Practical Network Coding for Wireless Mesh Networks

Wenjun Hu

Joint work with Sachin Katti, Hariharan Rahul, Dina Katabi, Jon Crowcroft and Muriel Médard

The problem

- Wireless networks are highly resource constrained
 Bandwidth is the most expensive
 - Power is sometimes an issue too
 - Serious problems for mesh networks
- How to optimise throughput?
 Can we send more information?
 Can we reduce bandwidth requirement?
 Do both at the same time?

An information exchange scenario

- Multi-hop unicast requires 4 transmissions
- Can we do better?

Network coding &

- Nodes in network operate on data
 Output is result of some coding over input
 C.f. Routing (replicating and) forwarding
- Network information flow problems
 Set in multicast in point-to-point networks
 Originally proposed by Ahlswede et al
- Theorem: Cannot achieve multicast capacity with routing alone
 Need network coding

Network coding - recent results

- Can extend routing (i.e., forwarding) to optimise throughput
 Run min-cost flow optimisations
- Linear codes sufficient
- Decentralised approach to min-cost multicast
- Promising for wireless networks!
 Exploit inherent multicast medium

Network coding - beyond theory

- Application to content distribution
 MSR Avalanche
- Information dissemination in DTN
 WDTN'05 paper
- Unfortunately

 Not much otherwise
 Existing work simulation based

Network coding - practical issues

- Unicast vs Multicast
- Unknown vs known flow characteristics
- Unpredictability in wireless networks

Typical wireless mesh networks do not comply with assumptions in prior work

- Encoding/Decoding complexity
- Delay penalty due to encoding?

Can Network Coding help - An idea

3 transmissions instead of 4
→ Saves bandwidth & power
→ 33% throughput increase

Idea cont.

- Applies to duplex flows
- Encodes two packets at a time
- Can extend to longer chains

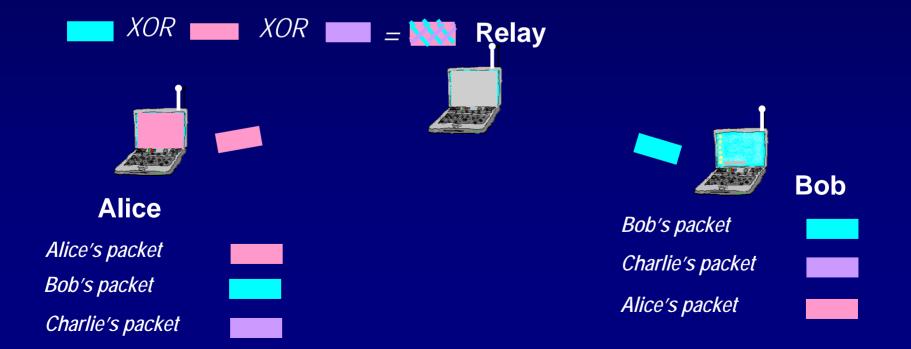
Idea outlined in MSR-TR-2004-78
 No detailed design or implementation

fg: Our approach - COPE

- Considers multiple unicast flows
 Generalises the duplex flow scenario
- Opportunistic coding using local info
 Overhear packets to increase coding gain
 Online, distributed and deployable
- Emulation and testbed results
 First real-world implementation

Katti et al. The importance of being opportunistic: Practical network coding for wireless environments. Allerton, 2005

COPE: Opportunistic Coding Protocol



Charlie's packet

Alice's packet

Bob's packet

How it works

Back to Alice/Bob scenario

How it works...(Cont.)

- Relay Encoding
 - Checks packets in queue
 - Combines packets traversing the same three hops in opposite directions
 - □ Metadata in a header between MAC and IP
 - Broadcast encoded packets
- Alice/Bob Decoding
 Keep copies of sent packets
 Detect the extra header (decoding info)
 Retrieve the right packet to decode
- Distributed and local action only!

Generalise to COPE

- Nodes snoop on the medium
 Reception reports to neighbours
- When encoding
 Identify what packets neighbours have
 Reception reports and guesses
 Encode as many packets as possible
 Provided intended recipients can decode them
- Still distributed and local action only!

The importance of being opportunistic

Opportunistic coding

 Only encode if packets in queue
 No delay penalty
 Insensitive to flow characteristics

Opportunistic listening
 Helps create more coding opportunities

'Pseudo-broadcast'

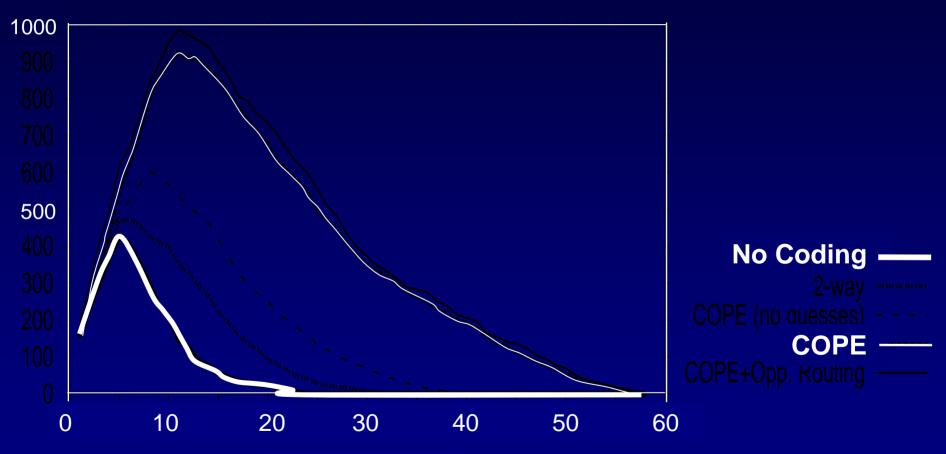
- COPE gain is from broadcast medium
- But 802.11 broadcast doesn't work!

 No reliability scheme to mask collision loss
 Send packets at lowest bit rate
 May actually reduce throughput!
- Pseudo-broadcast

Send encoded packets as if unicast
Other neighbours overhear
Benefit as a unicast packet

Implementation

- A shim between MAC and IP
 Agnostic to protocols above/below
- Emulations
 General COPE
 Emsim (part of Emstar) environment
- Testbed

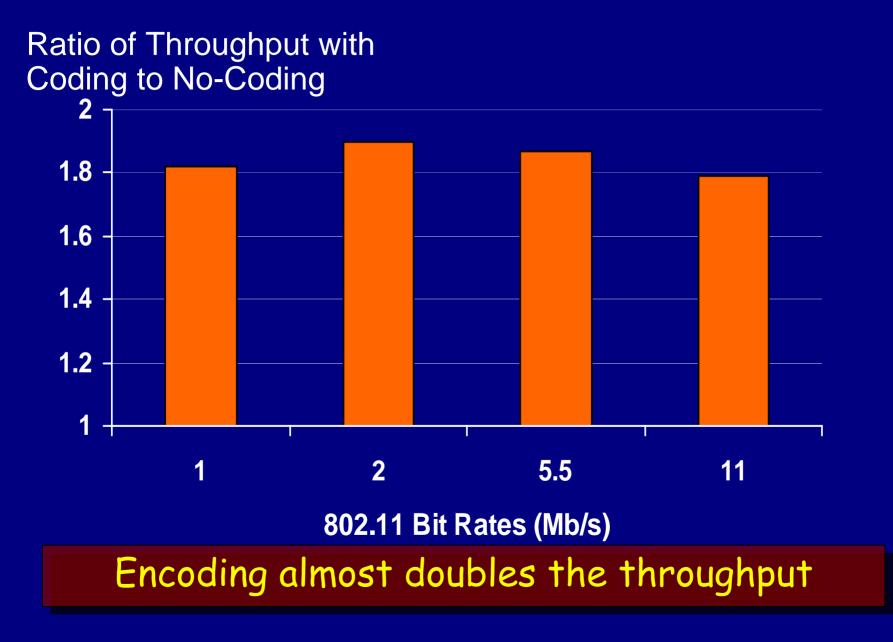

Based on the Alice/Bob scenario
Extension to Roofnet code (in Click)

Emulation Scenario

- 100 nodes in 800m x 800m
 Consider range ~50m
- Random senders/receivers
 Senders always backlogged
 Bit rate at 11 Mb/s
- Geographic routing
- Metric: end-to-end data traffic throughput over all flows

Emulation performance

Throughput (KB/s)


Coding always outperforms no-coding

Testbed setup

- Indoor PCs with 802.11b cards

 Intersil Prism 2.5 802.11b chipset
 Connected to omni-directional antenna
 RTS/CTS disabled
 802.11 ad hoc mode
- Randomly chosen 3 nodes from testbed
 Static routes
 End nodes send UDP traffic to each other

Testbed results

Why more than 33%?

MAC is fair $\rightarrow 1/3$ BW for each node

- Without coding, relay needs twice as much bandwidth as Alice or Bob
- With coding, all nodes need equal bandwidth

Summary

- Opportunistic approach allows practical integration of network coding into current stack
- Throughput can double in practice
 Cross-layer effects
 Congestion plays in our favour
- First implementation of network coding in a wireless environment

 Many lessons learnt

Future work

- Interaction with TCP

 TCP traffic is naturally two-way
 A reliability shim between MAC and COPE
 Running actual applications
- Occasional mobility?
- Full implementation of COPE
- Large-scale experiments

Thanks for your attention!

Questions?