XORP: An eXtensible Open Router Platform

Atanu Ghosh Mark Handley Orion Hodson
Eddie Kohler Pavlin Radoslavov
International Computer Science Institute

Adam Greenhalgh Luigi Rizzo
University College London University of Pisa
Networking research: divorced from reality?

Gap between research and practice in routing and forwarding

Most of the important Internet protocols originated in research, often at universities.

It used to be that researchers designed systems, built implementations, tried them out, and standardized the ones that survived and proved useful.

What happened?
Networking research: why the divorce?

The commercial Internet

Network stability is critical, so experimentation is difficult

Major infrastructure vendors not motivated to support experimentation

Network simulators

High-quality simulators make a lingua franca for research
Simulation is not a substitute for experimentation

Many questions require real-world traffic and/or routing information

Most grad students:
 - Give up, implement their protocol in ns
 - Set ns parameters based on guesses, existing scripts
 - Write a paper that may or may not bear any relationship to reality

We need to be able to run experiments when required!
The state of the art

Open APIs facilitate end-system protocol development

WWW, RTP, SIP, RTSP, …

Open-source OSes do the same for kernel changes

TCP SACK, IGMPv3, …

Also a history of experimentation in commercial OSes (affiliated labs)

Overlay networks may help with end-system/network interactions

Field in its infancy
What about protocols that affect the routers?

Option 1:
- Persuade Cisco to implement your protocol;
- Persuade ISPs that your protocol won’t destabilize their networks;
- Conduct experiment.

Option 2:
- Implement routing protocol part in MRTd, GateD, or Zebra;
- Implement forwarding part in FreeBSD, Linux, Click, Scout, …;
- Persuade network operators to replace their Ciscos with your PC;
- Conduct experiment.
Likelihood of success?
Possible solutions

Solution 1:
A router vendor opens their development environment and APIs. Thus, new router applications can be written and deployed by third parties. Basic router functionality cannot be changed.

Solution 2:
Someone \textit{(hint, hint)} builds a complete open-source router software stack explicit designed for extensibility \textit{and} robustness.
Adventurous network operators deploy this router on their networks; it develops a reputation for stability and configurability.
Result: a fully extensible platform suitable for research \textit{and} deployment.
XORP

eXtensible Open Router Platform

Complete software stack for an IP router, including routing protocols, management interfaces, and forwarding path
Architecture

Management Processes

IPF finder
router manager
CLI
SNMP

BGP4+
OSPF
RIP
IS–IS

PIM–SM
IGMP/MLD

RIB

FEA

Unicast Routing
Multicast Routing
Forwarding Engine

RIB = routing information base
FEA = forwarding engine abstraction
Four challenges

Features
 Real-world routers must support a long feature list

Extensibility
 Every aspect of the router should be extensible
 Multiple extensions should be able to coexist

Performance
 Not core routers, but edge routing is hard enough
 Raw forwarding performance, scalability in routing table size

Robustness
 Must not crash or misroute packets
Features

IPv4 and IPv6

Unicast routing protocols
 BGP4+, OSPF, RIPv2/RIPvng, Integrated IS-IS

Multicast
 PIM-SM/SSM, IGMPv3/MLD

DHCP, PPP

Management
 SNMP, command line, WWW

Forwarding elements
 Route lookup, filter/firewall, ARP, AQM, encapsulation
Extensibility: Intra-router APIs

Separate abstract request (API) from concrete request (which process? which arguments? which version?)

In particular, the caller:

- Should not care about IPC mechanism
- Should not know in advance which process is relevant
- … unless required
Extensibility: XORP Resource Locators

XORP IPC mechanism

Like URLs for IPC

finder://fea/fea/1.0/add_address4?vif:txt=fxp0&addr:ipv4=10.0.0.1
Extensibility: XORP Resource Locators

XORP IPC mechanism

Like URLs for IPC

finder://fea/fea/1.0/add_address4?vif:txt=fxp0&addr:ipv4=10.0.0.1

IPC mechanism: finder, xudp, snmp, ...
Extensibility: XORP Resource Locators

XORP IPC mechanism

Like URLs for IPC

finder://feaf/1.0/add_address4?vif:txt=fxp0&addr:ipv4=10.0.0.1
Module/process name: fea, rib, bgp, ...
Extensibility: XORP Resource Locators

XORP IPC mechanism
Like URLs for IPC

finder://fea/fea/1.0/add_address4?vif:txt=fp0&addr:ipv4=10.0
Interface name: fea, routing-process, ...
Extensibility: XORP Resource Locators

XORP IPC mechanism
Like URLs for IPC

finder://fea/fea/1.0/add_address4?vif:txt=fxp0&addr:ipv4=10.0.0.1

Version number
Extensibility: XORP Resource Locators

XORP IPC mechanism
Like URLs for IPC

finder://fea/fea/1.0/add_address4?vif:txt=fxp0&addr:ipv4=10.0

Method name: delete_address4, get_mtu, ...
Extensibility: XORP Resource Locators

XORP IPC mechanism
Like URLs for IPC

finder://fea/fea/1.0/add_address4?vif:txt=fxp0&addr:ipv4=10.0.0.1

Arguments
Extensibility: XORP Resource Locators

XORP IPC mechanism
 Like URLs for IPC

finder://fea/fea/1.0/add_address4?vif:txt=fxp0&addr:ipv4=10.0.0.1

Library marshals arguments, implements transport, handles responses

Redirection into a single XRL or an XRL sequence

Programmer explicitly handles failure
Using XRLs

Interface files map (Juniper-style) configuration syntax ...

protocols ospf {
 router-id: 128.16.64.1
 area 128.16.0.1 {
 interface xl0 {
 hello-interval: 30
 }
 }
}

...to XRLs

protocols.ospf {
 area.ADDR {
 interface.IFNAME {
 hello-interval {
 }
 }
 }
}
Extensibility: RIB

Object-oriented routing table design

Add new merged tables implementing new merging policies, …
Extensibility/performance: Click forwarding path

Fast kernel forwarding

Easy to write extensions

XORP also supports native
FreeBSD forwarding
Robustness

Policy decision: Strong robustness for user-level processes

- Difficult to get performance, robustness, and extensibility simultaneously
- Kernel robustness through inspection of extensions

Facilitated by multi-process design

- Automatically restart processes that crash
- Defensive programming for shared XORP processes like RIB

XRL sandboxes

- All interaction with router through XRLs, packets
- Redirect XRLs to run new protocols in a sandbox
Status

Core design, IPC, RIB, Click complete
 Routing tables, multicast, IPv6, Click integration in progress
All-new BGP, PIM-SM, IGMP in progress
Adapted OSPF, RIP in progress
First preliminary release within a month
 Check it out! Please help!