MACE - Adaptive Component Management Middleware for
Ubiquitous Systems

*

Mohamed Ahmed Robert Ghanea-Hercock Stephen Hailes
Department of Computer BT Labs, Adastral Park Department of Computer
Science, UCL Martlesham Heath Science, UCL
Malet Place Ipswich IP5 3RE, UK Malet Place

London, WC1E 6BT, UK
m.ahmed@cs.ucl.ac.uk

ABSTRACT

If the hype is to be believed, we have come very close to the
realisation of a ubiquitous computing environment. There
are already a wide variety of devices, networking technolo-
gies and bespoke services; and yet the vision of anywhere
anytime computing is proving somewhat elusive. Software
abstractions and metaphors that were developed for desk-
top applications do not extend to ubiquitous computing.
Because of the frequency of contextual changes and the
paucity of resources, new distributed applications require
much more flexible support for controlled reconfiguration,
self-adaptation, and recovery of components.

We present a lightweight component management Mid-
dleware that provides flexibility by allowing design, deploy-
ment, and run-time reconfigurability. At design and deploy-
ment time, the developer can design a system by structuring
software components according to a specific scenario. Then,
at run-time, she can dynamically reconfigure the system, ad-
just to new environments, or dynamically add mechanisms
that enables self-adaptation.

1. INTRODUCTION

In many ways, we have come very close to the realisa-
tion of ubiquitous computing. In developed societies, in-
dividuals often own several ubiquitous devices from PDAs
and laptops, to mobile phones and GPS systems. There are
a growing number of ubiquitous networks: (W)LAN/MAN
(Ethernet & IEEE 802.11), GSM/GPRS/3G WANSs, and,
more recently, a growing set of PANs (Bluetooth, Zigbee,
AudioNet etc.). A few ubiquitous services have been already
been developed and deployed (for example, location-based
services). In spite of this, the reality of development and
deployment of ubiquitous computing applications is not in

*Contact Author

robert.ghanea-
hercock@bt.com

London, WC1E 6BT, UK
s.hailes@cs.ucl.ac.uk

such good shape. Abstractions and metaphors of multiple-
users/single-machine and single-user /single-machine scenar-
ios do not extend to multi-user/multi-machine situations
with a much stronger emphasis on autonomic machine-to-
machine interaction. It is expected that, within the next
ten years, the number of devices per person will increase by
anything up to two orders of magnitude, but that the major-
ity of such devices will be embedded and devoted to single
purpose applications. However, such approaches miss out
on a major revenue stream, in which a number of devices
working together may provide services that cannot easily be
provided by individual devices.

From the era of “complex devices and simple networking”
we are moving to an era of “simple devices and complex
networking”. For us, ubiquitous computing environments
imply the following:

e Heterogeneity within (i) the capability of systems and
devices, (ii) the structure of systems with regard to
their composition. Proposed systems are typically a
loose coupling of traditional centralised networks pro-
viding the backbone infrastructure to support numer-
ous small, lightweight, and often mobile components
that provide sensory input, perform actuation and may
interact in an ad-hoc manner.

e Behavioural heterogeneity in the operation of compo-
nents and systems. This includes differences in their
task, scope, autonomy, policies of interaction and the
utilities gained from interacting.

e A variety of systems/devices with different scales and
capabilities that must interact to support the required
ubiquity. This raises two issues: (i) to realise the
invisibility criteria, devices must necessarily become
smaller and more tightly embedded in their environ-
ments. While current trends continue to forecast ever-
increasing capacity in ever-shrinking devices, we can
still safely assume that size will limit capacity [6]. (ii)
The increase in the number and heterogeneity of com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

namism of systems [9].

ponents in an environment leads to a dramatic increase
in the complexity of managing the environment. Cen-
tralised methods do not scale well and hinder the dy-

MPAC'06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-421-9/06/11$5.00.

Further, constraints such as battery, computation power,
memory, and sensing capabilities limit the amount of

useful work that a device is able to perform locally,
thereby severely affecting the scope of solutions en-
abling software subsystems such as security [14]. With
respect to this, Estrin et. al. remark: “Fidelity and
availability will come from the quantity of partially re-
dundant measurements and their correlation, not the
individual component’s quality and precision” [6].

e The embodiment of components in their environment
is among the main requirements to achieve ubiquity.
Embodiment means that components are embedded in
their operational environment, and therefore physical
access is limited. Issues such as the update of func-
tionality or management policies cannot be performed
easily, further highlighting the need for autonomic and
self-regulating capabilities.

In the following sections we outline MACE (Middleware
for Adaptive Component managEment). MACE is aimed
at addressing the challenges listed, through a hybrid agent-
component approach. This approach is taken in due recogni-
tion of the inherent trade-offs between flexibility and fault-
tolerance. For example, though increased flexibility is re-
flected in the capacity to reconfigure a system, it makes
it more difficult to reason about its performance and con-
trol, particularly when the likelihood of failure is non-trivial.
Therefore, our aims for MACE are to support the design,
deployment, and run-time (re)reconfigurability of systems,
while still maintaining fault-tolerance.

MACE implements a distributed component model in which

components may be local or remote and supports synchronous
and asynchronous communication. This is used to provide
a high-level of modularity and flexibility that enables fine-
grained control over the behaviour of MACE-based system
at the interface level. For example, components can eas-
ily monitor how their functionality is being used and who
is using it, paving the way for fine-grained policy-managed
context adaptation and security.

The remainder of the paper is organised as follows: sec-
tion 2 presents an overview of the system architecture. Sec-
tion 3 discusses the usage of the system, provides additional
details of its functionality and discusses potential security
issues. Section 4 reviews related work and finally, section 5
concludes this paper.

2. SYSTEM ARCHITECTURE

MACE is a component framework and methodology aimed
at supporting flexibility and fault tolerance. At the most
abstract level, MACE simply enforces that components pro-
vide interfaces and receptacles that are respectively used to
specify their functionalities and dependencies, and that are
chained to compose systems.

Given the requirements listed for ubiquitous environments,
software must be capable of being both robust and extremely
flexible in order to realise the functionality envisioned. In
support of this, MACE inherently modularises software de-
sign, allowing software developers to construct application-
level software from distinct components that each provide a
subset of the functionality required by an application. To
do so, MACE employs four component profiles, in which
higher-level profiles extend the functionality provided by of
lower-level profiles, as depicted in Figure 1.

MACE Wrapper

5' Cumpanemwé
i Payload

Autonomy Support

Mobiiity Support

Policy
Support

 Functionalities : Dependencies :

Figure 1: The hierarchical arrangement of MACE compo-
nent profiles.

The component profiles that MACE implements are as
follows:

1. The Basic Component profile consists of the compo-
nent payload, which provides the real functionality and
the MACE wrapper. This profile simply requires that
components supply their dependencies and functional-
ities (for the resolution and execution of services), and
incurs a minimal overhead.

The profile is primarily used to enable components to
participate within an application and it is catered to-
wards the lowest level devices. As such, within a com-
ponent system, this profile’s function is simply to pro-
cess services and make use of higher profiles to support
extended functionality.

2. The Policy-Managed Component profile adds sup-
port for adaptive/autonomous behaviour through a
policy enforcement module. With regard to security
considerations, policies dictate the runtime behaviour
of a component by dynamically hiding and revealing
the functionalities (and associated dependencies) of a
component, based on the context or condition, or by
imposing constraints on execution flows.

Policies are also used to perform context adaptation.
In this role, the rules in the policy dictate the condi-
tions for adaptation; for example, when to migrate a
component from one host to another or initiate service
discovery.

Policies are defined outside of the component and stat-
ically compiled to check that they are well-formed. In
our case we focus on detecting cycles and violations
of non-monotonic constraints. A detailed discussion of
this part of the work can be found in [1].

3. The Mobile Component profile adds the support
for physical mobility to the basic component profile.
Because there is no specific runtime environment for
MACE, mobile components also provide the hosting
environment for MACE components to support the
boot strapping of systems.

4. The Autonomous Component profile adds signifi-
cant capabilities to the basic component profile by in-
troducing high-level reflection in a white pages listing,
publish-subscribe support, and application consistency

checking in the form of dependency cycle detection.
This profile essentially adds the features required for
a component to manage itself independently.

High-level reflection is used to permit a component
to be aware of other components with which it inter-
acts. In conjunction with a service discovery compo-
nent, this profile is used to support autonomous ser-
vice discovery and component management function-
ality. For example, the Middleware we have devel-
oped using MACE [13] uses a Component Manager
(CM) derived from the autonomous component pro-
file, to provide data routing, service discovery/resolu-
tion and high-level reflection support. In effect, this
profile transforms the component into an autonomous
agent, capable of perceiving its environment, and state
and acting independently.

5. The Mobile Autonomous Component profile pro-
vides mobility and hosting support for the autonomous
component profile, and is essentially a template for a
mobile agent.

2.1 Requirements Analysis

MACE implements a weak logical mobility model and
aims to provide a highly modular, hybrid agent-component
based abstraction to designing and implementing software.
MACE simplifies the “componentisation” process by aiming
to act simply as a wrapper - requiring only knowledge of
the dependencies and functionalities of a component. This
information is also used explicitly to support component re-
flection and to resolve the dependencies of components.

To see the properties of MACE, we expand on how it
addresses each of the requirements mentioned for component
models in [4, 18]:

Modularity is at the heart of the MACE model, with the
aim of enabling and maintaining independence between
the components that are used to build a service. Mod-
ularity enables: (i) The separation of concerns and
functionality between modules that make up an appli-
cation, thereby easing the software development and
maintenance cycle [15]. (ii) Support for fine-grained
management of policy and context management.

Wide applicability of the framework is achieved by fully
decoupling the components that are used to make up
an application. MACE components are referred to as
network objects inhabiting a given location (local or
remote) and all interaction between components at all
levels is handled through well-defined RPC interfaces.
We have adapted the XMLRPC [17] and, as a con-
sequence, the payload of all method calls is plain or
binary XML.

Through the use of the RPC we are able to abstract
from any specific requirements on runtime environ-
ments, because only basic strings are transferred and
object representation is constructed locally. Secondly,
XML provides the capacity to use schemas to translate
between heterogeneous environments and local com-
ponent representations. This precaution eases the de-
ployment of components in heterogeneous environments,
by removing language and platform interdependence
between components.

Separation of application and policy is achieved through
the use of local configurations. These perform two
functions. (i) They state the runtime requirements of
components such as library dependencies or networks
locations. (ii) They are used to generate the compo-
nent run-time logic based on policy requirements.

Support for runtime reconfiguration is achieved mainly
through the modularisation of functionality. MACE
provides a clear separation between system building
and system management. For example, MACE com-
ponents may be removed from or added to running
system.

Because of the lack of a heavyweight binding proce-
dures such as class loading, components always re-
main independent of each other and can be modified
easily, without requiring any further modification to
their connections - of course any reconfiguration re-
quires that existing interfaces be respected.

Component Managers (based on the autonomous com-
ponent profile) are used to provide high-level man-
agement (see Figure 3.10 and c¢). These act as au-
tonomous agents utilising a publish-subscribe method-
ology to provide a global vantage point of the systems
they manage and can be used to support a holistic ap-
plication view and control - for example, as is required
to manage an applications life-cycle.

Selective transparency to the deployment environment
is achieved through the loose component binding that
results from the use of an RPC based mechanism. This
means that components are free to address the advan-
tages or constraints of their target environment, pro-
vided they still respect the calling conventions.

High performance of systems is always a necessity; in
MACE we have completely decoupled the application
payload and the component mechanism; therefore MACE
works as an “application wrapper”. Some performance
cost has been incurred by the extra marshaling proce-
dures required by an RPC. However, since the systems
that are likely to suffer from this overhead will tend
be those involved in heavily interactive behaviour; it
is not expected that these components will be required
on the lowest capacity devices.

Security and adaptability for MACE is addressed through
a policy-driven behaviour module. This is a layered
approach designed to be easily extended - to support
application-specific requirements.

In our current implementation, we use shared keys to
support secured interaction between components and
policy enforcement may be built into the application
through use of the policy-managed profile. The pol-
icy module allows for the application’s control logic to
be auto-generated from a high-level description at the
point of deployment.

3. SYSTEM FUNCTIONALITY

MACE has been used to develop the components for the
ADAM Middleware [13], as well as a light weight VPN [12].
In this section, we demonstrate how to use MACE in de-
velopment of component-based systems as well as providing

additional insights into its operation. Standard software en-
gineering techniques are used to provide a component struc-
ture [15]. Once the application payload has been designed,
there are two ways to proceed: (i) by extending the appro-
priate component profile and defining the functionalities/de-
pendencies of the component, or (ii) defining a policy for the
component and using our policy module to auto-generate the
appropriate component wrapper.

3.1 Initialisation

During system initialisation, it is assumed that each com-
ponent is able to find the initial location of the component
manager (CM), as defined in its configuration file. In the
case of the autonomous component profile, the component
comes with its own CM. The initial configuration may also
include public keys that are used to verify components.

When a component is initialised (see Figure 3.1a) it con-
tacts the CM (1.1). If the component manager is on-line it
returns an acknowledgement that it is ready (1.2). If the
acknowledgement is not received, within a certain time in-
terval (specified in the component’s policy definition), or an
error message is received, the component launches the re-
covery behaviour defined for the event, e.g. try to reconnect
later.

If the CM is, however, on-line and ready, the component
sends its description (2.1) including its physical location,
functionalities and dependencies (in XML). This informa-
tion is used by the CM to build a service description list
that is then used to advertise the functionalities of compo-
nents and resolve dependencies between components. Each
record in the description list contains a service name, the
interface to access this service, and physical address of the
service (or the component that provides this service). If all
goes well again an acknowledgement message is returned to
the initiating component (2.2), otherwise an event is raised
and the component is free to initiate its own recovery be-
haviour, for example subscribing to be notified when the
functionality it requires becomes available or attempting to
reconnect at given intervals.

Figure 3.1b demonstrates the basic task execution proce-
dure in MACE. The CM always acts as a proxy, providing
a redirection service and enabling a global view of the sys-
tem. Consider the following example, during the execution
of task 71 “Component 1”7 needs to execute task T». Being
aware of the interface for task T> “Component 1”7 creates a
request to execute task T (1). Using the API provided, this
request is encapsulated in an XML message and submitted
to the CM (2). The CM uses the request name and its pa-
rameters to identify the appropriate task provider/interface
(using its service description list) (3).

Once the destination interface has been located, the CM
re-writes the the destination of the request (4) and forwards
it (5). Once the request reaches its final destination, it is
decoded and executed (6). When the execution finishes, the
results are returned to “Component 1” in the same way.

To address scalability problems introduced by have a cen-
tralised CM, MACE-based systems are also able to function
in an decentralised mode using the Autonomous Component
profile, as shown in Figure 3.1c. The profile enables compo-
nents to embed the CM functionality, thereby enabling them
to manage their behaviour independently of the rest of the
system. The process of interaction here is no different to the
basic component model, except that the CM functionality

Component Component Manage
1.1 Initialise
A—W
| 21 Adverme——_|
T romeage |
(a) Component registra-
tion
Component Component Component
Manager Payload
3t V4 [6t
Inter-component 2 Inter-component 5 Inter-component
communication —# communication communication
support

(b) Basic component interaction

Component Component
Payload Payload
Component Component
Manager Manager

Inter-component
communication
support

Inter-component
communication
support

(c) Autonomous component
interaction

Figure 2: Component initialisation and task execution be-
haviours

resides within the component.

Though the autonomous component model offers the ca-
pacity for an application to be constructed of components
that reside at or are controlled by autonomous domains
(without direct access to each others code), its cost is a loss
in the capacity for a holistic management of the overall sys-
tem; since each component is responsible for managing its
own functionality, only local views are available to it. This
problem can be addressed by using the publish-subscribe
capacity of MACE, to enable components to cooperate in
sharing a top-level view of the whole system.

3.2 Local Configuration

The behaviour of components is controlled through lo-
cal configurations that dictate the policies that apply to a
component. The policy provides three important services.
First it lists how events raised by a component are handled;
this includes requests for services or notifications from the
environment. Second, it provides a limited key service, to
support the bootstrap process. Last, it provides support
for the policy independence clause, through listing the func-
tional requirements of a component.

MACE uses policies as reactive strategies to events that
occur in the system or environment. Therefore all calls to
the exposed functionality of a component are treated as an
event. The policy module works by creating MACE wrap-
pers for the component payload based on the policy specifi-
cation. For example, to control the behaviour of the hosting
capability of a component, we may place restrictions (as
shown in Listing 1) that determine when to permit a com-

ponent to be hosted.

Listing 1: ” A simplified high-level policy specification”

on <boolean> LoadComponent (<CompStruct> component):
preconds:

authorised (component) == True
canLoad () == True
action:

$loadComponent (component)
postcond:
$addComponent (component)

The advantage of this method is that it simplifies the
component behaviour logic by (i) auto-generating it and (ii)
separating it from the functional specification of the compo-
nent. It also makes it possible to statically check the policy
definition for cycles and contradictions or against predefined
constraints before deploying a component. Components are
ready for deployment once their policies are defined and the
component wrapper is generated.

If, however, the policy definition or the functionality of
a component changes during runtime, the component needs
to be updated - this involves recompiling and redeploying
the component. This is not a functional requirement of our
approach, but a limitation of using a compiled rather than
a purely interpreted language.

3.3 Security Considerations

Security of communications and fault tolerance are vitally
important for distributed systems. MACE employs symmet-
ric cryptography for authentication and for securing internal
communications. The lengths of keys and their usage may
be chosen statically by application developers or dynami-
cally by applications themselves, depending on available re-
sources and current application requirements.

For distributed systems such as MACE;, the issue of denial-
of-service (DoS) is not an unreasonable concern; nodes may
be easily compromised, especially if they are constrained
devices. To mitigate such risks, we have designed a simple
DoS detection mechanism that monitors the rate of failed
calls. Once a DoS attack has been detected, its source may
be blacklisted or the Middleware may physically relocate
itself by moving to another node. Naturally, the attacker
may forward the attack to the new location, but this location
need not be obvious, giving sufficient time for the component
manager to report the attack and continue normal operation
from its new location until attacked again. This “chasing
game” scenario would decrease performance of a distributed
system, but not render it useless. We are currently involved
in work that addresses this issue [16].

3.4 Implementation and analysis

To ensure that MACE remains lightweight, it has been
prototyped in the J2ME CLDC profile using a customised
XMLRPC. The autonomous mobile component profile (our
most heavyweight profile) plus all its support libraries oc-
cupies less than 40K. The payload of all method calls is
“text/xml” tuples in the form jmethodName, params; (re-
sponses are simply parameter lists, see [17] for more details)
and simple response of ‘‘Hello, world’’ incurs a cost of
137 Bytes.

With regard to performance efficiency, the majority of
our cost is incurred at the RPC. This is reflected in both
the size of the data transfered when making calls (due to

the verbosity of XML), and the required marshalling of the
data. Though this makes our approach computationally
slower compared to local binding approaches [3, 18], it offers
both language and platform independence as well the extra
fault tolerance afforded by the complete decoupling of the
components.

In essence, the methodology of MACE aims to address
the issues raised by the heterogeneity envisioned in Ubicomp
environments through simplicity, robustness and flexibility.
MACE heavily emphasises component modularity, opting
for an RPC based approach rather than an Object Oriented
one, so that components and processes are always indepen-
dent of each other. This means that failure in one process
cannot cascade and affect the running of its dependents or
dependencies. Further more, MACE-based systems can eas-
ily recover by invoking their policy based routines. Con-
trolled (re)configuration is supported through the use of lo-
cal configurations that separate system building from man-
agement, whilst policy-based management allows for rule-
based self adaptation.

4. RELATED WORK

Amongst others, K-Components [5], OpenCom [4] and
SATIN [18] are examples of modular platforms for build-
ing context-adaptive applications. K-Components empha-
sises the role of connectors as “first class” entities in sup-
port of reflection and provides a description language for
specifying component adaptation rules, but not the mech-
anisms to control or reason about the satisfiability of the
rules. OpenCom and SATIN provide local component mod-
els and, respectively, focus on the specification and prim-
itives for interfaces, receptacles and logical mobility. The
RUNES [3] model builds heavily on this work, generalising
the approaches for a finer grained component framework.

The OSGi [11] framework and MACE share similar aims,
but the standalone OSGi specification is more catered to-
wards deploying services in centralised environments, and
supporting the vendors “application life-cycle” management
in a transparent manner. As such, OSGi components (re-
ferred to as bundles) are self contained (there is no sup-
port for distributed components) and this is reflected in
OSGi’s management of dependencies, whereby management
and resolution are left to the component programmer.

These approaches differ from ours in their use of local com-
ponent models and their Object Orientated viewpoint. The
focus is on creating generic APIs that provide the function-
ality for interoperability and reuse, as opposed to our focus
on differentiated capacity and commonality in data and in-
formation exchange. The advantage of this is most clearly
demonstrated in MACE’s tolerance to failure. For example,
though failures along the dependency chain affect the op-
erational functionality of components, the components are
themselves untouched and can easily detect the failure of
their calls. In contrast, local binding means that failures in
the process threads of coupled components can lead to cas-
cade effects - unless explicit measures are taken to separate
component threads and explicitly detect and handle runtime
errors.

CALMA [2] addresses limitations for Ubicomp systems
such as perception, planning and mobility, by introducing an
intensional stance mechanism to help reason about the state
of the environment. However, the work is very much centred

on the client server model, whereby agents refer to more
capable servers to do the work on their behalf. This is also
the case for [10] where the FIPA approach provides flexibility
but the platform is tightly coupled and heavyweight.

Aspect Orientated approaches such as [8] and [7] present
an approach to constructing components from aspects that
represent the various functionality of the code-base. How-
ever, this abstraction does not fully simplify the problem -
much like the “componentisation” issue, designers are still
left to decide what constitutes an aspect and how to decou-
ple application functionality to produce them.

5. CONCLUSIONS AND FUTURE WORK

MACE is aimed at simplifying the development of dis-
tributed applications for ubiquitous environments. It allows
the organisation of a distributed system in a number of suffi-
ciently small components to enable its operation in networks
that include resource-constrained devices. MACE is not tied
to particular network type or topology and the RPC proto-
col may be modified without loss of generality. Components
are allowed to migrate dynamically between network nodes.
By supporting asynchronous communications between com-
ponents MACE can easily tolerate its components going of-
fline without completely losing its functionality.

If a component fails, or a node on which it resides is dis-
connected, the system administrator may easily instantiate
the component on another node. If permitted, the Middle-
ware can autonomously adapt to such situations, thereby
supporting graceful recovery from failure. MACE has been
designed to be small and easy to use while still providing
implicit support for flexibility and fault-tolerance.

To extend this work, we are looking into (i) addressing
the performance deficiencies of the RPC mechanism, (ii) in-
vestigating the policy issues (with regard to security) raised
by the extra granularity and autonomy introduced by the
component system, and (iii) finally providing full implemen-
tations of the API in a variety of languages.

6. ACKNOWLEDGEMENTS

The authors would like to thank BT for funding under the
MARS project and the EC for funding under RUNES.

7. ADDITIONAL AUTHORS
Rae Harbird (r.harbird@cs.ucl.ac.uk) and Alexndr Se-
leznyov (alexandr.seleznyov@nokia.com).

8['1} MRgll?EeF(}) Erll\!t%.EIiiles. A policy-based management

framework for networked embedded systems: The
runes approach. Technical report, Department of
Computer Science, University College London, 2006.

[2] S. H. Chuah, S. W. Loke, S. Krishnaswamy, and
A. Sumartono. Calma: Context-aware lightweight
mobile bdi agents for ubiquitous computing. In
Workshop on Agents for Ubiquitous Computing, in
conjunction with AAMS 2004., July 2004.

[3] P. Costa, G. Coulson, C. Mascolo, G. P. Picco, and
S. Zachariadis. The RUNES Middleware: A
Reconfigurable Component-based Approach to
Networked Embedded Systems. In Proceedings of the
16" Annual IEEE International Symposium on

Personal Indoor and Mobile Radio Communications
(PIMRC’05), Berlin (Germany), Sept. 2005.

[4] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and
J. Ueyama. Opencom v2: A component model for
building systems software. In JASTED Software
Engineering and Applications, Cambridge, MA, USA,
November 2004.

[5] J. Dowling. The Decentralised Systems Coordination
of Self-Adaptive Components for Autonomic
Computing Systems. PhD thesis, Department of
Computer Science, Trinity College Dublin, 2004.

[6] D. Estrin, D. Culler, K. Pister, and G. Sukhatme.
Connecting the physical world with pervasive
networks. IEEE Pervasive Computing, 1(1):59-69,
2002.

[7] P. Falcarin and G. Alonso. Software architecture
evolution through dynamic aop. In EWSA, volume
3047 of Lecture Notes in Computer Science, pages
57-73. Springer, 2004.

[8] L. Fuentes and D. Jimeénez. An Ascpect-Orientated
Ambient Intelligence Middleware Platform. In
MPAC’05, 2005.

[9] T. Grandison. Trust specification and analysis for
internet applications. Technical report, 2001.

[10] M. W. Michael Pirker, Michael Berger. An approach
for fipa agent service discovery in mobile ad hoc
environments. In Workshop on Agents for Ubiquitous
Computing, in conjunction with AAMS 2004., July
2004.

[11] OSGi Alliance. About the osgi service platform,
revision 4.1. Technical report, 2005.

[12] Z. Sarmadi, M. Ahmed, and S. Hailes. Light weight
component-based VPN . Technical report, Dept. of
Computer Science, University College London,
London, UK, 2005.

[13] A. Seleznyov, M. Ahmed, and S. Hailes. Intelligent
Spaces - an Application of Pervasive ICT, chapter
Co-operation in the Digital Age - Engendering Trust
in Electronic Environments. Kluwer, 2005.

[14] F. Stajano and J. Crowcroft. The butt of the iceberg:
hidden security problems of ubiquitous systems.
Technical report, Norwell, MA, USA, 2003.

[15] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley,
Boston, MA, USA, 1999.

[16] C. Wallenta. Detecting malicious activities in directed
diffusion based sensor networks. Master Thesis,
System Architecture Group, University of Karlsruhe,
Germany and Dept. of Computer Science, University
College London, UK, Sept. 2006.

[17] D. Winer. Xml-rpc specification. Technical report,
UserLand Frontier, http://www.xmlrpc.com/spec,
1999.

[18] S. Zachariadis. Adapting Mobile Systems Using Logical
Mobility Primitives. PhD thesis, Department of
Computer Science, University College London,
University of London, May 2005.

APPENDIX
A. EXAMPLE LOCAL CONFIGURATION

Listing 2: ” A sample config file for a component”

component_name = SumComponent

component_host_name = localhost
component_host_port = 2006

component_key = 1024 0l1:cl:ba:34:51:ac:7c ... RSA
component_res_path = dist/repository
component_jar_depends = comSys-1.0. jar,
component_exec = java -jar

component_manager_name = comSysManager
component_host_name = localhost
component_manager_host_port = 2004

