
Internet Denial-of-Service
Attacks

Mark Handley

Part 1
The Denial-of-Service Problem

Denial-of-Service (DoS) Attacks

 A DoS attack is where one or more machines target a victim to
prevent the victim doing useful work.

 Victim can be:
 Network Server
 Network Client
 Router
 Link
 Entire network
 Company
 ISP
 Country

Internet Architecture

 Original Internet was closed, relatively homogeneous
community.

 Internet was not designed for attack
Contrary to popular opinion!

 Security has been retrofitted.
Encryption, authentication sort of work (when we bother

to enable them).
DoS is the hardest form of attack to deal with.

 Almost all Internet services are vulnerable to DoS attacks
of sufficient scale.

Sufficient scale?

 In many cases a victim can be disabled by a single attacking host.
 A well-connected PC can source nearly 1Gb/s of (fairly dumb)

attack traffic.
 Few machines can sink 1Gb/s of attack traffic and do useful work

if they have to process those packets in any significant way.
 Few sites have 1Gb/s access links.

 In almost all cases sufficient scale can be achieved by compromising
enough end hosts.
 Worms, viruses, remote-controlled attack bots.
 Use those compromised hosts to launch DoS attacks.
 Attack networks of 10,000 hosts not so hard to create.

Slammer Worm

 Infected ~75,000 machines
in 10 minutes

 Full scanning rate in ~3
minutes

>55 Million IP addrs/sec

 Initial doubling rate was
about every 8.5 seconds

Local saturations
occur in <1 minute

[Source: Nick Weaver, Silicon Defense]

Code Red Worm

Code Red required about
13 hours to spread
worldwide

Other techniques can be
even faster:

Eg, “Warhol Worm”
→ 15 minutes

Sapphire → 10
minutes

[Source: CAIDA]

Flash Worm

 Use permutation scanning

 Use pre-computed hit-list of likely victims.

Realistic to infect every vulnerable host on the Internet
less than 30 seconds after worm release.

 See “How to 0wn the Internet in Your Spare Time”, S.
Staniford V. Paxson, N. Weaver Proc. 11th USENIX
Security Symposium, 2003

DoS Attacks on End Systems [1]

 Exploit poor software quality.

Eg. ping-of-death

OS crashes when sent a fragmented ICMP echo
request whose fragments totalled more than the 65535
bytes allowed in an IP packet.

 Not a serious architectural problem:

Once code is fixed, problem is solved.

DoS Attacks on End Systems [2]

 Application resource exhaustion:

Available memory

Available CPU cycles

Disk space

Number of processes or threads

Max number of simultaneous connections configured.

 Some resources are self-renewing.

Eg CPU cycles

 Some are not: effects persist after attack stops.

DoS Attacks on End Systems [2]

 TCP SYN flood

Essentially a memory exhaustion attack.

Victim instantiates state for half-open connections.

Exacerbated by IP source address spoofing.

 TCP ACK flood

Essentially a CPU exhaustion attack.

Busy server with many connections spends a lot of CPU
cycles searching for the right TCB for these spoofed
packets.

Notes on CPU Exhaustion

 Strong authentication mechanisms don’t prevent CPU
exhaustion attacks.

Often the authentication mechanism itself is CPU
intensive.

 Poors OS handling of network events can make things
worse.

Livelock due to network interrupts.

OS should switch to polling network devices when busy.

Attacks on Ongoing Communications

 If an attacker can see the data traffic from a TCP connection, they
can trivially reset the connection.
 Transport or App. level security (SSL, ssh) doesn’t help.

 Even if they can’t see the traffic, they may be able to predict
sequence numbers well enough to reset a connection whose
existence they can deduce.
 Eg. BGP peering.
 May require a lot of packets.
 Good initial sequence number randomization is critical.
 At high speeds, TCP window is very large and attack becomes

easy, even with randomized sequence numbers.

Use the victim’s own resources

 Send packet to UDP
echo port of victim 1.

Spoof src address of
victim 2, src port of victim
2’s UDP chargen server.

Victim 1 and 2 bounce
packets back and
forward DoSing each
other.

Attacker Victim1 Victim 2

Triggered Lockouts, Quota Exhaustion

 Some password mechanisms lock the victim out after a
number of failed attempts.

Trivial DoS.

 Many services have quotas.

Eg. bandwidth quota for web hosting.

Exhaust quota, deny service until next accounting
period.

 In the absense of quotas, finanical DoS may be
possible.

DoS Attacks on Routers

 Most end-host attacks work against router control
processors.

DoS Attacks via Routing Protocols

 Overload routing table with lots of spoofed routes.

Too much memory required.

BGP has very poor overload semantics.

 Attack destination by announcing better route.

 Cause routing churn, cause BGP route-flap damping to
suppress victim’s routes for significant time.

 Cause routing loop, cause traffic to loop overloading links.

 Probably many more.

DoS Attacks via IP Multicast

Ramen worm:
Poorly written randomized address scanner.

 Didn’t notice that class D addresses were multicast.
Caused many multicast routers to instantiate state for all

these new sources to all these new multicast groups.
 Particularly MSDP, but also PIM-SM.
 Big multicast meltdown.

 Basically ASM (any-source multicast) model is fatally
vulnerable to DoS.

DoS Attacks via SSM Multicast

 Vulnerabilities much less than ASM.

Stateholding attacks on routers.

Bandwidth DoS on links leading to attacker (self-DoS).

 Sender-based attacks are not possible.

Receiver needs to request traffic.

Source-address spoofing is hard because of multicast
RPF checks needed for tree-building.

Attacks on Router Forwarding Engines.

 Two forms of forwarding engine:
Use a forwarding cache
Have all routes in forwarding engine.

 Forwarding caches are vulnerable to thrashing attacks, or
memory exhaustion attacks if they can’t hold the whole
routing table.

 May be possible to overload the comms between the
forwarding engine and router control processor.
Unpredictable results.

Local DoS Attacks

 Exhaust DHCP address pool

 Respond faster than DHCP server

 ARP spoofing

 Broadcast storms

 802.11:

 Spoof basestation.

 Exhaust basestation association pool

 Deauthenticate or disassociate victim (even with WEP!)

Common theme: robust autoconfiguation is very hard.

DoS Attacks via DNS

 No-one knows IP addresses.

Deny DNS, deny access to the site.

 Anti-spam measures require DNS lookup of From address
in email.

Deny DNS, cause outgoing email to be dropped.

 DNS cache poisoning.

 If a DNS server will relay for an attacker, the attacker
can (with high probability) insert anything they want into
the DNS server’s cache.

DoS Attacks on Links

 Bandwidth exhaustion.

Simple congestion attack on traffic.

 Congestion may cause routing packets to be lost.

Cause routing adjacency to be dropped.

100% packet loss if no alternative path.

Route flap if alternative path exists (BGP flap damping!)

DoS Attacks on Firewalls.

 Similar to end-system attacks.
Exhaust memory in stateful firewalls.
Cause CPU exhaustion.

 CPU exhaustion isn’t so easy if the firewall is simple.
Possible computational complexity attack with

pathelogical traffic.
Cause hash-table performance to go from O(1) to O(n)

by causing the f/w to instantiate state for n flows that all
lands in the same hash bucket.

Spam and Black-hole Lists

 All spam is a DoS attack on email users.

 All spam-filtering is a DoS attack on spam!

 The borderline between spam and legitimate email is narrow and
fuzzy.

 All too easy to get someone put in some of the less selective black-
hole lists.

 Really hard for them to prove their innocence and get removed.

 May be possible to train a victim’s adaptive spam filters so that they
drop selected legitimate messages.

Externalities

 Physical DoS

Power, cables, etc.

 Social Engineering DoS

Convince an employee to make a detrimental change.

 Legal DoS

Cease-and-desist letters, etc.

Attack Amplifiers [1]

 smurf attack

Spoofed ICMP echo request to subnet broadcast addr.

All hosts on subnet respond to victim

 DNS reflection.

Spoof DNS request.

Large DNS response goes back to victim.

Attack Amplifiers [2]

 bang.c
 Send spoofed TCP SYN to

arbitrary server.
 Server sends SYN|ACK to

victim.
 Server retransmits the

SYN|ACK many times if it
gets no response (such as
if the victim is overloaded
and dropping lots of
packets).

Attacker Victim1 Victim 2

SYN SYN|ACK

RST

Lessons [1]

 Don’t create an attack amplifier.

 Small responses to requests from unverified hosts.

 RTX in initial handshake performed by client only.

 Perform ingress filtering to prevent spoofing.

 Don’t hold state for unverified hosts

 Or at least be able to not hold this state.

 Take care regarding state-lookup complexity

 The attacker may control the state.

 Avoid livelock

 Use unpredictable values for session IDs.

Lessons [2]

 Authenticate routing adjacencies
Perhaps the only place for strong auth in the DoS space

 Isolate router-to-router traffic.
 Engineer graceful routing degradation.
 Use source-specific multicast.

ASM is dead. Get over it.
 Autoconfiguration is really hard.
 Establish a monitoring framework.

When you’re being attacked, it’s too late to figure out
what normal traffic looks like.

draft-iab-dos-00.txt

Internet Denial of Service Considerations, Jan 2004, Internet
Architecture Board, Mark Handley (editor)

Part 2:
Musings on DoS Resistant Internet

Architectures

Simple idea

 Divide address space into client addresses and server
addresses.

Client address can’t send to a client address.

Server address can’t send to a server address.

 Note: some hosts may need both, but most hosts don’t
need both to be globally routable.

Peer-to-peer is a problem.

Separate Client and Server Address Spaces

Advantages:

 Reduces threat from worms.

 Must travel client -> server -> client

 Requires two vulnerabilities.

 Server -> client is a slow process (contagion).

 honeypots can detect client -> server phase.

 bang.c, smurf (and similar) not possible or severely limited.

 Reflection attacks on servers prevented.

Client Addresses

 Client addresses don’t need to have any global
significance.

 Can use a concatenation of local IDs that is constructed as
packet travels from client to server.

Sufficient to route packets back to client.

Path-based Client Addresses

 Clients are protected from DoS attack.

Except from someone they initiate connections to.

Assuming an attacker can’t figure out how to piece
together a path from their server address to a passive
client.

 Source-spoofing is extremely limited.

Provides a solid basis for pushback mechanisms.

 Prevents all reflection attacks against remote targets.

State Setup Bit

 Packets that set up communication state (especially connection setup)
need to set a state-setup header bit.
 Generic protocol-independent way of identifying packets that

need validation.
 Packets without this bit can be dropped by stateful middleboxes

(firewalls) if state doesn’t exist.
 Server addresses cannot send such packets.

 Introduce a generic nonce request/response mechanism that can
be used to verify an IP address.
 Middleboxes or end-systems can use this when they receive a

state-setup packet (without instantiating state).
 Rate limit state setup packets from each client.

Pushback

 Add a pushback mechanism to throttle traffic from an
attacker to an overloaded server (or link to a server).

Non-global client addresses make this hard to use to
attack a client.

Limited ability to spoof client addresses means this can
pushback most of the way to the attacker.

Redirect

 Need a cheap stateless way to redirect a client to an
alternative server.

After accepting the TCP connection is too late.

 Generic IP-level redirect message?

Perhaps delegate the sending of such messages to a
firewall to load-balance when heavily loaded.

Allows on-demand mirroring to a third-party (probably
commercial) server when unusual load experienced.

DoS Resistant Multicast

Remaining problem with SSM is clients joining too many groups and causing
stateholding attack on routers. Possible solutions:

 Crytographically generated addresses with IPv6.
 Only sender can generate a valid multicast addr but routers can verify.

Somewhat expensive to check though.

 Active group announcement channels.
 Each unicast route has associated with it an announcement channel.
 Lists all source/group pairs active in that domain.
 Router receives a Join msg for (S,G) and joins the corresponding

announcement channel. Only forwards join if (S,G) is announced.

 In any event, only server addresses can send, only clients can receive multicast.

DNS

 Internet is critically dependent on DNS.
 The core of DNS cannot be secured against DoS attacks of

sufficienly large scope.
Anycast DNS helps, but not sufficent.

 General idea:
Multicast all the TLDs and SLDs (signed by a trusted

key).
Local DNS servers receive this data and cache it.
No request/response at all in the core.

 Still needed at the edge though.

Assymetric Costs

 General strategy is to allow the server to make it expensive
for the client to make a request.

Eg. CPU puzzles.

 Again, need a way to indicate to the client what they have
to do to be served before the server wastes CPU cycles or
state.

Perhaps add to nonce-echo request?

Perhaps advertise in routing?

Observations

 In such a world, servers are more expensive for ISPs to support than
are clients.
 clients are largely invulnerable to unsolicited attack.
 servers are advertised as available, so attract incoming requests.

 Probably this is true today, but the distinction isn’t clear.

 Likely implication: connecting a client is cheap, connecting a server
is expensive.
 Some ISPs charge this way today, but for business rather than

technological reasons.

 However, servers cannot perpetrate attacks, so the followup costs for
an ISP may be cheaper. Economics really unclear here.

Limitations

 A very distributed (> 1M attacking hosts) DoS attack is still very hard
to defend against.

 Lots of state required to pushback towards all of them.

 Link-saturation DDoS attacks on core links hard to defend against.

 No common destination address for pushback.

 Routing protocols still vulnerable.

 In principle, a victim can’t tell the difference between a flash crowd
and a DoS attack.

 Pushback only useful if you can identify good from bad.

 Goal should be to minimize collateral damage.

