Simulation of TCP performance with optical buffers

Irek Szczesniak
Polish Academy of Sciences

Damon Wischik
University College London

Figures and pictures were taken from the Internet and IEEE articles.
Please distribute this presentation wisely.
Optical switching in backbone networks

- Wavelength switching
 - granularity: wavelength
 - commercial
 - research: control level

- Packet switching
 - granularity: packet
 - still being researched
 - research: hardware, protocols and control
Optical wavelength switches

- Lambda router of Lucent (1999)
- Other companies (such as Nortel) offer similar switches.
- Switching is slow.
- MEMS Technology
Optical packet switches

• KEOPS (1998)
• STOLAS (2003)
• DAVID (2003)
• University of California, Davis
Generic optical packet switch
Optical packet switch architectures

- They employ different switching fabric technology.
- They use optical buffers of different architectures and at different places.
Basic architectures of optical buffers

- Optical buffers are just bundles of optical fiber.
- Differ in complexity, cost.
- Usual performance metrics: cost, packet loss, signal distortion.
Advanced architectures of optical buffers

- More expensive
- More flexible: can work as FIFO queues.
- Distort signal because of SOA.
- PROBLEM: buffer size cannot be large.

a single recirculating buffer

an array of recirculating buffers
Multi-exit recirculating buffer

- The delay is variable.
- The delay is more finely-grained in comparison with regular recirculating buffer.
TCP and optical packet switching

• In the evaluation of OPS hardware (KEOPS, DAVID, STOLAS, Davis), TCP is ignored.
• TCP is mentioned occasionally for edge routers.
• There is no work on how TCP is influenced by optical buffer architectures.
QUESTIONS

- Which optical buffer architecture serves TCP best?
- Because optical buffers cannot be large, what is the minimal buffer size acceptable by TCP?
- Which of the two below is better for TCP?
Why is it worth studying?

• Because we believe that no large optical buffers are required for backbone networks with TCP. This would be great, because large optical buffers are impossible now.

• Work of McKeown et al., Raina & Wischik suggest that TCP should work fine with small buffers in backbone networks.
Simulation setup

- There are thousands of TCP flows.
- We change the optical buffer architecture and the buffer size.
Simulation setup - continued

• Software simulation
 - A custom simulator written in C++
 - It can simulate a large number of flows with a high bitrate link.
 - It's an idealized system, which might perform different from a real system.

• Hardware simulator
 - Two computers running Linux connected with an Ethernet link
 - Should simulate a real TCP implementation.
 - Should simulate a 10Gb/s link with 10k flows.
Linux simulation

• To simulate a 10Gb/s link with a 1Gb/s Ethernet, we need to slow down the system clock 10 times.

• We need 10k flows, and so 10k tasks sending data. Linux is able to switch 1000 tasks/s, and achieving more might be difficult.

• Tools are already there: token bucket for regulating a link rate, and “netem” for introducing backbone network latency (50ms).
Conclusion

• Optical packet switching is promising to deliver packet-level granularity in the backbone networks.
• Very little is known about TCP performance with optical buffers.
• We plan to find out what optical buffer architecture best serves TCP and what buffer sizes are optimal.