Landmark Guided Forwarding

Lim Meng How

Joint work with Adam Greenhalgh, Julian Chesterfield and Jon Crowcroft

Outline

- The 802.11 access technology
- Self-organising multi-hop wireless network
- The constraints
- The challenge
- Related work
- The LGF solution
- Results and conclusion

The 802.11

- Operating at unregulated Giga Hertz spectrum
- Data transfer rate: 108 Mbps
- Range: 250 meters

- Mode of connection
 - Infrastructure
 - One or more wireless
 access point
 - Extending coverage through MobileIP
 - Ad Hoc
 - No Infrastructure
 - Spontaneous setup

Self-organising multi-hop

802.11 Ad Hoc mode

- Fast setup
- Infrastructure-less

- Self-organising multihop
 - Mobile Ad Hoc network
 - Mesh network
 - Sensor network

The Constraints

- Single radio channel
 - CSMA/CA uses RTS/CTS/DATA/ACK
 - Forwarding node needs to compete with the last hop and next hop to gain access to the radio channel.
- Updated state vs routing overheads
 - routing overheads > contention at MAC layer

The Challenge for MANET

"To provide a robust packet delivery that can sustain with arbitrary mobility, by efficient use of resources from the network."

Meng

Related Work

- Topological based
 - Proactive
 - Periodic update of routing table
 - Forwarding by the shortest path algorithm
 - Reactive
 - Use flooding technique to locate the destination
 - Forwarding by
 - Soft state
 - Source Path

- Position based
 - Assumption
 - Every node knows its own location
 - Distributed Location service
 - The Algorithm
 - Geodesic proximity
 - Neighbour updates
 - Forwarding
 - greedy
 - traverse along constructed planar graph

Related Work

	Robust	Efficient use of
	Packet delivery	network resource
Proactive	NO	NO
Topology		
Reactive	YES	NO
Topology		
Position	NO	YES
Forwarding		

- Restrictive Hybrid Route advertisement
 - Exchange topology and position states within a neighbourhood of a few hops.
- Forwarding Algorithm
 - Apply the shortest path algorithm If the destination can be found in the routing table.
 - Otherwise, identify a node that is the closest to the destination, and apply the shortest path algorithm to it.

Dst	Next Hop	Metric	x	y	z
0	2	2	300.00	2.00	0.00
2	2	1	225.00	132.00	0.00
3	6	2	600.00	262.00	0.00
4	6	2	525.00	132.00	0.00
5	5	0	300.00	262.00	0.00
6	6	1	450.00	262.00	0.00

Restrictive Hybrid Route Advertisement

Landmark Guided Forwarding

- Link failure handling
 Drop packet immediately
- Adaptive Neighbourhood update
 - Use the distance to the furthest one hop neighbour to regulate the update frequency

Systematic Exploration

- Source path
 - a trail for roll back
 - detect loop formation
- Soft state
 - Mark visited link

Dead-end Detection and Rollback

Loop Avoidance

Results- varying max. velocity

Results-varying max. velocity

Results-varying velocity

Conclusion

- Restrictive hybrid state scale well.
- Packet delivery is robust.
- Average packet delay is low.

"Local optimal routing sidestep the constraint of establishing global optimal path, which generally used by existing MANET protocols."

Results

- Simulations
 - with varying pause time
 - 50 nodes
 - 1500x 300 meter square
 - with varying maximum velocity
 - 100 nodes
 - 1500 x 500 meter square

Results- varying pause time

Results- varying pause time

Results- varying pause time

Results- path length

