
For the ‘raspberry’ class, the better performance of O is because B lacks a reddish 
category and so fails to capture the similarity of these instances as well as O. Together 
the ‘swimming pool’ and ‘raspberry’ examples illustrate that it is not a simple matter of 
there being a system of categories that is the best for all classes: best on average seems to 
be the most that can be expected. 
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Figure 10 – Laid out the same as figure 9. 
 
 
Figure 11 shows the ‘tomato’ class which is the best class for O and the class for which 
the performance of O most outstrips that of R. The O system successfully captures the 
fact that ‘tomato’ instances, although various in colour, are all varieties of red. In the R 
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system, the red category of O has been dissected into purplish-pink, purplish-brown and 
brown categories and so the colour clustering of tomatoes is far less apparent. 
 

tomato

R: 46%

O: 54%

 
Figure 11 - Laid out the same as figure 9. 
 
 
5.3 Issues concerning the use of web imagery 
 
Our use of images rather than objects is unusual in studies of human colour vision, but 
not unprecedented [52, 53]. However, the use of a database of imagery constructed by a 
search engine, rather than manually-constructed and labelled is unprecedented. This 
raises the possibility that some non-standard aspects of the images we have used account 
for our results. We believe that the results in the previous section already defuse this 
objection by showing that categorization is based on colour in the intended manner, but 
in this section we deal with a few issues that merit direct address. These can be grouped 
into issues surrounding image content, the relation between the image and its content, and 
the image data itself. 
 
The first image-content issue is that a substantial fraction (we estimate 10%) of the 
images we use, have contents that are not connected to the class term in a direct way. For 
example, in figure 2 we see an image of ‘crocodile-wood’ returned for the ‘crocodile’ 
query and in figure 11 there is an image of a ‘tomato hornworm moth’ for the ‘tomato’ 
query. Since these erroneous images are so unpredictable in their contents it is difficult to 
see how they could advantage O. Similar comments apply to the issue of images that do 
contain directly class-related content, but not within the central quadrant. The second 
image-content issue is the possibility of a manufactured-good focal-colour bias. In 
section 4.5 we showed evidence that this not an issue. Informal scrutiny of the data 
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suggests that any tendency to manufacture in focal colours is offset by a tendency to 
make products in diverse colours. The difference we found between natural and 
manufactured although small was consistent with the finding that colour is more useful 
for the recognition of natural than manufactured objects [54].  
 
Concerning the relation between the images and their content, one issue is that the images 
used are almost certainly non-veridical. The majority of them will have been acquired 
using uncalibrated cameras, with spectral sensitivities different from human, under a 
range of illuminants. They may well then have been manipulated to display well on a 
display device with gamma and chromaticities different from what we assume (section 
2.3) before being placed on the web. That this is a potentially serious problem can be 
seen by considering a population of images that were dramatically non-veridical. 
Imagine, for instance, that the RGB channels were permuted. This would undermine our 
claim that our results support OH and instead we would only be able to claim to have 
supported an hypothesis about the colours of web images of common things, rather than 
the colours of common things. However, acting against the possibility of significant 
non-veridicality is the fact that creators of web pages will favour images that allow 
viewers to correctly recognize their contents. A second issue on the relationship between 
images and their contents is the presence of pictures, as opposed to photographs, in the 
database. The issue with pictures is better described as their fictionality rather than their 
non-veridicality. As manufactured fictions they undoubtedly bear traces of the cognition 
of their creators. For example, painted seas might be blue more often than real seas. The 
control computation reported in 4.6 assessed whether the presence of pictures could 
account for the superior performance of the basic colour system O, but found no evidence 
to support this. 
 
Concerning the image-data itself, is the issue that widespread usage of compression 
algorithms may bias images towards containing certain RGB values. Examining the RGB 
histograms at full 2563 quantization we do see evidence of this. However, as figure 12 
shows, at the coarser quantization levels that we used these effects are lost and without 
influence. 
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Figure 12 – Shows slices through the RGB histogram for the full dataset. The left panels are 
for the histogram quantized to 323 bins (the same slice as in figure 4b). The right panels are 
for the top layer of the 43 quantization. In the top row, intensity codes directly for histogram 
weight; in the bottom row, intensity codes for log weight. 

 
 
The final issue with our use of web imagery concerns what is unknown about the 
operation of ‘Google Image’. Google’s description of its operation is “Google analyzes 
the text on the page adjacent to the image, the image caption and dozens of other factors 
to determine the image content. Google also uses sophisticated algorithms to remove 
duplicates and ensure that the highest quality images are presented first in your results.” 
This is the only non-proprietary information available, so it is a possibility that some 
subtle and unknown bias has been introduced. However, this would also be the case with 
an image dataset constructed manually. 
 
 
5.4 Issues around the use of RGB 
 
In our method we had to choose the fineness of RGB quantizations used at two points. 
We choose 323 for representing the basic colour category extents from the named colour 
chip data, and 43 for representing category systems whose classification performance we 
assessed. It is the coarser of these two that is more plausibly the source of some 
problems. The possibility is that, although 43 allows a surprisingly good representation of 
the Basic Colour Categories (see figure 4), we cannot rule out that there is a category 
system that performs better than the basic colours but that can only be faithfully 
expressed at a quantization of 53 or higher. 
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Ignoring the slight non-veridicality of RGB (mentioned in 5.3), and so treating it simply 
as an alternative co-ordinate system for cone response space, there is an issue as to 
whether the direction and lengths of the RGB axes is influential on our results. This is a 
real possibility since the category systems assessed were based on a regular subdivision 
based on the RGB system, and so the surprisingly good representation of the BCTs 
mentioned above could be due to the use of RGB, and the RGB system could be 
somehow tainted by the BCTs. However, against this concern it should be noted that the 
RGB system is not contrived around easy nameability of its axes (just as CMYK is also 
not). Rather the constraints on its design are that (i) it is a system for linear additive 
mixing of colour, and (ii) its gamut should coincide with the gamut of surface colours as 
closely as possible. RGB succeeds in this second aim very well, as the gamut of surface 
colours is not far from being parallelepiped in form [8], which is inevitable given the 
non-convexity of the spectral locus [55]. So, in fact RGB is quite a natural co-ordinate 
system, and this may be why seven of the RGB cube’s vertices coincide well with the 
foci of seven of the basic colours (black, white, red, green, blue, yellow and purple).  
 
 
6. Conclusion 
 
The starting point for this study was the observation that categorization of colour has both 
been studied as a window into human cognition, and has been used purely pragmatically 
by engineers building image-retrieval systems. This suggested the hypothesis that the best 
system of categories for pragmatic purposes coincides with human categories. We tested 
this hypothesis using a classification task and obtained results consistent with it. The 
strongest interpretation of our results is that they support an explanation from visual 
ecology for why humans use the colour categories that they do. However, because (i) our 
experimental method assessed the usefulness of colour categories when classifying image 
contents into noun-categories, and (ii) noun-categories are human cultural-cognitive 
constructs, any ecological explanation that is supported would not be of a simple 
colour-clusters-present-in-the-environment type, rather it would have to be a far more 
complex beast dealing with the phenomenon of categorization in general. The first step in 
this grander project of explanation may already have been taken with the startlingly 
simple suggestion that ‘good categories are those that support induction’ [32]. 
 
However, we reject this strongest interpretation of our results for three reasons. First, our 
method tested the optimality hypothesis only for a particular machine vision algorithm, 
not for the unknown algorithm of human vision. Second, our method was only able to 
reveal a very weak advantage for the basic colours. Third, our experiment has absolutely 
nothing to say about any causal linkage between this advantage and humans having the 
basic colour categories; and causal linkage is required for explanation. Rather we feel that 
the most that can be concluded from this work is: (i) the plausibility of an explanation of 
the basic colours as the result of a pressure-to-optimally-classify is increased, and (ii) the 
basic colours are good categories to use for classification in machine vision. 
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Appendix 
 
Here we list the 758 nouns used as search terms. The terms are listed in the 
natural-to-manufactured order determined by the 6600 binary judgements of natural vs. 
manufactured made between pairs of nouns. The precise ordering was not used in the 
reported research, only the segregation into a natural and a manufactured set. 
 
The natural set 
 
shell,  path,  plant,  cat,  goat,  kitten,  lake,  rocks,  cliff,  dew,  bird's nest,  cabbage,  fog, 
island, mushroom, seeds, eagle, flowers, mist, night, sky, spider, star, tree, caterpillar, 
fish, lion, man, mountain, river, tiger, toad, worm, apricot, bone, bull, diamond, giraffe, 
leaves, lizard, ostrich, peas, polar bear, pond, rainbow, salt, sea, seaweed, summer, whale, 
autumn, baby, bush, camel, crab, frost, hair, hedgehog, kangaroo, lightning, milk, mole, 
moth, mouse, pebbles, snow, spinach, stones, trees, zebra, bear, cow, donkey, ducks, eye, 
forest, grapes, penguin, seaside, seasons, squirrel, tadpole, wood, beach, beans, birds, 
butterfly, cherry, clouds, cubs, ears, feathers, ladybird, monkey, mouth, parrot, peach, 
pigeon, rice, seal, snail, strawberry, apple, beehive, children, dolphin, elbow, farmer, 
gorilla, grapefruit, guinea pig, hippopotamus, iceberg, lemon, owl, rain, smoke, thumb, 
water, wolf, carrot, face, fisherman, hay, lambs, paws, pelican, plum, seagull, snake, 
tortoise, waves, weather, beaver, bison, canary, chalk, cheek, chocolate, cockerel, 
crocodile, ducklings, elephant, field, geese, hens, lettuce, melon, nuts, panda, pepper, 
pineapple, pony, raspberry, rhinoceros, straw, stream, sun, vegetables, wing, winter, 
badger, celery, chin, cucumber, dancers, deer, families, girl, grass, hand, haystack, hill, 
horns, leek, lips, pumpkin, shepherdess, shoulders, starfish, tomato, tongue, waterfall, 
wind, banana, bat, beaker, boy, calf, clementine, hamster, horse, light, logs, moon, mud, 
neck, planet, shark, sheep, sheepdog, arm, box, cheese, cobweb, cone, dog, duck, eggs, 
fried egg, frog, head, hedge, honey, leopard, nails, people, potatoes, puppy, rabbit, 
reindeer, sandwich, space, spring, sticks, tea, wasp, bride, brush, budgerigar, cauliflower, 
fox, fruit, knee, leg, toes, toilet paper, woman, artist, bucket, chef, chicks, clothes, 
country, cream, farm, fireman, foot, meat, onion, orchard, pets, pigs, plank, rope, soap, 
sponge, stable, straw bales, tummy, wall, beads, candle, circle, eyebrow, fence, fingers, 
flippers, flower bed, garden, iron, omelette, pear, salad, sandpit, singers, soup, sugar, 
supper, swans, walking stick, acrobats, bottles, broom, drink, food, hoe, lamp, mat, oval, 
plates, plough, rectangle, sauce, sawdust, tail, teeth, towel, bonfire, bow, chips, cushion, 
fishing boat, home, house, jam, kennel, mashed potatoes, masks, oar, pet, plaster, ring, 
sailor, steps, stool, tightrope walker, ball, butcher, canoe, chicken, cowshed, floor, fruit 
juice, goldfish, nose, popcorn, rolls, rowing boat, rubbish, school, shower, skirt, toast, 
tourists, trowel, village, basket, bench, breakfast, bridge, cap, drawing, duster, face 
paints, flour, ham, hot-air balloon, jars, paint, pancakes, pegs, piglets, present, ruler, 
sandcastle, scales, scarf, shapes, shavings, signpost, sink, spade, square, string, teacher, 
train driver, trunk, waiter, aquarium, ceiling, chair, crayons, crescent, crossing, dress, 
dustpan, farmhouse, football 
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The manufactured set 
 
globe, gloves, hammer, juggler, jumper, painter, park, pen, picnic, pigsty, pole, rake, 
roller, roundabout, saddle, shoes, target, waitress, yoghurt, alphabet, arrows, axe, band, 
bath, bolts, boot, bowls, candy floss, coat, comb, crutches, drums, fishing rod, hat, hot 
chocolate, letters, marbles, market, paddle, paper, policewoman, road, roof, rope ladder, 
saucepans, shed, skipping rope, sport, toilet, balloon, bed, belt, boat, bricks, cage, carrier 
bag, cart, chimney, coffee, cupboard, curtain, dinner, duvet, greenhouse, ladder, lunch, 
ribbon, rubber, sandals, signals, skip, tents, whistle, barge, buttons, canal, cards, cooker, 
crisps, door, glasses, hole, jeans, judo, kite, medicine, nurse, petrol, pillow, playground, 
salami, teddy bear, tightrope, triangle, trousers, apron, barrel, bathroom, birthday cake, 
changing room, christmas tree, cricket, cups, deck chair, door handle, father christmas, 
frying pan, hoop, jacket, mirror, nappy, photograper, pilot, platform, pockets, pudding, 
rifle range, scarecrow, shorts, sunhat, swings, tape measure, teapot, teaspoons, tins, 
tissues, tray, boots, calendar, clown, comic, cube, desk, doctor, easel, fireworks, gate, 
hall, handkerchief, kettle, kitchen, knives, living room, money, necklace, newspaper, 
nightdress, party, pavement, pictures pizza, postman, pyjamas, saw, shop, slippers, 
soldiers, tunnel, vice, zip, barn, bedroom, bridegroom, button holes, cardigan, crane, flats, 
fork, guitar, hotel, judge, lock, pencil, pills, rocking horse, runway, sausage, screwdriver, 
sheet, shoelace, spoons, switch, table, thermometer, tights, tool box, waiting room, 
washbasin, washing powder, watering can, window, badge, bonnet, bulb, glue, 
hamburger, hen house, karate, map, mop, pram, railings, sailing boat, shirt, ski pole, 
socks, stairs, sumo wrestling, swimsuit, tie, trapeze, trolley, wheel, books, buffers, dice, 
dustbin, flag, handbag, helter-skelter, ice skates, loft, pipes, presents, puppets, ring 
master, scissors, screws, ship, slide, sweatshirt, tea towel, toothpaste, tractor, trailer, 
upstairs, windmill, yacht, downstairs, drill, file, forks, jack-in-the-box, matches, paint pot, 
paints, plane, safety net, spaghetti, street, sweet, tennis, tiles, top hat, café, carpet, castle, 
cinema, circus, dressing gown, fancy dress, ghost train, helicopter, helmet, locker, money 
box, purse, racket, robot, spaceship, table tennis, toothbrush, toyshop, trainers, water-
skier, wedding day, wheelchair, workshop, backpack, big dipper, camera, car wash, 
digger, factory, hairdresser, jigsaw, lamp post, parachute, radio, sandpaper, saucers, 
snowboarding, sofa, sprinkler, syringe, ticket machine, tricycle, vacuum cleaner, 
wheelbarrow, airport, basketball, bicycle, big wheel, bus, garage, gym, motor-boat, 
notebook, penknife, sleigh, suitcase, swimming pool, television, toys, workbench, 
dodgems, fire engine, goods train, lawn mower, racing car, roller blades, umbrella, video, 
wardrobe, washing machine, cassette tape, checkout, dentist, engine, fridge, headlights, 
key, oil tanker, photographs, radiator, recorder, spacemen, tanker, tap, telephone, train, 
train set, video camera, caravan, chairlift, chest of drawers, dolls, drawer, ironing board, 
lift, piano, spanner, taxi, tyre, van, ambulance, american football, badminton, birthday 
card, bus driver, carriages, tablecloth, telescope, compact disc, railway station, trumpet, 
bow tie, control tower, doll's house, fairground, hospital, lighthouse, police car, lorry, 
rocket, battery, submarine, railway track, traffic lights. 
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