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ABSTRACT

Diffusion-Tensor MRI can be used to measure fibre orienta-
tion within the brain. Several studies have proposed meth-
ods to reconstruct known white matter fibre tracts in the
brain. These methods are known as tractography. However,
the measured fibre orientations are subject to error, which
leads tractography methods to fail or define false connec-
tions. Probabilistic tractography methods use a model of
the probability density function (PDF) of the local fibre ori-
entation in each voxel, to calculate the likelihood of any
potential fibre pathway through a DT data set. We propose
the Watson distribution as a new fibre orientation PDF to re-
place ad hoc models used previously. We compare the Prob-
abilistic Index of Connectivity (PICo) tractography method
using three candidate PDFs and show that the Watson PDF
compares favourably to the ad hoc models.

1. INTRODUCTION

Diffusion-weighted magnetic resonance imaging allows in-
vivo imaging of diffusing water molecule populations as
they interact with microscopic cellular structures. Many
studies have used the diffusion tensor (DT) [1] to model the
statistical properties of diffusing water molecules within the
brain. The DT is the 3 × 3 symmetric covariance matrix of
a Gaussian diffusion process in three dimensions, where the
probability of a molecule being displaced by a vector r in
time t is

p(r) =
1√

(4πt)3 det(D)
exp

(
−rTD−1r

4t

)
. (1)

A DT-MRI image is a 3D voxel image where each voxel
contains the tensorD that best fits to the diffusion-weighted
signals. The voxels typically measure between 5 − 10mm3.
The eigen system of D contains three eigenvectors e1, e2,
e3, and their corresponding eigenvalues, λ1 ≥ λ2 ≥ λ3.
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The eigenvalues are proportional to the mean squared dis-
placements along the corresponding eigenvector. The Gaus-
sian distribution has ellipsoidal contours, and DT-MRI is
often visualised by plotting an ellipsoidal contour in each
voxel, as shown in figure 1.

The trace (λ1 + λ2 + λ3) is directly proportional to the
mean squared displacement in three dimensions. In free
water, the trace is large, and the diffusion is isotropic, so
that λ1 ≈ λ2 ≈ λ3. Trace values are much lower
in brain tissue, because the cellular structures of the brain
tissue restrict the motion of the water molecules. In grey
matter (cortical material) the structures restrict the motion
more or less equally in all directions (at least at the resolu-
tion of DT-MRI) so the diffusion is also isotropic. Within
brain white matter (axonal connections), the cellular struc-
tures are mostly dense, highly organized bundles of small
(about 10−6 m in diameter) cylindrical fibres. In white mat-
ter, the diffusion is anisotropic, λ1 � λ2 ≈ λ3, because
the water has more freedom to move along the fibres than
across them. The tensors are elongated in the shape of a
cigar, and e1 should point in the same direction as the fibres
in each voxel. We quantify anisotropy using the fractional
anisotropy index, which is 0 for a sphere and 1 for an in-
finitely thin cylinder.

Many groups have studied ways to reconstruct the gross
structure of the fibre bundles from DT-MRI data, a study
known as “tractography” [2]. A simple method is to prop-
agate a streamline from a starting point, following the lo-
cal e1 over a series of small steps. This approach can give
a visual impression of the fibre structure, but each stream-
line is a binary mapping of connectivity; a streamline ei-
ther connects two points, or it does not. Each voxel mea-
surement is subject to error because of noise, patient mo-
tion, and non-Gaussian diffusion behaviour, resulting in er-
roneous streamline trajectories. Many researchers have im-
posed heuristic restrictions on streamline behaviour (such
as preventing them from bending sharply) in order to cull
the most obviously incorrect fibre traces, but again this is
a binary mapping (a streamline is accepted as true, or is
rejected). Probabilistic methods move beyond the binary
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Fig. 1. Ellipsoid contours of tensors showing the curved
path of the fibres in the corpus callosum above the fluid-
filled ventricles (large ellipsoids).

mapping to define a probability density function (PDF) of
any fibre orientation x in a voxel given D. Given suffi-
ciently accurate fibre-orientation PDFs in each voxel, prob-
abilistic methods allow us to compute the probability of any
potential connection within the brain.

2. METHODS

This work introduces a new fibre-orientation PDF using the
Watson Distribution on a sphere. The Watson PDF is

f(±x; µ, κ) = M

(
1
2
,
3
2
, κ

)−1

exp
[
κ(µTx)2

]
(2)

where M denotes the confluent hypergeometric function of
the first kind [3, p. 181]. The PDF describes axes, not di-
rections, so f(e1; µ, κ) = f(−e1; µ, κ). This is the be-
haviour we desire, as the fibre orientation is an axis, without
a specified direction.

The parameter κ describes the concentration of the dis-
tribution. For κ > 0, the density has maxima at ±µ. This is
known as the “bipolar distribution”. As κ increases, the dis-
tribution becomes more concentrated about µ. For κ < 0,
the distribution is concentrated around the great circle or-
thogonal to µ, this is a “girdle distribution”.

When all the fibres within a voxel are straight and par-
allel, the DT is highly anisotropic, with λ1 � λ2 ≈ λ3,
and the best estimate of the fibre orientation is e1. In this
case, the bipolar distribution with µ = e1 provides a good
model. When two fibres cross within a single voxel, the ten-
sor can become oblate, λ1 ≈ λ2 � λ3, and the ellipsoid is
a squashed sphere, like a pancake. The fibre orientations

cannot be resolved from the tensor, but the orientations lie
close to the plane defined by e1 and e2, perpendicular to e3.
In this case the girdle distribution with µ = e3 provides a
good model.

To determine a suitable value of κ, we find the maxi-
mum likelihood estimate of κ using the following theorem
from [3]. Assuming that a set of samples comes from a
Watson distribution with known µ, we can fit the value of
κ numerically. Let T̄ be the scatter matrix of n samples
±x1 . . .± xn, where

T̄ =
1
n

n∑
i=1

xixT

i . (3)

Then the log-likelihood function is

l = κ
∑n

i=1(x
T
i µ)2 − n logM

(
1
2 ,

3
2 , κ

)
= n

[
κµT T̄µ − logM

(
1
2 ,

3
2 , κ

)]
.

(4)

Differentiation with respect to κ gives

M
(

3
2 ,

5
2 , κ

)
3M

(
1
2 ,

3
2 , κ

) = µ̂T T̄ µ̂. (5)

We computed a lookup table that gives us κ as a func-
tion of the parameters λ1

λ3
and λ2

λ3
, at a constant trace con-

sistent with white matter (2100 × 10−6mm2s−1) . We gen-
erate noise-free synthetic measurements from a tensor with
e1 aligned along the z-axis. We then generate the sample
population xi, 1 ≤ i ≤ 10, 000, by adding noise to these
synthetic measurements, re-fitting the tensor, and extracting
e1. With T̄ and µ known, we solve equation 5 for κ numer-
ically, using the Newton-Raphson method [4, p. 362]. We
solve equation 5 with µ = e1 and µ = e3, and discard the
solution that has the lowest likelihood given the samples.

We tested our PDF within the Probabilistic Index of Con-
nectivity (PICo) [5, 6] framework, which uses Monte-Carlo
streamline generation to create maps of connection proba-
bility. For each Monte-Carlo iteration, the e1 of each tensor
is aligned with a sample from the voxel PDF, and a stream-
line is tracked from a manually selected seed point. After
N iterations, the probability of connection between the seed
point and a point p is ψ(p), which is proportional to the
number of streamlines χ(p,N), that pass through voxel p:

ψ(p) = lim
N→∞

χ(p,N)
N

≈ χ(p,N)
N

. (6)

For cylindrically symmetric tensors, two PDFs for PICo
have been demonstrated in brain data [5, 6], both are one-
dimensional normal distributions on the angle θ of deflec-
tion of e1. To draw samples from these PDFs, we sample
the deflection angle from the normal distribution and rotate
about e1 by an angle drawn from a uniform distribution on
[0, 2π]. The standard deviation σ of the distribution depends
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on the anisotropy of the tensor, so that highly anisotropic
tensors have the lowest uncertainty. For the PDF used in [5],
σ is a sigmoid function of fractional anisotropy, hereafter
we will call it the sigmoid PDF. For the PDF used in [6],
σ is a biexponential function fitted to the results of numer-
ical simulation of noisy tensors, over a range of anisotropy
values. We call this the biexponential PDF. The normal dis-
tributions are truncated to give a maximum deflection of 90
degrees.

To test how well each PDF reflected the uncertainty in
fibre direction due to noise, we computed PICo maps from
each PDF (N = 10, 000) on synthetic data with simulated
noise. As a gold standard, we created a probability map
using noise instead of sampling a PDF. For each Monte-
Carlo iteration, we added noise to the complex MR signal,
and re-fitted the tensor. We then computed the correlation
between the map from each PDF and the gold standard.

We use two synthetic data sets: a circular path of radius
20mm, and two perpendicular linear paths that intersect in
a region of oblate tensors (see figure 2). We repeat the ex-
periment with tensors over a range of anisotropy values.

Fig. 2. Synthetic data with fibre crossing.

3. RESULTS AND DISCUSSION

Figure 3 shows the correlation between the gold standard
and the PDFs for the circular path data set. We find no
significant difference between the Watson PDF and the bi-
exponential PDF. The sigmoid PDF produces less focused
probability maps, which correlate less well with the ground
truth. This PDF was not designed to model only noise, it is
a heuristic estimate of total uncertainty caused by effects in-
cluding noise and the mixing of tissue types within a voxel.
Figure 4 shows the difference between the Watson and sig-
moid PDF in brain data.

Figure 5 shows the correlation for the crossing fibres.
The Watson PDF correlates better than the Gaussian in the
case of crossing fibres. For the girdle distribution the PDF
is the same around any circle parallel to the plane of e1 and
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Fig. 3. Correlation of PDF data with gold standard for the
circular path.

Fig. 4. Three slices from a PICo probability map of connec-
tion in splenium of the corpus callosum. The Watson PDF
(top) is more concentrated than the sigmoid PDF (bottom).

e2, so the streamlines spread out within this plane, while
the Gaussian PDFs continue to act as the Watson does in the
bipolar case, spreading the streamlines in a circularly sym-
metric cone about e1. As anisotropy decreases, e3becomes
less trustworthy as a normal to the fibre direction, and the
Watson PDF shows increased dispersion in the direction of
e3, until it becomes similar to the Gaussian method.

Both the exponential PDF and the Watson PDF correlate
less well to the gold standard at low anisotropy. The estima-
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Fig. 5. Correlation of PDF data with gold standard for
crossing paths.

tion of κ from equation 5 is sensitive to outliers, and we are
currently investigating improvements our lookup table by
testing for discordant samples.

While the Watson PDF offers some benefit for deal-
ing with oblate tensors, it is still an unsatisfactory solu-
tion for the fibre crossing problem. The uncertainty can be
significantly reduced by abandoning the tensor model alto-
gether and using a model that can resolve multiple fibre ori-
entations. Several alternative models have been proposed
[7, 8, 9]; once the individual fibre orientations are recov-
ered, the uncertainty could be modelled using any of the
PDFs discussed here. This has been shown in [6], where the
biexponential PDF is fitted to each of two tensors resolved
from voxels that contain crossing fibres The Watson girdle
distribution can be used as a fall-back for voxels where the
more complex model cannot be fitted satisfactorily. There
are also many studies that acquire only enough scanner data
to fit the tensor model, and in this case the Watson PDF will
be superior to the Gaussian at low concentration, when the
truncation of the Gaussian becomes significant, and also in
regions of oblate tensors. Furthermore, the Watson model
generalises more naturally into a non-cylindrically symmet-
ric axial distribution (the Bingham distribution), which is
required in the single-tensor case to model the uncertainty
in brain data more accurately.
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