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We review ideas about the relationship between qualitative description of local 
image structure and quantitative description based on responses to a family of linear 
filters. We propose a sequence of three linking hypotheses. The first, the Feature 
Hypothesis, is that qualitative descriptions arise from a category system on filter-
response space. The second, the Icon Hypothesis, is that the partitioning into 
categories of filter response space is determined by a system of iconic images, one 
associated with each point of the space. The third, the Texton Hypothesis, is that the 
correct images to play the role of icons are those that are the most likely explanations 
of a vector of filter responses. We present results in support of these three 
hypotheses, including new results on 2-D 1st order structure. 

 
 
 
1. Introduction 
 
Research on qualitative image structure is at least 40 years old and in that time many different 
terms – features, textons, edges, etc. – have been coined and used in different ways by different 
authors. Our aim in this paper is to attach some specific meanings to these terms and to propose 
three hypotheses concerning them. In this introduction we first recap the history of the subject, 
second we summarize a specific model of image filtering – the Scale Space Gaussian Derivative 
framework, and finally we preview the three hypotheses that are discussed in turn in the body of 
the paper. 
 
 
1.1 Qualitative description of local image structure 
 
Although the array of raw pixel values contains the totality of information in an image, an oft-
used first step in computer vision is to make a quantitative description of the local image 
structure at each image location [1]. The simplest way to achieve this is to extract a small (say 
7µ7) patch at each location, but the preferred way is to measure image structure by convolution 
with a family of localised filters [2]. The vector of responses to filters centred at a particular 
image point is a quantitative description of the image in the locality of that point – where the size 
of the filters determines the extent of the locality. In terms of information content the vector of 
measurements is very similar to the small patch, but the information has been repackaged into a 
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form that is more convenient for subsequent analysis [3]. This strategy of local characterization 
by a family of filters is also that adopted by biological visual systems [4].  
 
Much can be done with these quantitative descriptions of local structure. They can be used for 
efficient image coding [5], for the calculation of similarity measures to drive image registration 
processes [6, 7], or for figure/ground segmentation [8, 9]. However many researchers have felt 
that it would be useful, and should be possible, to derive qualitative descriptions of local 
structure on the basis of the quantitative [10]. The intuition here is that a strategic discarding of 
information at this early stage, achieved by moving from a high-dimensional continuous-valued 
description to a lower-dimensional combinatorical description, will make higher-level processing 
(e.g. recognition) more computationally feasible [11]. To some, this engineering intuition is 
supported by informal observations that natural images are in the main composed from a limited 
vocabulary of structures (figure 1) and thus are particularly well-suited to qualitative description. 
Although these informal observations could simply stem from the use of qualitative description 
by the human visual system, they remain suggestive; since what is good for biological vision is 
very probably good for machine vision. However, we note that, at this time, no definitive 
evidence exists for qualitative description of local structure by biological vision: we are unaware 
of any psychophysical support, and the physiological data, although strongly suggestive [12-16], 
is open to alternative interpretations. 
 

dark blob on 
the light side 
of an edge

light
ridge-edge

dark
line ending

  
Figure 1 – Much of natural images seems to be composed of the same qualitative structures 
repeated again and again. One can informally attempt to group and name these repeated 
structures (for example as shown) but the process becomes very difficult to keep track of 
once sufficient patches are considered. 
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Although the hard evidence for qualitative description of local structure in biological vision is 
scant, the idea did originate in physiology. Barlow, studying the frog retina [17], found neurons 
that responded only to a specific type of visual stimulation – a small side-to-side moving dark 
blob – and named them bug detectors. Importantly, the action of these cells could not be 
understood as a simple linear filtering as they also showed impressive invariance to 
behaviourally unimportant changes such as the overall luminance level. Reviewing this finding 
later [18], Barlow analogically described the function of such neurons as signalling the presence 
of a specific ‘letter’ in the sensory inputs (later neurons signalling ‘words’). This reduction of the 
input to one of a finite ‘alphabet’ of possibilities is exactly what we mean by qualitative 
description. 
 
This approach was taken up in Computer Vision by Marr [19] and elaborated into a scheme to 
describe local image structure in terms of the feature categories: edge and bar. For the detection 
of which Marr gave explicit schemes based on the measurements of linear filters [20]. He also 
explained the link between the quantitative and qualitative descriptions by using the only extant 
theory of local analysis – differential geometry. Using this, he was able to explain that the loci of 
zero-outputs of centre-surround filters deserved to be described as ‘edges’, as such filters could 
be interpreted as approximately computing the laplacean of a blurred version of the image, and 
points of zero laplacean, it can be argued, are inevitably close to points of locally maximal 
gradient; and such points correspond to an informal understanding of ‘edge’. Since this reasoning 
is important, let us labour the point but giving the reasoning in the other direction. The informal 
idea of ‘edge’ is captured to a degree by the exact concept: points of maximal gradient. Points of 
maximal gradient are approximately the same as the exact concept: zero-crossings of the 
laplacean. Zero-crossings of the laplacean are approximately the same as zero-crossings of the 
outputs of Marr’s centre-surround filters. 
 
The mathematics that links image filtering to differential geometry was greatly expanded by 
Koenderink in his Scale Space theory of early vision [2, 3, 20-23]. This showed how any 
required blurred derivative could be precisely computed using the appropriate linear filter, and so 
a suitable ensemble of such filters could be understood as computing the initial terms of a local 
Taylor expansion of the blurred image. This elegant analysis makes a theory of qualitative 
description seem within reach and some successes were had (figure 2). For example, Marr’s 
laplacean scheme was improved so that the detected edges are exactly on points of highest 
gradient rather than simply near them [24]. To do this one uses filters that are derivatives- rather 
than differences-of-Gaussians, and one computes not the zero-crossings of 0xx yyL L+ =  but of 

2 22x xx x y xy y yyL L L L L L L+ +  (where L is the image luminance, and subscripts denote differentiation) 
which can be achieved by combining the outputs of five linear filters.  
 
Promising though the linkage from filters to differential geometry is, as an approach to 
qualitative description it seems to run out of steam. Four overlapping reasons can be given. (i) 
differential geometry has no general theory of qualitative aspects of Taylor series. (ii) what 
qualitative local description there is in differential geometry is limited to the identification of 
special points (e.g. critical) [25-27] and curves (e.g. parabolic) [28], not to description of general 
points. (iii) we have no general recipe for producing a combination of derivatives that will signal 
the presence of a given qualitative structure (e.g. a dark blob by a light bar). (iv) the 
interpretation of filters as computing the derivatives of the blurred intensity means that in this 
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approach one is adopting the counter-intuitive strategy of trying to analyze qualitative structure 
after it has almost blurred away (e.g. in designing a Y-junction detector one would need to 
characterize the differential structure of a blurred Y-junction).  
 
 

  
Figure 2 - Edges, defined as the locus of points where the gradient magnitude is locally 
maximal in the direction given by the gradient vector, computed on a medical image. The 
features in this scheme are sparse. 

 
 
Recently, two developments have renewed the search for methods of qualitative description of 
local image structure. The first is the observation that in parallel to the view of filters as 
computing derivatives of the blurred luminance is a second view of them as computing an 
orthogonal decomposition of a locality in an image [29-32]. Second is the idea that the linkage 
between filter-response space and qualitative structure is not via special low-dimensional 
manifolds (e.g. 2 0L∇ = ) in filter response space, but via a partitioning1 of filter response space 

                                                 
1 A partitioning of a set X, is a collection of subsets of X which are pair-wise disjoint and whose union is X. 
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into non-overlapping sub-regions of co-dimension zero2 – each sub-region corresponding to a 
category of qualitative structure [11, 33-38]. Because the sub-regions of filter-response space 
have co-dimension zero, they will give rise to image regions (rather than curves or points) that 
have a particular feature label. For example, in figure 3 a five-dimensional filter response space 
has been partitioned into five-dimensional sub-regions. So pixels of the image that receive that 
label ‘edge’ form a region. As it happens, these ‘edge’ regions tend to be long and narrow, but 
they are formed of pixels as compared to (say) zero-crossings of the laplacean which are curves 
lying between pixels. 
 
 
 

flatedge concavity convexityhyperbolic

  
Figure 3 – An example of the dense feature labelling (right) that results when using a 
particular scheme of qualitative description based on the partitioning of a particular filter 
response space. 

 
 
1.2. The Gaussian Derivative Local Jet 
 
The hypotheses on qualitative description that we will present are not specific to a particular 
family of linear filters, but for concreteness we will use the derivative of Gaussian (DtG) filter 
family developed particularly by the Scale Space school [39-42]. Not only do DtGs of 1st to 4th 
order provide a well-fitting model of the receptive fields of simple cells in mammalian V1 [43-
45], but they have many formal properties to recommend their use in computer vision [3, 21-23, 
46, 47]. We will refer to the measurements given by a set of co-localised DtGs up to some order 
as a local jet, and the space of possible local jets as the jet space. Our uses of ‘jet’ are similar but 

                                                 
2 That is to say that the regions of the partition have the same dimensionality as the space of which they are a 
portion. 
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not identical to its uses in the differential geometry literature [48] which is concerned with 
infinitesimal, rather than blurred, derivatives. 
  
As we noted earlier, there are two distinct ways to interpret the application of DtG filters. First is 
that a local jet is interpretable as the initial terms of the Taylor series of the image blurred to the 
same degree as the scale of the DtG filters [2]. Second is that a local jet is interpretable as the 
initial terms of a Hermite Transform; the Hermite Transform being a local analogue of the 
Fourier Transform [30, 31, 49, 50], where the locality is specified using a Gaussian aperture (or 
weighting) function. 

A 1-D Gaussian kernel can be written as ( ) ( )
2

1
222 22

x

G x e σ
σ πσ

−−
= ; and, because of separability, a 

2-D kernel can be written as ( ) ( ) ( ),G x y G x G yσ σ σ=  [27]. In both cases the parameter σ  
specifies the width or scale of the kernel. DtGs are spatial derivatives of the 2-D Gaussian kernel. 
Differentiating with respect to different co-ordinate systems leads to different families of DtGs 
[22, 23]. For instance, using a Cartesian system gives the family (shown up to 4th order) in figure 
4 (top middle). An alternative ‘wavetrain’ family made of filters, each of which is a derivatives 
in only a single direction, can also be formed (fig. 4 bottom middle). These two families are 
equivalent in the sense that any of the nth order filters can be created by affine combination of the 
corresponding nth order filters from the other family. Figure 4 also illustrates that DtG filters can 
alternatively be produced by multiplying an Gaussian aperture of scale 2σ  by Hermite-Weber 
functions i.e. ( )

2
n

nG H Gσσ
= . This is the interpretation one uses when treating application of 

DtGs as being computation of terms of a Hermite Transform: the aperture isolates a local patch 
of the image, which is then probed by the Hermite-Weber functions, just as sinusoids are used to 
probe the entire unwindowed domain when computing the Fourier Transform [50]. 
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Figure 4 – Middle Column: two alternative families of Gaussian Derivative (DtG) filters. 
Bottom row: how measurement with a DtG family gives rise to the local jet. Top row: 
equivalence between measurement with DtGs and computation of the Hermite Transform. 
 
 

1.3. The Hypotheses 
 
We propose three hypotheses about qualitative description of local structure that we believe 
capture some of the recent literature in this area. In phrasing them we have decided on particular 
definitions of ‘Feature’, ‘Icon’ and ‘Texton’ that match reasonably those in general use, though 
inevitably there will be mis-matches with some authors. One of our intentions here is to establish 
some terminology that will assist future debate in this area.  
 
Discussion of the three hypotheses will form the body of the paper, but we will preview them at 
this point. First is the Feature Hypothesis, which is that there exists a system of qualitative 
description of local structure that is (i) based on a partitioning of jet space, and (ii) is useful for 
subsequent stages of processing. Second is the Icon Hypothesis, which is that (i) for each point of 
jet space there exists some iconic image patch that measures to that jet, and (ii) the equivalence 
relation of qualitative similarity of icons is what determines the partitioning of the Feature 
Hypothesis. Third is the Texton Hypothesis which is that the icons of the Icon Hypothesis are the 
image patches that, of those that measure to the jet, are the most common in natural images. 
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2. Features 
 
Application of DtG filters allows expression of local image structure as a point in jet space 
(figure 4, bottom right). Several authors [33-36, 51] have recently suggested that 
non-overlapping regions of jet space correspond to features (though the term texton is sometimes 
used). We make the idea explicit with the following statement: 
 

Feature Hypothesis: There exists a system of qualitative description of local structure, 
useful for later stages of processing, which is based on a partitioning of jet space. In this 
system, two image patches get the same qualitative description (i.e. feature label) if and 
only if their local jets are in the same region of jet space. 

 
Typically the justification for the ‘features = jet space regions’ hypothesis is in terms of 
clustering of similar filter responses [33, 52]. Such a clustering approach is inviting if one looks 
at the jet space histogram of an extended texture, as one will often see a multi-modal structure. 
The multiple peaks of the histogram corresponding to elements of the texture that are repeated 
many times in similar form. However, if one looks at a broader range of images than a single 
texture then the multi-modal structure of the jet space histogram disappears. For example, figure 
5 shows the jet space histogram of the 1-D 1st-2nd order jet of profiles taken from the van Hateren 
[53] database of natural images. There is absolutely no hint of clusters in this histogram and yet 
some degree of qualitative description should be possible even in this low-order, low-
dimensional example. The key point that we wish to make is that the idea of features 
corresponding to regions of jet space is coherent without any consideration of the frequency of 
occurrence of particular image structures. The distinctive consequence of the feature hypothesis 
is that images analyzed in this framework will be densely labelled with feature types (figure 3) 
rather than having sparse 1- or 0-dimensional features (figure 2). 
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Figure 5. The density plot at left shows the jet space histogram for the 1-D, 2nd order jet. The 
horizontal axis is the 1st order filter response. The vertical axis is σ  times the 2nd order filter 
response. The 0th order response is not plotted. The density has been square root transformed 
to improve visibility. On the right are plotted the polar marginal histograms; at top for the 
radial variable and at bottom for the phase. Note the absence of multiple clusters. 

 
 
There is an interesting precedent for the partitioning of jet space into categories that may provide 
insights. The precedent occurs not in spatial vision but in colour vision, and has it force because 
of a similarity in formal structure between these two modalities. The similarity is between the 
measurements performed by the human visual system of the distribution of spectral energy 
across the visible spectrum, and the measurements performed on the distribution of luminance 
across a portion of the visual field [54]. Thus the analogy is between a 1-D and a 2-D system.  
 
Colour vision in humans is subserved by three classes of light-sensitive retinal cells known as 
cones [55]. The three cone classes have different spectral sensitivities (figure 6, top-left). 
Ignoring various complications, one can assume that at each retinal location one of each class of 
cone is present, and so the distribution of spectral energy in the light incident on the location is 
transduced into three positive real numbers, where each number is the inner product of the 
sensitivity function and the spectral energy distribution of the incident light. Although this is 
similar to the way that linear filters probe the distribution of intensity at a location of an image, 
the analogy seems limited as the uni-modal cone sensitivity functions seem very different in 
form to the oscillating DtG functions. However, if one linearly combines the cone sensitivities 
one can produce results that looks very like 1-D 0th, 1st and 2nd order DtGs [54, 56]. Since the 
action of the cone functions is linear, linearly combining the sensitivities is equivalent to linearly 
combining the outputs of the raw cone functions. Hence, barring signal vs. noise issues, the 
linearly combined system has identical sensitivity to the original system. The similarity between 
the cone colour system and a 1-D 0th-2nd order DtG system is even greater if one is also allowed 
to warp the wavelength axis (figure 6, bottom-left). The warping that maximizes the similarity is 
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fairly mild, and since the visual system has little or no access to any metric on the wavelength 
axis one is not distorting the sensitivity of the cone system, this is simply a non-standard 
alternative picture of it. Thus the trichromatic colour system can be regarded as performing 
something equivalent to a 1-D, 2nd order Hermite Transform of the spectral energy distribution, 
just as a family of co-localized V1 simple cells can be regarded as performing a 2-D, 4th order 
Hermite Transform of the retinal luminance distribution.  
 
 

λ-axis warping plus
linear combination

≈

1-D version

400 500 600 700

cone functions

approximate 1-D 0th-2nd order DtGs 1-D 0th-2nd order DtGs

2-D 0th-2nd order DtGs

 
 

Figure 6 – Illustrates the analogy between spatial and colour vision via the Hermite 
Transform. The cone functions (top-left) can be transformed into a form (bottom-left) that 
approximates the 0th-2nd order 1-D DtGs (bottom right). This family of three DtGs are the 
1-D equivalent of the six filters making up the 0th-2nd order 2-D DtG family (top-right). 

 
 
It is not simply that there is an analogy between spatial and colour vision via the Hermite 
Transform that interests us here though. What interests us is that human colour vision, in 
addition to computing a quantitative description of the spectral energy distribution as described, 
also computes a qualitative description, and this description is based on a partitioning of the cone 
response space into non-overlapping regions of qualitatively similar colours. The words (black, 
grey, white, red, orange, yellow, green, blue, purple, pink & brown) referencing these colour 
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categories are known as the Basic Colour Terms [57]. Terms with very similar referents are 
found in all sufficiently developed languages, and as such they are a universal endpoint or at 
least bottleneck in the cultural evolution of colour language. Less developed languages typically 
have fewer than eleven terms, but it is claimed [58] (and disputed [59] and claimed again [60]) 
that these are always a subset of the full eleven. This trend towards universality has suggesting to 
some [43], though not all [44], that they have a pre-cognitive universal basis. 
 
The fact of the basic colour terms sets a precedent for the useful partitioning of Hermite 
Transform spaces in visual processing and thus makes the Feature Hypothesis less out-of-the-
blue. Also, we can consider the types of explanation that have been put forward for why the 
Basic Colours are the ones they are, rather than some others, as inspiration for the types of 
explanation that could underlie a system of image features. Note that because of the many 
differences between the domains of colour and spatial vision we do not expect anything stronger 
than suggestions for types of explanation. Explanations have been advanced for the Basic 
Colours in terms of the domains of neurophysiology, language, ecological optics and visual 
ecology. We review these below. 
 
Neurophysiological explanations tie the Basic Colours to the form of the cone spectral-sensitivity 
functions [55, 61], to some later processing stage such as opponent channels [62-66] or to 
dedicated neural mechanisms [67]. Neurophysiology may also limit what categories are possible, 
for example we may lack cognitive structures capable of representing disconnected or non-
convex regions of colour space [68]. 
 
Explanations based on shared language appeal to factors such as: limitations of some language-
acquiring brain module [69], effects of the process of achieving consensus on semantics [67], 
and advantages of agreement despite inter-individual variations in colour vision [70]. 
 
Explanations from ecological optics [71] consider how common optical processes affect colour, 
and what invariants exist despite these processes. Examples are: colour categories being shaped 
so that neither shadowing nor highlights alter the hue of reflected light; and categories being 
shaped so that they achieve reasonable stability despite variations in illuminant [72]. 
 
In explanations from visual ecology, the colour statistics of the environment are taken into 
account. For example, categories could correspond to clusters of naturally-occurring colours 
[73]. Another possibility is that categories are particular effective for certain types of interaction 
with the world, such as search, identification, recognition, discrimination or classification [74]. 
Effectiveness for classification ties in well to a recent suggestion about psychological categories 
in general: good systems of categories are those that effectively support induction [75]. In the 
context of colour, the argument would go like this. A ‘green’ category is useful as it allows 
inferences like the following: the majority of ‘green’ things that I have seen have been plants, 
therefore this ‘green’ thing is probably a plant. If instead of a ‘green’ category one had 
‘turquoise’ and ‘glaucous’ categories then this useful inference would no longer be so easily 
made. 
 
Of these various types of explanation only the language-based ones cannot easily be translated 
into something plausible for image features. For example, an equivalent for features of 
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explanation of the basic colours from neurophysiology would be that image features are a 
‘natural’ partitioning of the jet space derivable simply through consideration of the Hermite 
Transform. An example of an equivalent of explanation from ecological optics would be that 
features are such that they are stable with respect to changes in viewpoint or illumination 
geometry. While a feature-equivalent of explanation from visual ecology would be that features 
are such as to maximize our ability to recognize objects, people, or places on the basis of them. 
 
To end this section we note that while it is tempting to coin the term ‘Basic Image Features’ we 
think this would be unhelpful given the continuing contention and hard-argued debates that 
surround the Basic Colours. 
 
 
3. Icons 
 
Our next hypothesis – the Icon Hypothesis – concerns what might underlie the categories of the 
Feature Hypothesis in the previous section. The hypothesis originates with Koenderink [76-78] 
but the following is our own statement of his suggestion: 
 

Icon Hypothesis: i) for each possible local jet (i.e. point of jet space) there exists some 
iconic image that has the specified local jet at the origin, and (ii) the equivalence relation 
of qualitative similarity of icons is what determines the partitioning of the Feature 
Hypothesis. 

 
The didactic route to icons starts with consideration of metamerism, which is the phenomenon 
where sensory measurements fail to fully determine the proximal stimulus [79]. The most 
familiar examples are in colour vision, where the outputs of the three cone classes do not and 
cannot fully determine the form of the spectral energy density that they measure. This is because 
the spectral energy density has a huge (if not infinite) number of degrees of freedom, whereas the 
cone system measures only three. Thus there are an infinite number of spectral energy density 
functions that are compatible with any triple of cone responses. The same situation occurs in 
spatial vision, where a local jet fails to uniquely determine the form of the retinal intensity even 
within the locality that the local jet is the measure of [38]. Pairs of inputs, in colour or spatial 
vision, that measure to the same values are said to be metameric; and the set of possible inputs 
that measure to a given vector of values is the metamery class for that vector of values. 
 
The fact of metamerism raises the question of how a visual system should treat a local jet. There 
are three possibilities [38]. (1) by ignoring metamerism i.e. by using the numbers that define a 
metamery class as a symbol standing for the class but never representing or reasoning about 
individual class members. (2) by using the class definition as a code that defines the class, allows 
generation of class members, and facilitates testing of membership, while remaining 
uncommitted as to which class element is the true stimulus (cf. ‘multiple visual worlds’ [80]). (3) 
By ‘sticking its neck out’ [80] and selecting a particular iconic representative of a metamery 
class and attaching the icon’s qualities to the full metamery class. The Icon Hypothesis holds that 
for spatial vision, strategy (3) is appropriate. The question for spatial vision then becomes: how 
to select icons so that the qualities that thus accrue to the metamery classes are simple, 
conservative and representative? In considering icon selection, one can also keep an eye on the 
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second part of the Icon Hypothesis that states that the ‘correct’ icons will induce the partitioning 
of jet space hypothesized by the Feature Hypothesis. 
 
In the papers where Koenderink proposed the Icon Hypothesis the particular icon selection rule 
that he considered was (more-or-less): that the icon of a metamery class should be the element 
with the smallest range of intensity values. It can be shown [81] that this rule leads to icons of a 
very distinct type: they have only two intensity values, and the transition locus between the two 
values always has the form of an nth order algebraic curve, where n is the order of the local jet 
specifying the metamery class. What makes this icon selection rule especially attractive is that 
the second part of the Icon Hypothesis – that an equivalence relation of qualitative similarity of 
icons should determine a partitioning of jet space – is easily fulfilled. Consider the 2nd order jet 
for example. The transition loci of the range-minimizing icons always have the form of a 2nd 
order curve i.e. a conic, and conics naturally partition into classes: ellipse, hyperbolae plus 
degenerate cases. Similarly for the 3rd order jet one obtains icons with cubic curve transition loci, 
for which one may use Newton’s classification of the cubics [82] to define equivalence classes. 
 
Range-minimization is not the only plausible rule for icon selection though, and others have been 
looked at [83]. In particular we have looked [11, 37, 38, 84] at other rules based on selecting the 
metamery class element that minimizes some measure of complexity. The definitions of 
‘complexity’ that we have considered are norms. For an image I, we define its luminance norms 

as ( ) ( )
1

2

min
r
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cases, infinity norms are defined by taking the limit r →∞ . Using this notation, the norms we 
have looked at are: the range of an image (L¶), the variance (L2), the total variation (D1) and the 
‘roughness’ (D2). These four norms were chosen as their minimizers show a degree of 
resemblance to structures found in natural images (or to put it the other way, patches in natural 
images tend to be low in these norms when compared to their metameres). This is not true for all 
norms. For example, the L1 norm minimizers consist of very ‘unnatural’ small collections of 
weighted delta functions. We also note that in the context of colour vision, the smoothest 
reflectance functions (i.e. D2 minimizing) that could account for each triple of cone responses 
have been determined numerically [85, 86]. 
 
Summary results of our investigations into the effectiveness of these norms for icon selection are 
shown in figures 7-9. Figure 7 shows the icons that would be selected for the 1-D, 1st and 2nd 
order jets. The conclusions of this study were that: (i) while low order L¶ minimizers are quite 
representative of natural structure, at higher orders they are distinctly less so, (ii) the standard 
definition of D1 in 2-D seems to be an incorrect generalization of the 1-D definition (also argued 
for elsewhere [87]), (iii) even so, D1 minimization is the most successful at selecting icons that 
are natural looking.  
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Figure 7 – Each row shows icons selected according to minimization with respect to a 
different norm (indicated in the leftmost column). The grey curves in the right column are 
the icons for the 1-D, 1st order jets. The rows of the density plots are the icons for the 1-D, 
2nd order jets for different phase ratios between the 1st and 2nd DtG filter responses. The top 
and bottom rows of each density plot corresponds to large 2nd order DtG response, and small 
1st order response (i.e. cosine phase); the central row to small 2nd order response and large 
first order (i.e. sine phase). To assist visualization, lines have been overlaid on these density 
plots to show the location of extrema and discontinuities. The right hand column of the 
figure shows the cosine-phase (black) and the sine-phase (gray) minimizers as regular plots.  
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Figure 8 – Shows the icons for the 2-D 1st order jet selected according to minimization with 
respect to different norms as indicated. The overlaid circle roughly indicates the size of the 
locality where the local jet is measured. 
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Figure 9 allows comparison of icon selection based on minimizing different norms. The 
original image is at left. To produce each of the other panels, a hexagonal array of sites was 
set-up and the 4th order local jet was measured at each site at a scale indicated by the 
hexagons. Each hexagonal patch was then replaced by an icon with the same 4th order 
structure. The icon selection rule is indicated by the label at the bottom-left of each panel. 

 
 
In summary, we have found that suitable icon selection rules do lead to icons that are quite 
natural looking and so are reasonable representatives of their metamery classes. Also, icon 
selection rules based on minimizing complexity do lead to simple icons, from which natural 
partitionings of jet space are easy to define. However the partitioning that results does depend on 
the icon selection rule used. 
 
 
4. Textons 
 
To recap, the Feature Hypothesis posits that there is some (unknown) partition of the jet space 
that is effective for qualitative description and the Icon Hypothesis states that the partition is 
determined by iconic images, one associated with each point of jet space. The Texton Hypothesis 
is concerned with what determines those icons. 
 

Texton Hypothesis: the icons of the Icon Hypothesis are the elements of metamery 
classes that are the most common in natural images. 
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The Texton Hypothesis can be seen as a refinement of the icon selection rules discussed in the 
previous section, but with ‘most probable’ substituted for ‘most simple’ This is a familiar 
substitution given the linkages between probability and simplicity that have been established 
through principles such as Minimum Description Length [88]. The Texton Hypothesis also 
captures some of the flavour of approaches based on the modes of the histogram of local jets [89, 
90] and also of approaches that attempt the construction of an optimum code book of image 
patches [91]. Certainly there is a crucial difference of detail as in these approaches the relevant 
probabilities are those of the appearance of local jets or patches, whereas in the Texton 
Hypothesis, the probabilities are those of image patches given the local jet.  
 
We have pursued the consequences of the Texton Hypothesis by computing icons according to 
the definition. Initially these computations were neither easy nor quick since no good algorithm 
for high dimensional mode estimation existed. However we have now developed such an 
algorithm (earlier versions described in [11, 38, 92], final version in [93]) so the computations 
are now easy (but still slow). To use this mode estimation algorithm, 2-D patches or 1-D profiles 
are extracted from a suitably prepared large database [53] of natural images. These patches or 
profiles are then normalized by linear transformation of their intensities. The normalization is 
such as to factor out two components – an additive pedestal and a contrast magnitude – weakly 
justified by a hunch that qualitative structure should be invariant to linear transformation of 
image intensity. Patches, but not profiles are also rotated so that their gradient vector is in a 
canonical orientation. These steps remove two degrees of freedom from the 1-D jets of the 
profiles, and three from the 2-D jets of patches. We then select the subset of patches or profiles 
with a local jet sufficiently close to the local jet that we wish to determine the icon/texton for. 
These patches or profiles are then treated as points in a high-dimensional space and as such are 
input to the mode estimation algorithm. 
 
Our first study was of the 1-D, 1st order jet [38]. The 1-D, 1st order jet space has two dimensions 
(the 0th and 1st order filter responses) so strictly speaking there is a 2-D family of metamery 
classes each with a separate icon to be discovered. However our normalization step collapses this 
2-D family of metamery classes down to a single canonical class, and so there is only a single 
icon to discover. As shown in figure 10, we found that for natural images the maximum 
likelihood profile for the 1-D, 1st order jet was a step edge. This contrasts with the maximum 
likelihood profiles for Gaussian and Brownian noise images which were found to be a Gaussian 
first derivative and an error function respectively (fig. 10). In the case of the noise images we 
were also able to prove that these were the correct forms. The finding that the step edge was the 
maximum likelihood profile was consistent with a hypothesis that we ventured at the time that 
maximum likelihood forms for natural images were either the L¶ or D1 minimizers from 
metamery classes (figure 7). 
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Figure 10 – Maximum likelihood (modal) profiles for different classes of image – Gaussian 
noise (top), Brownian noise (middle), and natural images (bottom). Profiles were normalized 
before mode estimation so that their 1st order jets were equal. The jets were measured in the 
centre of the profiles using DtG filters of a scale indicated by the dashed lines. Each plot in 
the left hand column shows nine separate mode estimates each based on 5µ106 profiles. The 
plots at the right show the average mode estimate and one-sd-of-scatter error bars. Note that 
one of the nine maximum likelihood natural image profiles is of slope rather than step edge 
form. This suggests, not surprisingly, that these low order metamery classes are multi-modal. 

 
 
Recently, we have managed to compute maximum likelihood patches (rather than profiles). Our 
first results from this are shown in fig 11 which shows the maximum likelihood patches from 



In Press: International Journal of Computer Vision 

natural images when they have been normalized so that they agree in their 1st order local jet. Not 
surprisingly, given the previous 1-D study, the maximum likelihood forms are straight step 
edges. Whereas the 1-D study results were consistent with the maximum likelihood forms being 
identical to the L¶ or D1 minimizing forms, the 2-D results are only consistent with the L¶ 
minimizing form (see figure 8). 
 
 

 
Figure 11 – Top row: Estimates of the maximum likelihood natural image patch for natural 
images. Each estimate was based on 350,000 patches. The bottom row shows the context of 
the patches that were chosen as the mode estimates. 

 
 
The final mode estimation study we will report is of the 1-D, 2nd order jet [11, 84]. This jet has 
three degrees of freedom, two of which are absorbed by the normalization process leaving a 
single degree of freedom which we index using a phase variable running from 2π−  to 2π . 
The phase variable measures the ratio between the first and second derivatives in the jet. Jets 
with phases near the extremes of the range (i.e. cosine phase) are dominated by second order 
structure, those with phase near zero (i.e. sine phase) by first order structure. We divided the 
phase range into 33 bands and calculated separate mode estimates for each of these bands. The 
results are shown in figure 12 (top-left). As the figure shows, for sine-phase the maximum 
likelihood form is a step edge; this was a likely but not inevitable finding given the 1-D 1st order 
result. For cosine-phases the maximum likelihood forms are roughly a step-edged bar or pass. 
The maximum likelihood forms are similar, but definitely different from the L¶ and D1 norm 
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minimizing forms (figure 7), so the hypothesis that the maximum likelihood forms would 
coincide with the minimizers of one of the norms we had been considering was rejected at this 
stage. This does not prove that there is not some other norm, as yet unspecified, whose 
minimizers coincide with the maximum likelihood forms, but this seems unlikely.  
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Figure 12 – Results from a study of the maximum likelihood profiles in natural images, 
when the profiles are conditioned on the 2nd order local jet. The modal profiles are shown in 
the top-left panel, where each row is the mode estimate for a different phase (i.e. ratio of 2nd 
order to 1st order derivative). The overlaid lines on the panel show a model that has an 
excellent fit to the data. The model consists of three template profile forms (shown at the 
right) that are shifted and scaled differently for each phase. For most phases the mode 
estimate corresponds to one of the template forms, but there are narrow bands where the 
modal profile is a mixture of two templates. The vertical bar to the left of the plot shows the 
amount of each template that is present at each phase. Examples of the three template forms 
occurring in natural images are shown in the lower 2/3rds of the figure. 
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We have found a simple model that describes well the maximum likelihood natural images 
profiles for the 2nd order jet and their variation with phase (i.e. the data of figure 12, top-left). 
The model consists of three template profiles (figure 12 top-right) – roughly an edge, a light bar 
and a dark bar – that by spatial shifting, intensity scaling and adding can be made to fit the ML 
profile at each phase. For phases near cosine-phase, one or other of the unmixed bar templates 
fits the data. For phases around sine-phase the unmixed edge template fits the data. For only six 
of our 33 phase bins is it necessary to use a bar-edge mixture. These six are arranged in two 
groups of three and separate the pure edges from the pure bars. The relative weighting of the bar 
and edges in these transition zones follow a monotonic pattern from pure edge to pure bar (figure 
12 top, far-left). The plot of figure 12 shows the model profiles overlaid with lines that indicate 
how the bars and edges are shifted for different phases. 
 
In figure 12 we also show actual natural image profiles that have our three template forms and 
how they arose in the images from which they were extracted. The example having the light bar 
form arose from a foreshortened view of a region of the ground plane containing lighter 
vegetation than the surround. The dark bar arose from the simpler situation of a branch 
silhouetted against the sky. The edge example is another silhouette, but this time of a tree canopy 
against the sky. 
 
The model that we have fitted to the maximum likelihood profiles for the 2nd order jet is fully 
compatible with the Texton and Icon Hypotheses in that icons determined as maximum 
likelihood profiles induce a partition of the jet space. The partition is into three classes separated 
by two fuzzy intermediate bands. The Icon Hypothesis posits that a partition structure will be 
induced by qualitative similarity of icons. This is the case here, but the nature of the qualitative 
similarity is surprisingly simple: equality modulo shifting and affine scaling. This is even simpler 
than was the case for the norm-minimizing profiles we previously considered (figure 7). It 
appears that our use of the term Texton for our final hypothesis is particularly apt, since on the 
strength of these results natural image structure appears to be dominated by a small vocabulary 
of particular image structures. 
 
 
4. Discussion 
 
We will conclude with discussion of two issues. First, alternative positions that can be held if the 
hypotheses are not accepted. Second, the evidence presented for the hypotheses. 
 
Considering alternative positions to those of the hypotheses, we consider the Feature Hypothesis 
first. The strongest rejection of the hypothesis is to call into question the necessity and utility of 
qualitative description. One could for example opt to keep local jets intact and uncategorized, 
and instead focus on developing a sophisticated metric for jet space so that distances in the space 
were a good reflection of the average dissimilarity between patches having those jets. A weaker 
rejection of the Feature Hypothesis is to accept the utility of qualitative description, but to prefer 
a fuzzy approach in which descriptions are vectors of fuzzy membership-of-feature-category 
scores. The weakest rejection of the Feature Hypothesis is to embrace unfuzzy categorical 
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description but to prefer a sparse-features approach where features only occur at isolated points 
and curves, with the remaining majority of the image being unlabelled [94]. The issue that we 
have with the metric- or fuzzy-type rejections of the Feature Hypothesis is that the reduction of 
information necessary to facilitate later processing without combinatorial explosion has simply 
been postponed. Against the view that feature labelling should include sparsely distributed 
curves and points as well as regions, we note that in our experience of practical image 
processing, the potential that curves and points have to ‘lie between pixels’ leads to much more 
complicated algorithms than is the case if only regions need to be dealt with. 
 
Next, consider the Feature Hypothesis being accepted but the Icon Hypothesis rejected. Such a 
stance accepts that there is some partitioning of jet space to be found, but holds that it is 
determined in some way other than by icons. There are several possible plausible alternatives, as 
is clear from the analogy we drew with the basic colour categories of colour vision. Most of the 
types of explanation advanced for the basic colours can be translated into something plausible for 
feature categories of spatial vision, but the most readily convincing would be those concerning 
ecological optics (feature categories are such as to be as stable as possible with respect to 
changes in viewpoint or illumination geometry) and visual ecology (features are such as to 
maximize our ability to recognize objects, people, or places on the basis of them). We stress 
though that we regard the colour/spatial vision analogy as too weak to lead to any expectation 
that the explanations in the different domains should be the same. The single biggest difference 
(in the light of the analogy) between the domains is that the stimulus that the filters probe is more 
accessible in spatial vision than in colour – think for instance how informative are the changes to 
local jets caused by small translations of the retinal image, but for colour there is no mechanism 
that causes shifts along the wavelength axis. 
 
Lastly, consider the Feature and Icon Hypotheses being accepted but the Texton Hypothesis 
rejected. This position would hold that there is some family of icons to be found that induce an 
effective partitioning of jet space, but that the icons were not the maximum likelihood members 
of metamery classes and were instead determined by some other rule. As we have discussed in 
section 3, norm-minimization is a plausible rule for icon selection but we have been unable to 
identify a norm which gives results which look to be worth further testing. Moreover one can 
question what rationale there could be behind a norm-minimization approach that was not 
phrased in terms of maximizing probability relative to some prior; and so given that, why not use 
maximum likelihood directly (which is equivalent to letting the database of natural images 
specify the prior). A radically different way that icons could be determined would be for them to 
arise from some specific strategy of cartoon-ification of the world. Perhaps some 
cartoon-ification scheme could be more conservative and so more robust than maximum 
likelihood [83]. 
 
Of the three hypotheses, we regard the Icon Hypothesis as the shakiest. Some of the ways in 
which a partitioning of jet space could arise without a basis in a system of icons are plausible. 
 
Finally, we consider the evidence that has been advanced in favour of the combined Feature, 
Icon and Texton Hypotheses in this and our previous papers on the subject [11, 37, 38, 81, 84, 
92]. We have determined the maximum likelihood icons for the 1st order jet in 1-D and 2-D, and 
the 2nd order jet in 1-D. The results for the 2-D 1st order have not been presented previously, and 
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the results for 1-D 1st order are improvement of those previously published since they were 
computed using the latest version of our algorithm. In all cases the icons found were simple and 
were natural-seeming in the sense of corresponding to very familiar types of image structure with 
easily understood physical causes. Equally crucial is their determination of a partitioning of jet 
space. So far we have only presented results on this for 1-D jets, and results for 2-D jets will be 
necessary before we can assess whether the partitioning is ‘useful’ as required by the Feature 
Hypothesis. However, setting the need for further testing to one side, the 1-D, 2nd order jet space 
partitioning that we have determined is as good as could be expected. Firstly it was very readily 
determined by the icons, there was no need to argue for some subtle definition of qualitative 
identity of icons. Secondly, it agrees well with what one would guess as the answer. Thirdly, the 
surprising result that the icons were simply translates of some template forms, rather than the 
more complicated variations seen with norm-minimizers, supports the idea that the distribution 
of local structures actually seen in natural image structure is sparse, which in its turn supports the 
idea that underpins the Texton Hypothesis: qualitative description of local image structure 
derives from the inference of likely real-world appearances from low-dimensional quantitative 
measurements. 
 
In conclusion, we have made careful statements of a sequence of three increasingly specific 
hypotheses concerned with how qualitative description of local image structure can best be 
performed. We have reviewed work that we have done on testing these hypotheses. We would 
characterize these results as supportive, rather than confirming, of the hypotheses. 
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