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ABSTRACT
Digital content production and distribution has radically
changed our business models. An unprecedented volume
of supply is now on offer, whetted by the demand of mil-
lions of users from all over the world. Since users cannot
be expected to browse through millions of different items to
find what they might like, filtering has become a popular
technique to connect supply and demand: trusted users are
first identified, and their opinions are then used to create
recommendations. In this domain, users’ trustworthiness
has been measured according to one of the following two
criteria: taste similarity (i.e., “I trust those who agree with
me”), or social ties (i.e., “I trust my friends, and the people
that my friends trust”). The former criteria aims at identi-
fying competent users, but is subject to abuse by malicious
behaviours. The latter aims at detecting well-intentioned

users, but fails to capture the natural subjectivity of tastes.
We argue that, in order to be trusted, users must be both

well-intentioned and competent. Based on this observation,
we propose a novel approach that we call social filtering. We
describe SOFIA, an algorithm realising this approach, and
validate its performance on two real large-scale datasets. We
demonstrate that the recommendations produced by SOFIA
are both accurate and attack resilient.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—information filtering ; J.4 [Computer
Applications]: Social and Behavioral Sciences—sociology

General Terms
Algorithms, Security, Measurement

Keywords
Collaborative filtering, Social networks, Link analysis

1. INTRODUCTION
In his 2006 bestseller “The Long Tail” [1], Chris Ander-

son emphasizes how digital distribution has dramatically
changed retailers’ business models. Traditional retailers have
a limited space they can use to stock items; market forces
drive them to carry only those items that have the best
chance to sell, thus losing less popular ones. With the advent

.

of the Internet, retailers are not bound by the same physical
constraints, so that more items can be offered. Moreover,
consumers at a global level can now be easily reached, mean-
ing that more items will be bought from the ‘long tail’; this
is a non negligible market: even though not many of each
item in the tail are sold, the numbers add up to large vol-
umes overall, given the length of the tail itself. As a result,
while a traditional bookshop can hardly be expected to sell
more than 100,000 different titles, an online service such
as Amazon.com can offer its costumers millions of different
products. More recently, not only the cost of distribution,
but also the cost of production has been dramatically re-
duced; compare, for instance, the variety of programs of-
fered by a traditional broadcast or cable TV, with what is
on offer on sites like YouTube.com. The overall result is a
society where an unprecedented volume of supply can meet
the demand of millions of users from all over the world.

However, as Anderson points out, providing people with a
massive choice is pointless, if that means they have to browse
through thousands, or even millions, of potentially relevant
items. Rather, people must be assisted in finding what they
want. Filters can be used to connect supply and demand,
making it easier for users to find the particular content that
they would enjoy.

The most popular technique to realise this connection is
collaborative filtering (CF) [9]. Most of the work on col-
laborative filtering has been focusing on identifying users
with similar preferences, and then recommending items that
people with similar tastes have approved. The adoption of
collaborative filtering has arguably been a key factor in the
success of Amazon.com: readers are invited to send reviews
of books and to rate them on a five-star scale; other readers
can comment on how useful the reviews were. By so do-
ing, customers with similar tastes are detected and their
past purchases used to create recommendations for simi-
lar users for what to buy next (i.e., thus connecting sup-
ply and demand). Traditional collaborative filtering tech-
niques have worked quite well for the mass market and un-
der the assumption of collaborative behaviours. However,
these techniques have been subject to abuse by malicious
behaviours [13]: for example, malicious users could copy
honest users’ reviews, to gain high similarity scores with
them; they could subsequently inject inflated reviews in the
system, to trick those users into buying an item or, vicev-
ersa, to disrupt an item’s sales.

We argue that accurate and robust filtering techniques can
be devised by exploiting information from a user’s social
network. We call this approach social filtering. The core



idea is to give higher weight to recommendations received
from trusted users. To be trusted, a user must be both well

intentioned and competent. Traditional collaborative filter-
ing techniques focus only on competence (i.e., the ability to
give useful - in a subjective way - recommendations), with-
out considering the fact that competent users may indeed
be malicious. Rather than relying on all recommendations
from similar (i.e., competent) users, our approach specifi-
cally looks for well-intentioned users (i.e., users who are will-
ing to provide honest recommendations) among those with
whom we have stronger social relationships. Social ties are a
warranty against malicious behaviors: if the trust inference
algorithm is robust, it would be very costly for an attacker
to build enough friendships with ‘honest’ users to effectively
subvert the system. By so doing, we can prove that social fil-
tering is more robust than traditional CF. Moreover, even in
the absence of malign behaviour, we demonstrate that social
filtering yields to more accurate recommendations, in situa-
tions where social ties intrinsically reveal information about
users’ similarity (e.g., two friends are more likely to share
hobbies and tastes than two complete strangers); this is es-
pecially important when dealing with items that strongly
appeal only to a small/niche community.

The remainder of the paper is structured as follows: Sec-
tion 2 describes the philosophy behind social filtering, focus-
ing on the two distinct aspects of intent and competence. In
Section 3 we discuss SOFIA (SOcial FIltering Algorithm),
that is, a specific realisation of social filtering. In Section 4
we analyse attacks against which filtering must defend itself,
and in Section 5 we demonstrate the accuracy and robust-
ness of SOFIA against two large real dataset, namely Cite-
seer and Last.fm. Finally, Section 6 concludes the paper and
discusses future directions of research.

2. PHILOSOPHY OF THE APPROACH
Social filtering relies on the identification of trusted rec-

ommenders. In the scope of this work, we call trusted a
recommender that is both well-intentioned and competent.
The three questions we are thus trying to answer are: (1)
how to evaluate intention (Section 2.1); (2) how to evalu-
ate competence (Section 2.2); and (3) how to combine this
information to find trusted recommenders (Section 2.3).

2.1 Intent
We define intent as the the willingness of a user to provide

honest judgements1. Note that a judgement given with good
intent is not necessarily useful, since users may have different
tastes and preferences; Section 2.2 will illustrate how to find
competent users among well-intentioned ones.

In our approach, a well-intentioned user is one that has
a high reputation. We use the word ‘reputation’ here in its
most general sense, that is, ‘the estimation in which a person
or object is held by the community or public’ (source: Ox-
ford Dictionary). Reputation is built over time: the more
cooperative a user has been in the past, the higher their
reputation. Note that high reputation is not developed by
intrinsically honest users only: a selfish individual can be

1In the following, we will use the more general term ‘judge-
ments’, instead of ‘recommendations’, as our approach is
equally applicable to recommendations (i.e., endorsements
of products or content) as to ‘negative’ or purely informa-
tive judgements (e.g., “avoid that restaurant” or “this is
relaxing music”).

Figure 1: Transitive trust propagation pattern.

motivated to cooperate by sufficient incentives. If users ben-
efit enough from being cooperative, reciprocative patterns
emerge, and selfish individuals will maximize their payoff
by cooperating [2, 18].

Finding users with high reputation is rather straightfor-
ward in centrally-managed systems: the system acts as a
trusted third party, witnessing interactions and recording
outcomes; if Alice (A) wishes to find out the reputation of
Bob (B), A can simply query the system to get the answer
she is looking for. Finding nodes with high reputation in
distributed environments is not that trivial: interactions are
not witnessed by trusted third parties, so it is not possible
to keep global reputation records, as malicious users could
report false outcomes of their interactions with other peers,
in order to damage their reputation.

How can we find well-intentioned users in this case? In-
stead of global reputation, reciprocal trust relationships be-
tween nodes are maintained by the nodes themselves in the
form of a web-of-trust, that is, a directed graph where nodes
are users and an edge from A to B indicates that A trusts
B (i.e., A has had direct interactions with B in the past
and has reported she trusts B). A ‘web-of-trust’ is thus an
instance of social network where ties between nodes are in-
deed based on ‘trust’ values. A problem arises when A has
to judge the intentions of C, with whom she has never inter-
acted before. In this case, it is sensible to give some trust to
nodes that are recommended by nodes that we trust (and,
iteratively, to nodes trusted by these new nodes as well). In
other words, A propagates trust over intent, over the web-
of-trust, from A itself to all nodes reachable from it via a
directed path. It does so by means of the transitive trust

propagation pattern shown in Figure 1. Usually, the level of
trust inferred over a path is lower or equal to the minimum
value of trust over the path; algorithms differ in how this
quantity is calculated.

The principle of trust transitivity has been criticized since
the judgement of who deserves trust is subjective [14, 10]
(i.e., we are not guaranteed to like all the friends of our
friends). However, we argue that, in the particular case
of propagating trust over intent only (i.e., the willingness
to provide honest judgements), transitivity is well justified:
if node C has given honest judgements to node B (i.e., B

trusts C), it is likely that C will do the same with node A

too (A will trust C), as reciprocative behaviour creates an
incentive for node C to be consistently well-behaved, thus
building a high reputation [6]. Moreover, benevolent intent
is a concept where subjectivity does not apply strongly, un-
like competence, as discussed in the next section.

In this paper, we do not deal with social network creation
and maintenance. Many different approaches could be used
to accomplish this task, including: explicit social network
creation (e.g., “Add as a friend” in sites like MySpace or



Figure 2: Co-citation trust propagation pattern.

FaceBook); use of email/phone-book contacts; automated
creation as described in ReferralWeb [11]. Since the strength
of our work lies in the combination of social network in-
formation and taste similarity, approaches that intrinsically
create social networks purely based on taste similarity will
experience the lowest gain from social filtering, as opposed
to scenarios where the social network does bring in addi-
tional knowledge about nodes.

2.2 Competence
Together with intent, competence is a key component in

evaluating the trustworthiness of recommenders. In this
work, we define competent those users who are able to make
correct judgments; since the definition of “correct” judg-
ments is inherently subjective, competence is a subjective
matter as well.

A sensible way of evaluating competence is via the co-
citation pattern shown in Figure 2. A bipartite graph is used
to represent a network of judgments: users and judgments
form two disjoint sets of vertices (respectively V1 = {A, B}
and V2 = {X, Y } in the graph); an edge (A, X) is present if
user A expressed the judgment X. If users A and B agree
on judgment X (i.e., there exist edges A → X and B → X),
then A may consider B a competent user from her viewpoint.
Using the co-citation pattern, she may then propagate trust

over competence on the judgement Y that B expressed.
However, users’ competence is not sufficient to warrant

trust to their judgements. For instance, let us consider a ma-
licious user Mallory, wishing to trick Alice in believing a dis-
honest judgement Z stating that “Mallory’s Greasy Restau-
rant offers very good food”. In order to do so, Mallory
could simply copy Alice’s judgements; using the co-citation
trust propagation pattern, Alice would deem Mallory a very
competent evaluator, and would consequently believe/trust
judgement Z too.

We argue that competence should thus be combined with
intent to identify trustworthy recommenders, that is, rec-
ommenders who are willing to provide us with honest judge-
ments and that we are likely to find useful.

2.3 The Combined Approach
As discussed above, using the transitivity trust propaga-

tion pattern alone is not enough, as subjectivity of tastes,
which is an intrinsic characteristic of judgements, is lost.
On the other hand, using the co-citation trust propagation
pattern alone is subject to abuse by malicious users.

We propose a novel approach that combines the strengths
of the two patterns, while circumventing their individual
weaknesses: we exploit the transitivity trust propagation
pattern on the web-of-trust to determine well intentioned

Figure 3: Combined trust-propagation approach.

users, and the co-citation trust propagation pattern on the
network of judgements to evaluate their competence. By so
doing, we are capable of inferring trust over judgements, in
a way that is both accurate and robust. The underpinning
idea is that, in order to be trusted, a judgement must have
been expressed by a user who is both willing (intent) and
able (competence) to give useful judgements. We call the
new approach social filtering. Based on the interpretation
of trust propagation over intent and competence we gave in
the previous two sections, A can infer trust for a judgement
Y expressed by a user D (Figure 3) if:

1. there exists a directed path from A to D in the web of
trust (e.g., A → B → C → D);

2. A and D both expressed at least one common judge-
ment (e.g., X).

This is the first approach that aims at increasing the util-
ity of recommendations, by exploiting information coming
from the social network and from individual’s preferences at
the same time. We are aware of only two other works where
the transitivity and co-citation trust propagation patterns
have been used together, but with rather different goals and
following a different philosophy: in [8], trust is propagated
using either co-citation or transitivity in a social network
where links represent similarity in preferences; in [16], the
transitive trust propagation pattern is used as an alternative

to the co-citation pattern, in order to bootstrap trust when
traditional user similarity cannot be computed, again be-
cause of lack of information. These approaches work well in
those scenarios where there is a strong correlation between
social ties and individual preferences. On the contrary, our
approach is best suited in those scenarios where the social
network is not just a surrogate of users’ preferences. As
we shall demonstrate in Section 5, when separate informa-
tion is available about the web-of-trust and judgements, an
approach that reasons about intent and competence at the

same time can yield the biggest increase in the utility of
recommendations, even in the absence of malign behavior.
Before doing so, we discuss how we have realised social fil-
tering in practice.

3. REALIZATION OF THE APPROACH
In the previous section, we have introduced social filtering

from a philosophical viewpoint, highlighting the advantages



of propagating trust over both intent and competence, in
order to give users trusted judgements. To be of practical
use, an implementation of social filtering would need to at-
tribute a numeric value to the amount of trust a judgement
deserves. This would ultimately allow users to rank judge-
ments and/or to filter out unreliable ones. In this section,
we first describe how the transitive and co-citation trust
propagation patterns have been separately implemented in
literature; we then motivate the choices we have adopted,
and how they have been uniquely combined in SOFIA, our
own implementation of social filtering. In describing our im-
plementation, we will refer to the general case of weighted
social networks, with weights expressing the strength of so-
cial ties. The user-judgement edges can be weighted as well,
representing the level of confidence of a user towards a given
judgement. The unweighted case is just a specific instance
of the more general one, with all instances of trust relation-
ships and/or judgements having the same weight.

3.1 Evaluating Intent
There exist various algorithms to quantify the amount of

trust that is propagated transitively on a weighted social
network. Properties that are common to most algorithms
include:

• Longer paths disperse trust: if there is a trust path
A → . . . → B → C, then the amount of trust inferred
from A to C is not greater than the trust inferred from
A to B.

• Adding paths increases trust: if there are two paths
from A to B, then the trust that A infers for B is at
least as high as if only one path was present.

Although intuitively sound, these properties alone are sub-
ject to Sybil attacks2 [5]: in scenarios where new virtual
identities can be cheaply created, a malicious node S0 could
create an unlimited number of siblings S1, S2, . . ., add a web
of strong (fake) ties between S0 and its Sybil nodes Si to
the social network, and exploit this setup to gain a dispro-
portionately large trust. To defend against this type of at-
tack, trust propagation algorithms should limit the amount
of trust gained by any Sybil node Si by a function of the
trust that S0 has ‘legitimately’ gained.

Two popular approaches that guarantee this property are:
the calculation of the maximal flow from the evaluator to the
evaluated node, and the simulation of random walks on the
web of trust. The use of the maximal flow function [6] guar-
antees that the inferred trust does not exceed the weight
of each edge. Such metric has been shown to be “value-
sybilproof” [3], that is, it is not possible for a single node Si

to obtain a trust value which is higher than the one that S0

had before initiating the attack. Unfortunately, this result
is relevant only when exactly one source node and one des-
tination node are considered at any given time. However,
in our scenario, the overall trust gained by the set of Sybil
nodes must be limited too, as social filtering considers the
opinions of many nodes simultaneously.

The idea of “random walks” has been exploited by Page-
Rank [19], the algorithm used by Google for ranking search
results. The algorithm considers a random walk over the

2This style of attack is also known as ‘shilling’ in recom-
mender systems, ‘profile injection’ in collaborative filtering,
and ‘web spamming’ in webpage ranking.

graph of WWW pages and their links, starting from a ran-
dom node and stopping with a probability 1 − α at each
step. Nodes are then ranked according to the probability
that this random walk stops at them3. Pages that receive
many incoming links, and pages that are being linked by
another heavily-linked page, are then ranked higher. Intu-
itively speaking, the same approach could be used to prop-
agate trust over a social network: the higher the number of
paths (equivalent to links) leading to a node (equivalent to
a WWW page), the more reputable the node is assumed to
be (the higher it ranks).

The standard version of PageRank misses on subjectivity,
as it ranks pages regardless of the evaluating node. As a
consequence, any node in the system would propagate trust
to a node X in the same way. To obtain a subjective ver-
sion of the algorithm, two simple changes are required: first,
we force the starting point of the random walk to be the
evaluating node itself (thus avoiding walks that originate
at malicious nodes); second, rather than having the same
probability of jumping to another node (as done in the orig-
inal version of PageRank), we chose such probability to be
proportional to the weight (i.e., the strength) of the edge
itself. A walk starting at A will thus result in trust prop-
agation from A’s subjective viewpoint only. This modified
version of the original algorithm is sometimes referred to as
Personalised PageRank.

The original version of PageRank is subject to Sybil at-
tacks [7]. However, with Personalised PageRank, an attacker
S0 can only divert, towards the Sybil region, those paths
that pass through S0 itself. If the probability that a ran-
dom walk reaches S0 is p, then the cumulative value of all
one-step paths from S0 is αp; for two steps, it is α2p, and
so on. Thus, the maximal total rank for the Sybil region
amounts to

∑
∞

i=0
αip = p

1−α
. The α parameter thus influ-

ences the resilience to Sybil attacks: the lower the value of α

the better the robustness. Low values of α also increase sub-
jectivity, as they reward short paths over long ones, while
when α approaches 1 the outcome of the algorithm becomes
more and more similar, regardless of the initiator node. Fi-
nally, the lower the value of α the faster the convergence
speed of the algorithm (with α = 0.5, more than 99.9% of
the overall ranking weight comes from paths of length up to
10). Note, however, that low values of α may cause honest
nodes who are ‘socially far-away’ not to be considered, thus
discarding potentially useful information. This may affect
the accuracy of our algorithm, with respect to traditional
collaborative filtering techniques where the full dataset is
considered instead. We will analyse optimal choices of α

with respect to accuracy vs. robustness in Section 5.
In our realisation of social filtering, we have chosen to de-

ploy Personalised PageRank to quantify the transitive trust
propagation over the social network, as it combines our re-
quirements of subjectivity and robustness. A pseudo-code
description of Personalised PageRank can be found in Al-
gorithm 1. The computational complexity of the algorithm
is proportional to the number of edges in the web of trust
times the number of iterations needed to make the algorithm
converge.

3The most common PageRank definition corresponds to the
equilibrium distribution of a random walk, with a 1−α prob-
ability of jumping to a random node. The two definitions
are equivalent.



Algorithm 1 Personalised PageRank.

Parameters: a social network G = (V, E); an evaluating
node A ∈ V ; weights such that wij is the weight of edge
(i, j); a 0 < α < 1 parameter.
Returns: a vector r where ri is the score of node i.
n ⇐ size of V ; r ⇐ 0n; rA ⇐ 1
while algorithm has not converged do

r̂ ⇐ 0n; r̂A ⇐ 1 − α

for all i ∈ V do
d ⇐

∑
j∈V wij

if d > 0 then
for all j such that (i, j) ∈ E do

r̂j ⇐ r̂j + α
wijri

d

end for
else

r̂A ⇐ r̂A + αri {If i is a sink we restart from A}
end if

end for
r ⇐ r̂

end while
return r

3.2 Evaluating Competence
The co-citation trust propagation pattern has been widely

studied and applied to the problem of ranking Web pages.
One of the most famous algorithms realising this pattern is
HITS [12]. HITS conceptually divides pages in two subsets:
authorities (i.e., pages whose content satisfy the query), and
hubs (i.e., pages that link to relevant documents, that is, to
authorities). Using an iterative process, HITS traverses the
linkage structure of Web documents, and computes both a
hub weight and an authority weight for each visited page at
every step, so that:

1. Forward Step (from hubs to authorities): the weight
given to an authority is proportional to the sum of the
weights of those hubs linking to it;

2. Backward Step (from authorities to hubs): the weight
given to a hub is proportional to the sum of the weights
of those authorities being linked by it.

If weights expressing confidence are present in the network
of judgements, they can be used as a multiplicative factor
(i.e., a link with weight 2 acts as two separate links, each
with weight 1). The process continues (renormalizing scores
at every iteration) until it converges, and the top ranking
pages, according to their authority scores, are then returned.

The principle behind HITS is that good hubs link good
authorities, and good authorities are linked by good hubs,
in a mutually reinforcing way. We argue that the same prin-
ciple holds in our scenario, where we can expect competent
users to give valuable judgements, and valuable judgements
to be given by competent users. If we map users to hubs and
judgements to authorities, we can run an HITS-like iterative
algorithm to rank judgements, which is our ultimate goal.
This would not realise our social filtering method though,
as the following caveats must be addressed first.

(1) Solving the TKC Problem. It has been demonstrated
that the HITS algorithm suffers from the “Tightly Knit
Community” (TKC) syndrome [15]: if a community of users
all gave the same (or very similar) judgements (thus result-

ing in a highly connected bipartite graph), the competence
weight of the community would disproportionately increase,
with the judgements they express being excessively high-
ranked, even if they are not authoritative. A set of mali-
cious users could thus artificially create a TKC in order to
artificially boost their ranking.

To solve this problem, we adopt the solution proposed in
SALSA [15]: we divide the weight that each hub transfers
at each forward step by its outdegree (the sum of weights
on outgoing edges), and we do the same for authorities and
their indegree at each backward step. After a forward step,
the total weight transferred from a single hub to its linked
authorities is thus equal to the weight on that hub; vicev-
ersa, after a backward step, the total weight that is redis-
tributed from a single authority to the set of hubs linking
to it equals the weight gained by the authority. Thus, the
sum of weights remains constant at every step, removing the
need for normalization.

A very desirable side-effect of this alteration is that users
who express non-mainstream judgements are rewarded: the
fewer the users who have expressed some judgements, the
higher the weight that is transferred back on a per-user ba-
sis. In so doing, we express the fact that “niche” judgements
are more significant than mainstream (redundant) ones: if
a user, in her top 10 listenings, has both The Beatles and
an unheard-of rock band, it is likely that the unknown rock
band is more indicative of her musical preferences.

(2) Subjectivity of Ranking. HITS-like algorithms provide
non-subjective results, as they are independent of the user
A starting the search. To cater for the subjectivity required
by our scenario, we initialize the algorithm so that the only
hub (user) with a non-zero weight is the reference node A

itself (instead of assigning an equal weight to any hub in the
network). In so doing, the first forward step of the algo-
rithm only considers the judgements given by the reference
node, thus tailoring the ranking results to his/her tastes.
To limit the propagation of trust to judgements that are too
dissimilar from the tastes of A, after each backward step,
the weights associated to each user are multiplied by a pa-
rameter β ∈ (0, 1), and the trust given to A is increased by
1 − β. These two changes are similar, in spirit, to the mod-
ifications already suggested for PageRank, where we forced
the random walk to start from the very same node; the β

parameter plays the same role that α plays in PageRank,
ensuring the convergence of the algorithm, with lower val-
ues of β impling faster convergence and higher subjectivity.

(3) Catering for Well-Intentioned Users. As discussed in
Section 2.2, trust propagation over competence alone is sus-
ceptible to attacks. We propose to add robustness to HITS-
like algorithms, by incorporating users’ intent assessment
as follows. To begin with, Personalised PageRank (Algo-
rithm 1) is run on the social network, thus obtaining a vec-
tor with nodes’ reputation, as seen by the reference node A.
We then run the subjective HITS-like algorithm, so that, at
every backward step, trust is redistributed from judgements
to users in a way that is proportional to users’ intent, as
measured by Personalised PageRank. In other words, rep-

utation becomes a multiplicative factor for backward trust

propagation. As discussed in Section 3.1, a Sybil coalition
can obtain only a limited amount of trust from the social
network, so the amount of trust that can be transferred to



Algorithm 2 SOFIA.

Parameters: a judgement bipartite network G = (V, E),
where V is the union of the set of users U and the set of
judgements J ; an evaluating node A ∈ U ; weights such
that wuj is the weight of edge (u, j); an intent ranking
vector r computed using Personalised PageRank over the
web of trust, so that ru is the intent ranking of user u; a
0 < β < 1 parameter.
Returns: a trust vector t̂ such that t̂j is the trust ranking
of judgement j.
n ⇐ size of U ; m ⇐ size of J; t ⇐ 0n; tA ⇐ 1
while algorithm has not converged do

{Forward Step: from users to judgements}
t̂ ⇐ 0m

for all (u, j) ∈ E do

t̂j ⇐ t̂j +
wuj∑

k∈J
wuk

tu

end for
{Backward Step: from judgements to users}
t ⇐ 0n; tA ⇐ 1 − β

for all (u, j) ∈ E do

tu ⇐ tu + β
wujru∑

v∈U
wvjrv

t̂j

end for
end while
return t̂

malicious nodes is limited too.

We call the algorithm that results from modifying the
HITS-like approach in the three ways described above
SOFIA, that is, SOcial FIltering Algorithm. The resulting
pseudocode is shown in Algorithm 2.

The result of running SOFIA is a vector t̂ containing a
trust numeric value for each judgement in J , computed con-
sidering both the intent and the competence of the users
in U , as seen by the reference node A. The normalization
parameters (

∑
k∈J wuk,

∑
v∈U wvjrv) can be calculated out-

side the loops, so the computational cost of the algorithm is,
similarly to PageRank, proportional to the number of edges
in E times the number of iterations of the algorithm.

3.3 Example
To see how SOFIA works, let us consider the sample web

of trust and judgement network depicted in Figure 4. The
web of trust represents “friendship” relationships on a social
networking site between users Alice (A), Bob (B), Carol (C)
and Dave (D) (e.g., Alice listed Bob and Carol as friends;
Bob and Dave mutually listed themselves as friends, etc.).
Judgements represent recommendations of their favorite mu-
sic bands: the Xenons (X), Yodels (Y ), Zaars (Z) and
Whistlers (W ) (e.g., Alice, Bob and Carol all endorse the
Xenons; Bob also likes Yodels, etc.).

We now want to give A, our reference user, recommenda-
tions about music bands she may like. We thus run SOFIA
over the graphs displayed in Figure 4, where we assume all
edges to have unitary weight. We also set the parameters
α = β = 0.5.

To begin with, Personalised PageRank is executed over
the web-of-trust. The algorithm yields a normalised intent
ranking of 0.50 for A, 0.231 for B, 0.154 for C and 0.115 for
D. Note that B obtains a higher ranking than C, as he is

Figure 4: Example web of trust (left) and network
of judgements (right).

trusted by all other users in the web of trust (despite both
being at the same distance from A); D is penalized instead
for being farthest from A.

After having computed user intent, we then run the core of
the SOFIA algorithm, to rank judgements. The algorithm
converges to vector t̂ = {0.909, 0.051, 0.035, 0.005}, listing
the authority weights for X, Y , Z and W respectively. Note
that Y obtains a higher ranking than Z: in fact, although
they follow the same propagation pattern (one-step propa-
gation from A via X), the intent ranking used during the
backward step from X is higher for B than for C. For the
opposite reason, W obtains the lowest ranking, as its rec-
ommendation is obtained via two steps of transitivity (via
Z from C, and up via X from A), and it is endorsed by D,
who has the lowest intent ranking.

4. ATTACK MODEL
In order to validate our social filtering algorithm, we have

conducted a variety of experiments on two very large real
datasets. While ideal to measure accuracy, real datasets
are unsuitable to test the robustness of the algorithm while
varying threat intensity. To demonstrate the robustness of
SOFIA, we thus have to manually inject attacks on top of
real datasets, and run experiments under different configu-
ration settings. In this section, we analyse threat strategies,
leaving their enactment and corresponding experimental val-
idation to Section 5.

In the scenario we are considering, the most plausible goal
of an attacker would be to alter the rating of a certain judge-
ment X. It may do so either to trick a single user A, or
more extensively to deviate the judgements of all users, in
favour of (or against) X. Let us analyse how an attacker
could achieve such goal. In the first case, since the attacker
wants to be rated by A as a very competent user, it could
first copy the judgements that A expressed, and then add
a new judgement X. In the second case, there is no single
set of judgements the attacker can copy, as each user would
have expressed different ones: copying popular judgements
would yield to very little reward, as a consequence of our
strategy to reward users who gave niche judgements more
(see Section 3.2 point (1)); on the contrary, copying ‘niche’
judgements would yield to very high appeal, but to rather
few users. We will thus model this attack as we modeled
the targeted attack, that is, by copying the judgements of a
randomly chosen node A and adding the judgement for X;
however, rather than studying the impact of the attack on



A, we will study the ‘collateral damage’ that the attack has
on other users.

The attack strategies described above model the behaviour
of one attacker only. However, to increase the impact of
the attack itself (i.e., to increase the ranking of judgement
X), we must also consider the case of an attacker who has
the ability to create an unlimited number of Sybil identi-
ties, all endorsing X. We assume that each Sybil can create
any number of outgoing edges in the web of trust, from
the Sybil node to any other user. They can also create any
number of incoming edges, originating within the Sybil coali-
tion. However, what they cannot do is create incoming edges
from honest nodes at will, since obtaining trust from well-
intentioned peers is costly. It is thus reasonable to expect
a low cut between the “honest” and the “Sybil” region [20].
In our experiments, we will thus create Sybil regions that
are highly interconnected internally; we will then set the
amount of incoming links from honest nodes as a parame-
ter, and analyse the robustness of SOFIA (i.e., how highly
ranked can X become) against it.

5. EXPERIMENTAL VALIDATION
We have evaluated SOFIA along two dimensions: accu-

racy and robustness against Sybil attacks. The results are
reported in Section 5.2 and 5.3 respectively. Both exper-
iments were conducted using data from two real datasets:
the Citeseer online scientific digital library, and the Last.fm
music and social networking website. The key characteris-
tics of these datasets are briefly summarised below.

5.1 The Datasets
Citeseer (http://citeseer.ist.psu.edu/oai.html) is an

online scientific literature digital library, containing over
750,000 documents. From this repository, we have extracted
a social network based on the co-authorship relation: if A

and B have co-authored n papers together, then an edge
between the two will be added to the social network, with
weight n. The judgement network is built from the citations
instead: if a paper X authored by A cites paper Y , then an
(unweighted) edge from A to Y is added to the judgement
network; the rationale is that, by citing Y , the authors of
X have expressed the judgement “Y is relevant with respect
to the topic discussed in X”. To obtain a more manageable
subset of the whole network, we isolated a highly-clustered
subset of 10,000 authors, and took in consideration only the
papers that had them as authors. The result is a set of
182,675 different papers; 48,998 of them received at least
one citation by one of the others.

Last.fm (http://last.fm) is a “social music” website that
creates profiles of the musical taste of its users, by tracking
which songs they listen more often to in their digital music
players. As in other social networking websites, users can
explicitly create an (unweighted) social network by adding
other users to their friend-list. We gathered our social net-
work with a breadth-first crawl of 10,000 users using the Au-
dioscrobbler Web Services (http://www.audioscrobbler.net/
data/webservices/). We then considered the 50 most lis-
tened artists of each user, and ended up with a total of
51,654 different artists. The judgement network was finally
created by linking users to their most listened artists (thus
representing the judgement “user A likes to listen to songs
by X”), and by weighting each judgement edge with the
number of times the user listened to songs by that artist.

5.2 Accuracy
To assess the accuracy of SOFIA in giving recommen-

dations, we performed the following experiment on both
datasets: we “hid” one random edge A → X from the judge-
ment network, run SOFIA on the modified network, and use
its output (i.e., a vector of weights) to rank all judgements
from A’s viewpoint; this is equivalent to producing recom-
mendations, tailored to A, based on the computed ranking
of judgements. Since X is a judgement that A expressed
(before we hid it), A obviously approves of it, so a good rec-
ommendation engine should return X at a very high rank-
ing. Thus, the highest the position of X in the ranked list
of judgements, the better the accuracy of the ranking algo-
rithm. In the Citeseer dataset, the experiment is equivalent
to guessing a missing citation from a paper; in Last.fm, it
means finding the missing artist in the top-50 chart of a user.
In the following, all the results shown (for a given algorithm
and set of parameter) were computed from 1,000 individual
instances of the experiment.

The first set of experiments aimed at analysing the impact
that the two different trust propagation patterns (transitiv-
ity and co-citation) individually had on prediction accuracy;
at the same time, we wanted to quantify the effect that dif-
ferent choices of parameters had on it (namely α, β and the
number of iterations). We thus separated the two “halves”
of SOFIA into:

Personalised PageRank (PPR) : each user u is first ranked
using PPR; the ranking ru is then simply divided be-
tween all the judgements u has expressed (proportion-
ally to the edge weight). PPR thus enables us to mea-
sure the impact of trust transitivity, while disregarding
the network of judgements;

Non-SOcial FIltering Algorithm (N-SOFIA) : all nodes in the
web-of-trust are given equal intent ranking, instead
of relying on the Personalised PageRank output. N-
SOFIA thus enables us to study the impact of the co-
citation pattern while disregarding the social network.

The first parameter we have studied is the number of iter-

ations needed to obtain satisfying results. Table 1 shows the
percentiles of the ranking of the “hidden” judgements, when
running both PPR and N-SOFIA on the Citeseer dataset,
with α and β parameters chosen to optimize the results.
As the table shows, a rather small number of iterations is
enough to obtain very good results: for instance, after 10 it-
erations, 10% of the hidden judgements can be found in the
top 2 returned results (i.e., recommendations) of PPR, and
at the very top for N-SOFIA; half of the hidden judgements

Ranking percentiles
Algorithm Iterations 10 50 75 90

PPR (α = 0.3)
3 2 32 161 4293
5 2 30 115 1709

10 2 29 141 3341

N-SOFIA (β = 0.05)
3 1 12 67 1060
5 1 12 63 1136

10 1 11 72 1020

Table 1: Hidden judgement ranking of PPR and N-
SOFIA (best results in bold) with different numbers
of iterations on the Citeseer dataset.



Ranking percentiles
Dataset α 5 10 25 50 75 90

Citeseer
0.2 1 2 8 33 132 3076
0.3 1 2 8 30 115 1709

0.85 2 4 11 48 242 3473

Last.fm
0.3 5 14 75 361 2107 15064
0.5 5 12 66 344 2188 16025

0.85 5 14 71 367 2289 15648

Table 2: Impact of α on hidden judgement ranking
with Personalised PageRank.

Ranking percentiles
Dataset β 5 10 25 50 75 90

Citeseer
0.02 1 1 3 14 87 2820
0.05 1 1 3 12 63 1136
0.3 1 1 4 17 93 1603

Citeseer (CF) – 1 1 3 15 88 –

Last.fm
0.01 2 6 32 157 822 3954
0.1 5 13 58 269 1305 10599
0.3 8 20 89 404 1742 9878

Last.fm (CF) – 3 8 36 204 1061 7735

Table 3: Impact of β on hidden judgement ranking
with N-SOFIA.

(50th percentile) were returned within the top 29 recommen-
dations made by PPR, and in the top 11 by N-SOFIA, and
so on4. Neither algorithms benefit from increasing the num-
ber of iterations after a small threshold. Rather, a higher
number of iterations results in slightly worse results; our in-
terpretation of this phenomenon is that, even if the weights
on long paths are very low, they still introduce some “noise”
since recommendations coming from longer paths are less re-
liable. In the following, the number of iterations for both
parts of the algorithm has been set to 5.

We then studied the impact that parameters α and β

had on the accuracy of PPR and N-SOFIA on the specific
datasets at hand5. Table 2 and 3 report the results for differ-
ent values of α on PPR, and of β on N-SOFIA, respectively.
The key observation obtained from these numbers is that,
on both datasets, N-SOFIA performs better than PageRank,
suggesting that the information on tastes is more valuable
than the information that can be inferred from the social
network. On both datasets, the optimal value for β is much
lower than the optimal value for α, suggesting that taste
similarity propagates effectively on short paths only. Also,
the optimal values for α are remarkably lower in our exper-
iments than the “traditional” recommended α = 0.85 for
PageRank, reflecting the fact these datasets reward higher
subjectivity. We have also compared the accuracy of N-
SOFIA with traditional Collaborative Filtering techniques
(in particular, using the cosine-based similarity measure):
given that N-SOFIA produces recommendations based only

4Note that the judgements returned with ranking higher
than of X are not mistakes: they are simply other recom-
mendations that these algorithms compute but, given that
such judgements were never made by A (unlike X), we have
no way of measuring how accurate those are.
5Note that a single optimal choice of these parameters do
not exist, as they intrinsically depend on the characteristics
of the dataset (in terms of “level of transitivity”).

on the network of judgements, while discarding social rela-
tions, we expect N-SOFIA and traditional CF to exhibit sim-
ilar accuracy. As Table 3 illustrates (rows labeled CF), the
accuracy is indeed comparable on both datasets. Note that
attacks have not been considered yet: once introduced (Sec-
tion 5.3), results will change dramatically, with approaches
based on competence only (i.e., Collaborative Filtering-like
techniques) suffering the most.

As a final set of experiments, we have compared the ac-
curacy of PPR and N-SOFIA with SOFIA, under the best
choice of parameters for both datasets. Results are shown
in Figures 5 and 6, for Citeseer and Last.fm respectively
(the graphs plot the cumulative distribution function for the
ranking of hidden judgements). Using the Citeseer dataset,
SOFIA outperforms both algorithms, with 50% of the hid-
den judgements being ranked in the top 4 positions, against
12 for N-SOFIA and 30 for PPR. The accuracy gain of
SOFIA is perhaps more striking when considering up to
75% of the hidden judgements: using SOFIA, a user would
find the hidden judgement in the the top-30 list of recom-
mended papers, while using PPR the top-115 would have to
be investigated. Of particular relevance is the observation
that, even now that malicious attacks are not considered,
SOFIA outperforms N-SOFIA, despite the fact that SOFIA
throws away (potentially useful) information coming from
(honest) socially far-away nodes. This means that SOFIA
effectively exploits knowledge gathered from the social net-
work to counter-balance this loss of data, and the gain is
higher than the cost for datasets that, like Citeseer, exhibit
the intrinsic property of having “socially close” nodes more
likely to share tastes.

The performance gain of SOFIA on the Last.fm dataset
is less striking. As Figure 6 demonstrates, SOFIA still out-
performs PPR by a factor of 2. However, the performance
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SOFIA 1 1 1 4 31 855 –
N-SOFIA 1 1 3 12 63 1136 –
PPR 1 2 8 30 115 1709 11609

Figure 5: Hidden judgement ranking comparison
on the Citeseer dataset. The α and β parameters
were tuned for best performance (α = 0.5, β = 0.3 for
SOFIA, β = 0.05 for N-SOFIA, α = 0.3 for PPR).
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SOFIA 2 6 32 174 992 7429 –
SOFIA (2) 3 8 46 240 1347 11919 –
N-SOFIA 2 6 32 157 822 6954 –
PPR 5 12 66 344 2188 16025 –

Figure 6: Hidden judgement ranking comparison on
the Last.fm dataset (α = 0.9 and β = 0.05 for SOFIA,
α = 0.5 and β = 0.1 for SOFIA (2), β = 0.01 for N-
SOFIA, α = 0.5 for PPR).

of SOFIA and N-SOFIA are almost undistinguishable: with
this dataset, the loss of data that SOFIA suffers from not
considering far away nodes, and the added knowledge it
gathers from the social network, balance each other out.
However, even in these circumstances, we argue that run-
ning the whole SOFIA, instead of N-SOFIA alone, pays off:
as we shall demonstrate in the next section, once attacks are
in place, SOFIA outperforms N-SOFIA by far, thus yielding
the best results overall in terms of accuracy and robustness.
Note that the table in Figure 6 also reports the results of
running SOFIA on an additional set of parameters, in partic-
ular, with a lower value of α; while accuracy becomes worse,
we shall demonstrate, in the next section, that robustness
to attacks becomes better, as shorter paths are considered,
thus reducing the chance of traversing an attack region.

5.3 Robustness
As discussed in Section 4, we are interested in evaluat-

ing how much an attacker, with the ability of creating an
unlimited number of fake nodes, can raise the ranking of
a given judgement X. We assume that, while it is rela-
tively cheap to create a fully connected Sybil sub-network,
it is costly for any Sybil node to enter the social network
of an honest node (i.e., to be directly trusted by a honest
user). We have thus designed our experiments as follows:
we have created a completely connected Sybil sub-network
of 100 nodes, and attached it to the honest part of the web-
of-trust with a parametric number k of attack edges; each
attack edge is given a weight of 1, and the honest node to
which it connects is chosen at random. All Sybil nodes copy
all the judgements given by a random “victim” V , and then
create another edge towards a malicious judgement X (in
Last.fm, where judgements are weighted, the weight is set

as the maximum between the judgements of the victim).
We then study how the ranking of X changes, before and
after the attack, both on V and on other random nodes in
the network, for different values of k. Once again, for each
algorithm and set of parameters, the results have been ob-
tained with 1,000 instances of the experiment. Note that
the strength of an attack on traditional CF techniques has
usually been measured in terms of the proportion of ma-
licious nodes in the network [17]; however, the number of
Sybil nodes is not relevant for PPR- and SOFIA-like algo-
rithms, where the impact of the attacker is limited by the
total ranking of the Sybil region. We have thus fixed the
number of Sybils to 100 in all experiments, while varying
parameter k, which does influence the ranking of the Sybil
region instead.

Table 4 shows how the ranking of malicious judgement
X varies, with respect to parameter k, when enacting the
attack on the Last.fm dataset (the results of the same ex-
periment on the Citeseer dataset, not shown here for lack
of space, are qualitatively equivalent, and all remarks ex-
pressed here are valid for both datasets). The α and β pa-
rameters were the same as those used for the experiments
shown in Figure 6. The first row of the table shows the
ranking of X when no attack is in place.

Let us consider N-SOFIA first. Since N-SOFIA does not
take into account the social network, the number of attack
edges k is irrelevant in this case. As shown, the malicious
judgement X comes always at the very top of the recommen-
dations made for the victim node V , even though, before the
attack, such judgement was in position 12K or above! The
ranking of X becomes very high even for nodes who are
not specifically under attack, thus confirming the fact that
N-SOFIA, like traditional collaborative filtering techniques
based on taste similarity only, is highly vulnerable to Sybil
attacks. Note also that, unlike PPR and SOFIA, algorithms
that do not limit the amount of trust that a Sybil region can
gain, will suffer more by (cheaply) increasing the number of
Sybil nodes.

On the contrary, the impact of the attack on Personalised
PageRank is marginal. In this case, being a victim is undis-
tinguishable from being any node in the network, given that

Percentiles
Algorithm k Role 25 50 75

Any no attack 12,914 25,827 38,741

N-SOFIA
victim 1 1 1
other 348 1,185 3,132

PPR
1 10,730 20,493 33,322

10 4,759 8,757 13,371
100 1,092 2,012 3,101

SOFIA

1
victim 3,406 11,182 31,765
other 9,599 19,186 33,064

10
victim 469 1,311 2,815
other 4,612 8,779 14,718

100
victim 13 74 197
other 1,040 2,649 5,571

SOFIA (2) 100
victim 138 353 697
other 1,578 3,106 5,128

Table 4: Ranking of the “malicious judgement” af-
ter a Sybil attack, on the Last.fm dataset. k is the
number of attack edges.



individual opinions are not taken into consideration. As the
table shows, even when the Sybil region has conquered 100
attack edges, the ranking of the malicious judgement X is
at position 2000 or above in 50% of the cases.

The robustness of SOFIA is comparable to that of PPR
when considering non-victim nodes. The victim node clearly
suffers instead, but much less than when using N-SOFIA: for
example, when the Sybil region has 10 attack edges to the
honest part of the network, 50% of the times the malicious
judgement X is ranked at around position 1300 or above by
the victim node using SOFIA, instead of position 1 using
N-SOFIA. The impact of the attack becomes non-negligible
for victim nodes running SOFIA once the number of at-
tack edges reaches k = 100. Note, however, that this is a
rather costly attack: in fact, it requires tricking 1% of the
10,000-node network into trusting dishonest nodes, and all
this effort just to change the ranking of judgement X by
a single node V , with X only gaining marginally in other
nodes’ viewpoints. This result supports the claim we made
at the end of the previous section, that is, that running
SOFIA pays off, as its accuracy is at least as good as that of
N-SOFIA, but its robustness to Sybil attacks is ways higher.
Last but not least, it is worth observing the impact of differ-
ent choices of parameters on the robustness of SOFIA; the
last set of results shown in Table 4 are obtained using the al-
ternative set of parameters for SOFIA that were specified in
Figure 6: while the accuracy of the recommendations using
this second set of parameters was shown to be worse, the use
of a lower α value makes the system more attack-resilient.
As expected, there is a tradeoff between accuracy and ro-
bustness, and the desired balance between the two features
can be obtained by adjusting the parameters to the specific
characteristics and requirements of the domain at hand.

6. CONCLUSIONS
In this paper, we have proposed social filtering, a novel ap-

proach to realise accurate and robust recommendation sys-
tems, based on a combination of taste similarity and user
intent. We have illustrated SOFIA, our realisation of so-
cial filtering, and demonstrated its accuracy against two real
datasets, as well as its robustness against attacks of different
magnitude. As shown, SOFIA achieves the best results in
scenarios where judgements are subjective, and where users
with similar tastes tend to form social ties.

We are currently extending the work presented in this pa-
per in two directions. First, SOFIA is just an instance of
social filtering. While we took inspiration from HITS and
PageRank for the basic components of our algorithm, other
approaches are certainly possible (for instance, using Pear-
son correlation or vector similarity to measure taste sim-
ilarity). We are currently analysing the impact that dif-
ferent realisations of social filtering have on both accuracy
and robustness. Second, we plan to work on a decentral-
ized version of SOFIA that can be implemented on P2P
and/or mobile systems. This would allow, for instance, the
creation of effective and attack-resistant recommendations
for content shared over those media. To obtain an efficient
decentralized approximation, techniques that help finding
short paths between nodes in a decentralized social network
can be used [4].
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