Practical Network Coding for Wireless Mesh Networks

Wenjun Hu

Joint work with Sachin Katti, Hariharan Rahul, Dina Katabi, Jon Crowcroft and Muriel Médard
The problem

• Wireless networks are highly resource constrained
 - Bandwidth is the most expensive
 - Power is sometimes an issue too

→ Serious problems for mesh networks

• How to optimise throughput?
 - Can we send more information?
 - Can we reduce bandwidth requirement?
 → Do both at the same time?
An information exchange scenario

- Multi-hop unicast requires 4 transmissions
- Can we do better?
Network coding &

- Nodes in network operate on data
 - Output is result of some coding over input
 - C.f. Routing – (replicating and) forwarding

- Network information flow problems
 - Set in multicast in point-to-point networks
 - Originally proposed by Ahlswede et al

- Theorem: Cannot achieve multicast capacity with routing alone
 - Need network coding
Network coding - recent results

• Can extend routing (i.e., forwarding) to optimise throughput
 □ Run min-cost flow optimisations

• Linear codes sufficient

• Decentralised approach to min-cost multicast

• Promising for wireless networks!
 □ Exploit inherent multicast medium
Network coding - beyond theory

- **Application to content distribution**
 - MSR Avalanche

- **Information dissemination in DTN**
 - WDTN’05 paper

- **Unfortunately**
 - Not much otherwise
 - Existing work simulation based
Network coding - practical issues

- Unicast vs Multicast
- Unknown vs known flow characteristics
- Unpredictability in wireless networks

Typical wireless mesh networks do not comply with assumptions in prior work

- Encoding/Decoding complexity
- Delay penalty due to encoding?
Can Network Coding help - An idea

\[\text{XOR} + \text{Alice’s packet} = \text{Bob’s packet} \]

3 transmissions instead of 4
⇒ Saves bandwidth & power
⇒ 33% throughput increase
Idea cont.

• Applies to duplex flows
• Encodes two packets at a time
• Can extend to longer chains

• Idea outlined in MSR-TR-2004-78
 □ No detailed design or implementation
Our approach - COPE

- Considers multiple unicast flows
 - Generalises the duplex flow scenario
- Opportunistic coding using local info
 - Overhear packets to increase coding gain
 - Online, distributed and deployable
- Emulation and testbed results
 - First real-world implementation

Katti et al. *The importance of being opportunistic: Practical network coding for wireless environments*. Allerton, 2005
COPE: Opportunistic Coding Protocol

Alice ➔ Bob
Bob ➔ Charlie
Charlie ➔ Alice

Alice's packet
Bob's packet
Charlie's packet

XOR = XOR

Alice ➔ Bob
Bob ➔ Charlie
Charlie ➔ Alice

Alice's packet
Bob's packet
Charlie's packet

Bob

XOR XOR = Relay
How it works....

- Back to Alice/Bob scenario
How it works...(Cont.)

• Relay - Encoding
 □ Checks packets in queue
 □ Combines packets traversing the same three hops in opposite directions
 □ Metadata in a header between MAC and IP
 □ Broadcast encoded packets

• Alice/Bob - Decoding
 □ Keep copies of sent packets
 □ Detect the extra header (decoding info)
 □ Retrieve the right packet to decode

• Distributed and local action only!
Generalise to COPE

• Nodes snoop on the medium
 □ Reception reports to neighbours

• When encoding
 □ Identify what packets neighbours have
 • Reception reports and guesses
 □ Encode as many packets as possible
 • Provided intended recipients can decode them

• Still distributed and local action only!
The importance of being opportunistic

• Opportunistic coding
 - Only encode if packets in queue
 - No delay penalty
 - Insensitive to flow characteristics

• Opportunistic listening
 - Helps create more coding opportunities
'Pseudo-broadcast'

- COPE gain is from broadcast medium
- But 802.11 broadcast doesn’t work!
 - No reliability scheme to mask collision loss
 - Send packets at lowest bit rate
 - May actually reduce throughput!
- Pseudo-broadcast
 - Send encoded packets as if unicast
 - Other neighbours overhear
 - Benefit as a unicast packet
Implementation

• A shim between MAC and IP
 □ Agnostic to protocols above/below

• Emulations
 □ General COPE
 □ Emsim (part of Emstar) environment

• Testbed
 □ Based on the Alice/Bob scenario
 □ Extension to Roofnet code (in Click)
Emulation Scenario

• 100 nodes in 800m x 800m
 □ Consider range ~50m
• Random senders/receivers
 □ Senders always backlogged
 □ Bit rate at 11 Mb/s
• Geographic routing
• Metric: end-to-end data traffic throughput over all flows
Emulation performance

Throughput (KB/s)

Coding always outperforms no-coding
Testbed setup

• Indoor PCs with 802.11b cards
 □ Intersil Prism 2.5 802.11b chipset
 □ Connected to omni-directional antenna
 □ RTS/CTS disabled
 □ 802.11 ad hoc mode

• Randomly chosen 3 nodes from testbed
 □ Static routes
 □ End nodes send UDP traffic to each other
Testbed results

Ratio of Throughput with Coding to No-Coding

Encoding almost doubles the throughput
MAC is fair \rightarrow 1/3 BW for each node

- Without coding, relay needs twice as much bandwidth as Alice or Bob
- With coding, all nodes need equal bandwidth
Summary

• Opportunistic approach allows practical integration of network coding into current stack

• Throughput can double in practice
 - Cross-layer effects
 - Congestion plays in our favour

• First implementation of network coding in a wireless environment
 - Many lessons learnt
Future work

• Interaction with TCP
 □ TCP traffic is naturally two-way
 □ A reliability shim between MAC and COPE
 □ Running actual applications

• Occasional mobility?

• Full implementation of COPE

• Large-scale experiments
Thanks for your attention!

Questions?