
BT Technology Journal • Vol 22 No 3 • July 2004 95

Co-operation in the digital age — engen-
dering trust in electronic environments

A Seleznyov, M O Ahmed and S Hailes†

The pervasive environment implies a massive increase in the scale of systems, the heterogeneity of devices and diversity in
services available, making the complex task of centrally managing the environment unfeasible. The scope and role of trusted
third parties in facilitating trust is also reduced because of the high number of bilateral trust relationships, which cannot be
predefined and managed statically. Moreover, the dynamic, mobile and asynchronous nature of many of the devices means
that it is difficult to predict their state or context of operation from moment to moment. All this adds up to increased
uncertainty and a need for a revision of the methods and concepts used to express and assess trust and provide assurance.
This work addresses this need by defining realistic models of digital trust that are capable of dealing with the uncertainties
inherent in the environment and that are aware of the contexts of interactions in evaluating trust.

1. Introduction
Mark Weiser had a vision of ubiquitous computing that
was motivated by his belief that profound technologies
disappear into the physical environment that surrounds
us [1]. This vision has become a reality. Fewer than 2%
of all microprocessors sold go into conventional PCs, the
vast majority of the remainder becoming part of
embedded systems, although few of these are currently
networked. It is not, however, difficult to foresee that the
efforts aimed at overcoming the inherent complexities
in producing truly ubiquitous networked systems are
most likely to bear fruit in the short to medium term.

Emerging ubiquitous infrastructures are
characterised by huge numbers of autonomous,
heterogeneous entities, interacting across diffuse
organisational boundaries. Precisely the same lack of
clarity in organisational structures that has led to the
failure of public key infrastructure (PKI) outside highly
homogeneous and carefully managed domains means
that it is impossible to rely on specific or centralised
security mechanisms that holistically administer trust in
ubiquitous systems.

The increase in opportunity and capability for
interaction naturally leads to an increase in the number
of bilateral trust relationships between the entities that
populate ubiquitous infrastructures, forming PGP-like
webs-of-trust on a scale never before seen. Since this
model reflects the type of organisational culture that
results when economies are free, it will remain difficult
to predict and define trust relationships between

components with the degree of certainty purportedly on
offer in neatly hierarchical PKI systems.

The trust management problem has been
extensively studied and discussed, and many definitions
have been proposed, but it has not been properly
addressed by contemporary solutions [2]. The increased
complexity of defining, managing and enforcing the
policies of interaction for ubiquitous systems, means
that many of the current technologies that are used to
protect and provide assurance in traditional networked
systems are inapplicable. The way they make their trust
decisions is ad hoc and application specific, rendering
them inflexible, un-scalable and un-portable [3].
Centralised control, relying solely on the a priori
definition of the role, authority, and relationships
between components, is undesirable because of the
restrictions that must be imposed on the dynamism of
systems to make behaviour easier to predict. Moreover,
it is also unsustainable because of the imperfect and
incomplete information inherent in such environments
that results in uncertainties in the knowledge bases of
components. In short, it is necessary to abandon the
oversimplistic search for certainty and instead treat
uncertainty in trust as a first-class concept, in precisely
the same way as we do in everyday life.

Typically, the concept of trust is used in human
society to deal with high-risk situations, in which little or
no information about each other is available to the
parties involved in the interaction [4]. While this
concept has been widely addressed in distributed
societies of agents [5—7], the appropriateness of the† All authors are from University College, London.

Co-operation in the digital age — engendering trust in electronic environments

BT Technology Journal • Vol 22 No 3 • July 200496

solutions presented to provide flexibility and assurance
in electronic environments is still questionable. While
the capacity of virtual communities to model and reflect
the organisation of groups of real individuals and their
interactions, provides motivation to develop digital trust
mechanisms, the human notion of trust is still too
nebulous and complex for digital environments.

A further problem that rarely merits consideration in
the academic literature is the problem of sustainability.
There is a grave danger of academic conceit in
proposing single solutions to the problem of trust
management that are supposedly optimal on some
criteria. The reality is that it is impossible to predict the
future usage of such systems. Thus, for example, many
existing solutions to the trust management problem do
not take into account the idea of concept drift,
assuming that trust relations and the semantics of the
terms used to describe them are fixed for all time.
However, local trust decisions are based on shared trust
resources and they, in turn, are constantly changing.
Having no control over these changes, a trust
management system is forced to adapt over a range of
time-scales, some of them relatively long term, and
failure to do this can only increase error probability and
decrease users’ trust in the system as a whole. Thus, by
hard coding trust decisions into trust management
systems, contemporary developers make systems
inflexible, denying them the ability to learn from past
behaviour in order to adapt to changes and modify their
behaviour.

The remainder of the paper is organised as follows
— section 2 provides a background to the ubiquitous
environment, discussing the premises of this work, and
highlighting the characteristics of ubiquitous
environments that raise the level of uncertainty.
Section 3 discusses the notion of distributed trust
management. Section 4 outlines the conceptual
architecture of an Autonomic Distributed Authorisation
Middleware (ADAM) and its implementation. Finally,
section 5 concludes this paper.

2. Security issues in Ubicomp
New flexibility and interconnectivity increase
opportunities for interactions unbounded by physical
distance or organisational structure. However, realising
this level of functionality significantly decreases the level
of control one has over the environment, and, in
particular, the electronic transactions that take place
within it. We therefore face a dilemma — on the one
hand, a global electronic environment provides more
flexibility and functionality making it easier to co-
operate and interact both between people and devices,
while on the other hand, this flexibility leads to the
uncertainty due to a lack of control over the

environment, which is gradually transformed into a lack
of trust in the environment, resulting in a reluctance to
use it.

There are two key notions implicit in the discussion
above — co-operation and trust. Although these are
two different concepts, they cannot easily be separated.
Without some degree of mutual trust there can be no
co-operation, while a person does not need to trust
anyone, if they do not intend to co-operate. To
encourage co-operation, it is necessary to provide users
with the means for making their own trust decisions. In
the context of the digital environment, this means that
users should have automatic tools that recognise and
assess trust-warranting properties of other entities
locally, without reliance upon omniscient and
omnipresent services. These tools should be
lightweight, so as to work in resource-constrained
environments (such as ad hoc or sensor networks), and
transparent enough to make sure that the burden
introduced does not exceed the potential benefits. In
this work, we propose ADAM (Autonomic Distributed
Authorisation Middleware), a middleware system to
provide users with such tools [8].

Before we discuss how trust management addresses
the problem of situating decision-making and the
features of ADAM that support the requirements
discussed so far, we discuss how characteristics of the
ubiquitous environment create the uncertainties that
lead to the opportunities and problems discussed.

2.1 Physical heterogeneity
Within the ubiquitous electronic environment, physical
variance is found within the capacity, structure, and
space of devices and systems. The capacity of
components refers to there being a variety of devices,
with different capabilities. The variance in the structure
of devices is expressed through the composition of
systems. Typically, a loose coupling of traditional
centralised networks providing the back-bone
infrastructure to support numerous small, lightweight,
and often mobile components that provide sensory
input and actuation, which may interact in an ad hoc
manner.

Within many systems, components are embedded in
their operational environment and remain fixed in
space, while others are mobile. Policies cannot
therefore presume that components remain fixed in
their location, have the same range of capacities nor
adhere to the same structure; instead, different policies
may be appropriate for different (classes of) location,
capacity and structure.

The reader is referred to the work of Estrin et al [9]
for a further discussion of physical heterogeneity.

Co-operation in the digital age — engendering trust in electronic environments

BT Technology Journal • Vol 22 No 3 • July 2004 97

2.2 Behavioural heterogeneity
Behavioural heterogeneity refers to the variety of
operational characteristics displayed by components.
These include differences in their task, scope,
autonomy, policies of interaction and the utilities
gained from interaction. Variance within the task and
scope of components means that we cannot optimise
them for a particular mode of operation.

Within global electronic environments, variance in
scope is often expressed through the context of
interaction within the operational environment. Devices
are beginning to exploit information about their physical
location, resources available, and the activity of the user
to enhance the user experience. The CoolTown project
which extends the Taligent framework [10] is an
example of this. Designed for use by mobile users,
CoolTown expresses components in terms of how their
role affects places, people, and things. However, this is
a static method, which does not provide mechanisms for
dynamically configuring or changing these properties.

The variance in policy is obvious — components
belonging to different principals are governed by the
differing policies expressing the concerns of their
owners. However, it is not feasible to predefine the sets
of all possible interactions, nor to rely fully on trusted
third parties to regulate interactions [11], complicating
the process of negotiation to achieve faithful
interaction.

Variance in utility arises because principals have
incomplete information about the beliefs, desires and
intentions of prospective trustees. This complicates the
assessment of threats posed by prospective trustees.
While differing levels of autonomy affects the
complexity of the computational models used to create
components, the predictability and control of the
components means that highly autonomous
components must be autonomic in their constitution
and behaviour.

Because components are capable of interacting
beyond their system boundaries, their behavioural
constraints affect the emergence of global ubiquity. To
facilitate transient association of components, while
maintaining a high-level of assurance, it is necessary to
provide for the identification and management of the
relevant behavioural constraints possessed by the
components.

2.3 Scale
The immense number of the devices that must interact
to provide the required ubiquity1 raises two issues:

• Invisibility

To realise the vision of invisibility, devices must
necessarily become smaller and more tightly
embedded in their environments. While current
trends continue to forecast ever-increasing capacity
in ever-shrinking devices, we can still safely assume
that size will limit capacity [9, 12]. Capacities such
as battery, computation power, memory, and
sensing capabilities limit the amount of useful work
that a device is able to perform locally, thereby
severely effecting the scope of security solutions
[13]. With respect to this, Estrin et al remark:
‘Fidelity and availability will come from the quantity
of partially redundant measurements and their
correlation, not the individual component’s quality
and precision’ [9].

• Management

The increase in the number and heterogeneity of
components in the environment leads to a dramatic
increase in the complexity of managing the
environment. Centralised methods do not scale well
and hinder the dynamism of systems, making them
unsuitable [3]. This problem is particularly acute
within the management of the authentication and
authorisation process.

2.4 Embodiment
The embodiment of components in their environment is
among the main requirements to achieve ubiquity.
Embodiment means that components are embedded in
their operational environment, therefore physical access
is limited. Issues such as the update of functionality or
management policies cannot be performed easily,
further highlighting the need for a degree of autonomic
and self-regulating capabilities.

The pressure towards critical mass has many drivers,
but problems in usability act as a brake. Dynamism in
the ubiquitous environment means flexibility and
convenience of usage and this should attract users.
However, dynamism and heterogeneity of environment
also means complexity and lack of predictability, which
creates uncertainty and, consequently, a pressure
against embracing the technology for fear of the
consequences of doing so. Empowering the user and
restoring at least a perception of control, while ensuring
that the system can actually function on a second-by-
second basis, is the key to acceptability. One of the
ways to approach this social challenge is to increase the
awareness of potential users. Every person deals with
uncertainty in everyday life; each real life situation or
event involves uncertainty up to some point and people
learn to live with this. In view of the real uncertainties
inherent in the ubiquitous computing environment, it
would be a mistake to attempt to misrepresent the

1 It is estimated that by the year 2009 there will be more than 3 billion
active-network-capable devices using the Internet to operate.

Co-operation in the digital age — engendering trust in electronic environments

BT Technology Journal • Vol 22 No 3 • July 200498

nature of the system as one in which certainty obtains.
Once some degree of uncertainty (and hence the
possibility of error) is deemed to be acceptable to end
users, it is possible to unconstrain the system, and to
make use of incomplete and possibly incorrect
information in making decisions about everything from
service discovery through to the establishment of trust.

The ubiquitous environment, with its heterogeneity
of devices and networks will inevitably lead to a non-
negligible set of interactions that are relatively complex
and not foreseeable a priori. This is analogous to real-
life interactions between people, in which many inter-
actions are among those we know well, but a significant
number are with those about whom we have little
information. In both cases it is not possible to predict all
future situations and therefore, uncertainty is inherent
in them. Before ubiquitous systems can become a
reality, it is absolutely necessary for users to accept and
even embrace uncertainty as a part of the decision-
making process. Note that this definition includes the
situation in which people trust the technology largely
because they are unaware of its existence (intentionally
so in invisible computing environments) — there is an
implicit agnosticism about its effects: ‘don’t know,
don’t care, will not ask too carefully’. Nevertheless this
all validates the need for autonomic management of
systems, to provide solutions that are more flexible,
robust and distributed [8].

3. Decentralised trust management
Trust management mechanisms address the above
issues by situating the decision-making process in the
local context of the interaction. Trust management is
aimed at addressing the notion of digital trust
holistically, while moving away from looking at the
security needs of specific programs and processes.

The term decentralised trust management was
coined by Blaze [14] to address the relationships
between security policies, security credentials and trust
relationships. This work led to the development of
PolicyMaker, the basis of which is a compliance
checking algorithm that uses a request, a policy, and a
set of credentials to try to find a proof that the given
credentials and request comply with the policy. A bit-
wise response (0 or 1) is returned depending on whether
the proof has been found or not. The main problem with
this approach is that it is very difficult to devise a fast
algorithm for finding proofs, as the underlying process is
NP-hard.

Other policy-management-oriented approaches
include Centaurus [15] and Vigil [16] developed by
Kagal et al. The aim of the above-mentioned systems is
to provide service-independent policy management in

heterogeneous environments. Centaurus is based
around a system of service managers, communications
managers, clients and services. Service managers
provide service discovery capabilities and act as proxies
between clients and services, enabling remote
execution of code for resourcing poor clients.
Communications managers implement various
communications protocols enabling services for
heterogeneous devices. At the heart of this architecture
are the security agents, responsible for authorising
access to services within the group. Security agents
carry all policy information regarding the groups they
represent and reason about the credentials of
prospective trustees. Centaurus ties all clients and
services to service managers that handle all security
information for them. Vigil extends the Centaurus
architecture by introducing certificate controllers and
role assignment managers.

The trust mechanism for Centaurus systems is based
around a Prolog compliance checker that attempts to
find a proof that a given assertion (a right for a
prospective trustee) is valid. The focus of this framework
is to realise a trust management system that reasons
about policy by allowing and regulating capabilities such
as delegation. However, it is unsuitable for the target
environment of this work for a number of reasons:

• the use of goal-oriented planners means that the
assessment of rights is computationally demanding
and complex,

• the number of components means that it is large,
and the reliance upon trusted security agents
means that the attack-resistance of the trust
mechanism is reduced to a single point of failure,
i.e. the compromise of the security agent
compromises the whole group,

• the system is moderately static and does not allow
for the negotiation, or the dynamic change, of
rights and roles.

The Simple Universal Logic-oriented Trust Analysis
Notation (SULTAN), developed by Grandison [2], is
intended to be a simple, comprehensive, framework to
analyse and manage trust relationships, and is designed
to underpin trust management. SULTAN uses a goal-
oriented planner to refine rules, which often requires a
network of policies (both authorisation and obligatory).
This computational complexity renders the approach
unscalable in complex situations, because the
refinement process can become extremely difficult, if
not intractable. Although a generic specification is
proposed for SULTAN, there is no efficient algorithm to
automatically perform trust management operations,
and additionally, although the notions were defined,
there is no direct (or indirect) built-in mechanism

Co-operation in the digital age — engendering trust in electronic environments

BT Technology Journal • Vol 22 No 3 • July 2004 99

supporting trust recommendation (referring) rules.
SULTAN, however, presents a more holistic approach to
trust management by introducing risk management as
part of the trust assessment process.

Distributed trust management systems face a
number of obstacles.

• Perception of the environment

Sensor-derived information is error prone and
imperfect. Translating it to knowledge and truth is
plagued with the problems of identifying the
context from which information is obtained,
important signalling features of the environment,
and false-positive reactions.

• Flow control

As the boundaries between systems become
blurred, individual components cannot easily be
segregated. Capacities such as mobile and
distributed code further complicate this problem;
therefore, information flow models, rather than
traditional control flow models, are more
applicable.

• System addressing

We are no longer able to address systems through
their component units but must address them in
terms of sub-systems that may be unbounded in
large open environments.

• Policy constraints

If these components span organisational as well as
physical boundaries (as is likely), a range of policy
constraints will govern their behaviour, introducing
further uncertainties and complicating the design
of the control mechanism. Therefore, a compro-
mise must be reached between the autonomy and
manageability of suitable architectures.

4. ADAM
We have developed the ADAM (Autonomic Distributed
Authorisation Middleware) architecture, aimed at the
automation of the trust establishment and maintenance
process. ADAM is based on forms of distributed
knowledge acquisition and management to deal with
the uncertainties introduced by the requirements of
information access in ubiquitous environments. It uses
self-organisation techniques to make the information
that principals receive more relevant to their
dispositions and to segregate malicious principals.
Moreover, the explicit declaration of context means that
decision taking can be situated close to interactions.

To date, many definitions of trust have been
proposed, and we will not present a new definition in
this work, but instead adapt an existing definition and
concentrate on the management of trust relationships.
The focus of this work is on building an efficient system
that controls the full life cycle of a trusting relationship
— starting from its establishment through to its
revocation. The proposed system incorporates reactive
elements that monitor the manipulation of network
resources and respond when malicious activity is
detected. However, these elements are beyond the
scope of this paper.

For our work, we adapt the definition of trust in a
way that treats it as ‘... a measure of willingness of a
responder to satisfy an inquiry of a requestor for an
action that may place all involved parties at risk of harm,
and is based on an assessment of the risks and
reputations associated with the parties involved in a
given transaction’. As this definition states, all parties
involved in interaction may be harmed by its
consequences. By providing access to its resources, a
principal may be explicitly harmed by the malicious
actions of trustees. Third parties involved with the
principal in existing trust relationships may implicitly be
compromised by the relationship. Trustees are at risk,
since obtaining incorrect or contradictory information
compromises the integrity of their knowledge base and
those of their trusting parties. These situations may
arise as the result of intentional malicious activity or
through legitimate error such as software bugs, network
failures, and user errors. Within ADAM, the potential
risk of undesirable outcomes are assessed by checking
the credentials of participants and the history of their
behaviour with respect to the value of the resource that
potential users request; only then is a decision made
about whether the risks likely to be posed through
interaction are acceptable.

In establishing trust relationships, the following
attributes are important — the participants, the scope
(spatial and temporal restrictions applied to a current
trust relationship) of the relation, the risk (as a degree of
potential damage) associated with the relation, and
security to describe the characteristics of trust. Each
access control relation expresses sets of principals that
use and provide resources in the environment, actions
that may be applied to the resources, and policies
governing the use of the resources.

ADAM is a multi-agent system that relies on
autonomous agents to carry out users’ requests on one
side, while protecting resources/services on the other.
Agents are policy-aware entities that use distributed
knowledge management to collect evidence on the
trustworthiness of prospective users and make decisions
regarding whether to co-operate. Trusting decisions

Co-operation in the digital age — engendering trust in electronic environments

BT Technology Journal • Vol 22 No 3 • July 2004100

within ADAM are not binary (only to co-operate or to
defect); for example, users may be offered more limited
access than requested if the amount of or strength of
the collected evidence about their trustworthiness is
insufficient for the requested action (according to the
local policy of the resource or service being requested).
If the importance of the transaction is high, users may
continue negotiating, providing additional information
about themselves until either the resource manager is
satisfied or the user deems the cost to be too high. All
decisions regarding interaction are made by the
ADAM’s trust engine and are based on collected
evidence about the trustworthiness of prospective
participants and the local policy of a resource or service.

Within ADAM, interaction starts with a request for a
service; requests are tuples, consisting of a resource,
the set of actions to be performed and the identity of
the user. In order to facilitate this, there must be a
service/resource discovery mechanism that allows
prospective trustees to look for services, view the
actions available and the credential requirements of the
services, and choose between them. ADAM does not
itself perform authentication, it only authorises. When a
user submits their request, an authorisation-agent is
launched by the resource to collect evidence about the
behavioural disposition of the identity presented. There
are three main sources of information from which
entities’ trustworthiness can be derived [17]. The first
source is from direct observations that are formed by
recording outcomes of previous interactions with an
entity. The second is the recommendations of trusted
entities that allow the propagation of trust. The third
source is in the reputation of an entity. Reputations are
knowledge about an entity’s behaviour derived from
their history of interactions. They may be derived from
the common knowledge of an organisation or a
community, or based on specific predefined knowledge
[18]. For our system, we use knowledge that is
accumulated over time in communities of practice to
assess reputations of network entities.

The process of interaction starts with the
authorisation procedure, during which resource agents
perform risk assessment and check whether the
potential risk posed by the interaction is acceptable in
terms of the local policy of the resource. The potential
damage to the user’s reputation and the potential for
identity loss or loss of associated values are assessed,
i.e. money may be charged if a credit card number is
provided.

Resource agents analyse the evidence presented
with respect to the potential damage the resource may
incur if the requested actions are granted. It may
therefore be the case that a user will be declined access

when using one of their electronic identities and granted
access when using another.

4.1 System architecture
In the previous section, we described the principles on
which our system is founded. Next, we discuss ADAM’s
conceptual architecture in more detail, giving practical
considerations about its implementation.

Authorisation decisions in ADAM are produced as
the result of negotiations between two agents — user
agents and authorisation agents. The former are
implemented as mobile agents. They are aware of local
policy on the user side and represent user interests in
the negotiations. The user agent contains information
about its legal user, their secret keys, and the
certificates required for the user authentication (it may
include some other information, such as credit card
numbers, user names and passwords for different
resources, etc). All information is encrypted and, to be
activated, a user agent requires a correct PIN or
password to be entered. A PIN constitutes part of a
decryption key for user agents, and can only be
activated by authorised people. It also denies access to
user agents when they are inactive or travelling. The
mobility of agents allows them to move across networks
or between devices. For, example, for the user’s
convenience, an agent may be resident in the user’s
PDA.

The user agents not only simplify users’ lives, they
make network management easier since they automate
certain tasks, such as password and certificate
management. For example, to reissue a user password,
the user agent is notified. After this, it moves to the
network server responsible for managing users’ profiles,
where the password is changed in a secure
environment, making it unnecessary to transmit
sensitive information over the network. This method
also has other benefits. Since the user does not need to
remember their password, it is possible to choose
strong passwords automatically without requiring any
extra activity from users.

Some information is stored in user agents for users’
comfort. It is necessary to remember only one PIN or
password. Once the user agent is activated it can
submit some user information on request, e.g. user
names and passwords for other resources, certificates.
However, clearly, some information, such as private
keys, should never leave user agents. There is still a
small probability that a malicious person manages to
obtain information from an agent. We consider this to
be rather smaller than the risk of finding out some or all
of the PINs used to activate an agent. In Veijelainen et al
[19], it was argued that, when correctly implemented,
this kind of user information storage does not bring new

Co-operation in the digital age — engendering trust in electronic environments

BT Technology Journal • Vol 22 No 3 • July 2004 101

security risks to those already present in computer
networks.

Authorisation agents are meant to protect network
resources by ensuring that only valid users obtain access
to them. Agents are aware of local policy on the
resource side and enforce policy rules and procedures.
Also, after the authorisation procedure, agents enforce
access control restrictions and monitor usage of
resources in support of reactive security.

Consider the negotiation process in detail. Figure 1
shows the main phases through which ADAM must go in
order to process each request. Initially, there are two
interested parties that are potentially willing to co-
operate — client and service. The former is looking for a
service or resource to use for their needs. The latter is
willing to provide this service. Firstly, the client needs to
locate an appropriate server. Secondly, in order to co-
operate, they must convince each other that they are
sufficiently trustworthy to perform this transaction.
These actions take place in a number of steps as
numbered in Fig 1 and described below.

Each user has to activate their user agent by giving
the correct PIN/password (1), as discussed above. A
secure channel is established between the user terminal
and the agent. If no agent with this user’s information is
found, a new agent is created and assigned the task of
carrying out user requests. After this, in order to find an
appropriate service, the client needs to perform service
discovery. During this procedure, information about
different services advertised in the network is gathered

(2). This information includes types and descriptions of
services and information that the client has to provide in
order to be able to use them. Depending on local
policies, different resources may have different
requirements. Thus, the user agent must select the
most suitable service that requires information the user
is happy to provide.

The client may need to evaluate the chosen service
(3) before using it. The evaluation is performed with the
help of local policy (4). Additionally, the client may wish
to check the quality of the service by collecting opinions
of other clients (5). When this is done, the client may
wish to continue, and makes a request (6, 7).

When the request is received on the service side, an
authorisation agent is created to handle it. This
performs risk assessment and checks whether the
potential risk is acceptable in terms of the local policy of
the resource (9). In doing this, it assesses the potential
damage to the user in terms of the harm it is possible to
do to the reputation associated with this identity,
including identity loss, or loss of associated values
(money may be charged if a credit card number is
provided). It then compares this to the potential
damage that could be sustained by the resource. It is
therefore possible that a user will be declined access
when using one of their electronic identities and granted
access when using another.

Depending on the circumstances, the authorisation
agent may request additional information to be
provided by the user (7). However, this may contradict

Fig 1 Authorisation process in ADAM.

client
service

discovery

service
evaluation

request
service

experience
evaluation

policy

network

policy

user
evaluation

AC
enforcement

experience
evaluation

fraud
detection and

response

audit

service

client side service side

1

4

3

6

17

2

5

7

18

10

12

16

9

11

15

8

13

14

user agent authorisation agent

Co-operation in the digital age — engendering trust in electronic environments

BT Technology Journal • Vol 22 No 3 • July 2004102

user policy. For example, the user policy may not allow
the release of some information from its local network.

When the client provides the information required
by the service, the authorisation agent must collect
evidence that the information provided is correct and
that the user who requests the service is indeed the
declared person (8).

At this point, the authorisation agent that processes
the request has obtained the information on which it will
base its authorisation decision. However, it does not yet
know whether this information is trustworthy nor
whether it has been sent by a legitimate source. The
agent does not perform authentication itself. Instead,
the authorisation agent delegates this task to third
parties that have had previous experience of
interactions with this user or different authorities (10).
This runs an automatic credentials discovery (ACD)
protocol, which forms the subject of a separate paper.
However, its basis is that there are different sources
available that can be used to verify the user identity,
provide information about a user’s reputation, and
verify information provided by a user. In pervasive
systems, these sources could be distributed over
numerous networks and, as a result, might not be
capable of working co-operatively. Consequently, the
authentication agent must collect their recom-
mendations and combine them to have a reasonable
basis for the access control decision it will take. For
example, the local profile management server may
verify a password’s hash sent along with the request; or
a request signed by a user’s private key may be verified
if one of the parties provides the corresponding public
key; or there are authorities who can verify credit card
numbers. We would like to note that local policies and
the availability of information dictate the number of
steps in this process and proof of identity required to
obtain access.

After a request for user credentials is made, the
authorisation agent must collect pieces of knowledge
about the user in a secure and private manner. This
information must be transformed from heterogeneous
opinions into homogeneous data that can be
automatically combined and thus allow a decision about
user reputation to be made (11). It is worth noting that
the result of negotiations between agents is not binary.
The negotiations themselves are regulated by a set of
fuzzy rules that are dynamically created and reflect local
policies. Thus, the authorisation agent may decide that
a user’s credentials are inadequate to authorise the
requested action, e.g. ‘read/write’, but are adequate to
allow another, say ‘read’. The client may accept or
decline the offer, or be willing to give some extra
information to obtain the desired service (for example,
some companies require a deposit or a card number if a

client does not have a credit history). After a user’s
credentials have been collected and evaluated, the
authorisation agent decides whether or not to perform
the action. If ‘yes’, the agent creates an association that
is given to the client (12). The agent enforces access
restrictions by controlling this association. Over the
lifespan of an association, authorisation agents perform
continuous auditing as a basis for the later
(re)assessment of the user’s reputation. Audit trails are
also used for reactive fraud detection and response (14).
Agents perform both misuse and anomaly detection and
notify interested parties about any problems. When the
action has been completed, the authorisation agent
classifies its experience as positive or negative (15) and
disseminates updates to user credentials (16). After
this, the agent is destroyed, invalidating the client’s
association. At the client, the user agent evaluates user
experience (17) and disseminates service credentials
when appropriate (18).

While we have no space here to explore this further,
it is unreasonable to assume that recommenders always
provide accurate testimonies; the system can be
subverted both maliciously and as a result of the use of
different knowledge management methods or policies.
Thus evaluations of testimonies (fraud detection) and
agents’ ratings are used to maintain overall system
integrity by favouring better recommenders.

4.2 Implementation
It is a requirement of any implementation of this
architecture that it be sufficiently flexible to support
heterogeneity of resources and transactions in the
environments in which it is going to operate.
Consequently, ADAM is being implemented as
distributed lightweight component-based middleware.
Figure 2 outlines its structure.

The system consists of independent components
that can easily be re-implemented and replaced.
Multiple instances of some components allow the
system’s behaviour to reflect underlying physical
heterogeneity (in Fig 2 there are five components
marked that are most likely to have multiple instances).
Although the detailed interfaces for each component
are outside the scope of this paper, the components
themselves can be described at a high level.

• Component manager

The component manager is the system core and
enables the remaining component instantiations to
communicate. Since it provides the essential
integration between all other components, it must
necessarily be lightweight and small. It is primarily
intended as a mechanism to allow components to
communicate, but it is also responsible for the

Co-operation in the digital age — engendering trust in electronic environments

BT Technology Journal • Vol 22 No 3 • July 2004 103

management of those components — for loading
and unloading components. At present, for ease of
design, XML is used for internal message descrip-
tion. It is expected that components will sometimes
be unavailable due to failures, breaks for updating,
connection loses, etc. Thus, we explicitly allow for
the possibility of asynchronous communications
between components and we further allow
components to be distributed for cases in which a
single node does not have the required power to
support the entire architecture, but where a small
collection of neighbouring nodes might.

• Communication manager

The communication manager is a component
responsible for support of method invocation and
messaging with outside parties, including
responsibility for interaction with name services and
for message routing, particularly in ad hoc
networking environments.

• Synchronisation manager

The synchronisation manager is responsible for
maintaining locally reliable time and date
information to ensure freshness of messages and
for audit purposes. It is not necessary to have the
absolute time; indeed, Lamport’s logical clocks
might provide sufficient information to allow for the
ordering of messages within sessions.

• Audit

The audit component is used for collection and
storage of information about transactions for
debugging, non-repudiation, and for fraud
detection purposes. This can log information using

different levels of verbosity, as determined by the
fraud detector or GUI and control components. The
audit component allocates and maintains the space
required to store the audit log file, including the
garbage collection of data as it is no longer needed.

• GUI and control

The GUI and control component is needed to
control the system, to permit the explicit change of
components and the system configuration, and for
debugging purposes. The GUI element allows for
visualisation of the operation of different
components.

• Service discovery

The service discovery component is responsible for
discovery and evaluation of networked services.
Users provide criteria for service evaluations and
searches. Multiple instances of this component may
implement different service discovery mechanisms.

• Agent manager

The agent manager maintains the agents created
to perform different tasks for ADAM. It is
responsible for space allocation, creation, deletion,
and migrations of agents. It maintains current
system state by continuously polling agents to
check whether they are alive. It is responsible for
maintenance of links to external agents in case
existing agents (not controlled by the system) need
to be connected to the system.

• Policy interpreter

The policy interpreter takes organisational/
environmental and user-specified policy and

Fig 2 ADAM component organisation.

GUI and
control

synchronisation
manager

auditor

fraud
detector

service
discovery

trust
engine

policy
interpreter

communication
manager

behaviour
manager

agent
manager

network

component
manager

Co-operation in the digital age — engendering trust in electronic environments

BT Technology Journal • Vol 22 No 3 • July 2004104

translates it into a universal underlying format.
During this procedure it must resolve conflicts
between policies and filter unnecessary policy rules.
The result of conversion is used by the behaviour
manager. The policy interpreter may interact with
GUI and control components to facilitate user-
defined policy specification.

• Trust engine

The trust engine provides the core mechanism for
trust-based decision making, along the lines
described in detail above.

• Behaviour manager

The behaviour manager uses encoded policy
provided by the policy interpreter and abstract code
from the trust engine to refine agents’ behaviour.
There might be more then one component
providing abstract code. This code specifies
behaviour of created agents. Thus, by registering
more than one instance of the component it is
possible to implement a variety of behaviours for
agents (e.g. data collection agents, intrusion
detection agents).

• Fraud detector

The fraud detector provides misuse (and possibly
anomaly) detection mechanism to detect abuse of
given privileges. Its multiple instances may
implement different fraud detection techniques.

5. Conclusions
This paper presents a conceptual description of the
distributed access control system (ADAM), which is
aimed at automation of a trust establishment process
by performing distributed knowledge acquisition and
management. The architecture is based upon two
groups of agents — mobile user agents protecting user
interests and authorisation agents protecting network
resources. The access control decisions are results of
negotiations between them. Local policies are
translated into sets of fuzzy rules and the negotiations
aimed at finding consensus between these sets.

The system allows automated trust establishment by
gathering information about network entities and, later,
maintenance of trust by constantly controlling
information flow and manipulations with network
resources. Several foundational aspects of ADAM make
it different from the other trust management systems:

• it is designed to work in a range of networks,
allowing automatic trust establishment and
maintenance between entities situated in different
network and administrative domains — this

provides additional flexibility and allows ADAM to
function in an ambient computing environment,

• it allows each user to have multiple electronic
identities — it only authorises, it does not
authenticate, the authentication task being
delegated to separate parties,

• ADAM authorises transactions (actions), based on
the history of the identity presented, with respect
to the risk these actions pose to the resource if
sanctioned, rather than the users.

Overall, the ADAM system facilitates automatic trust
establishment and maintenance independently of the
type and topology of underlying networks. This provides
considerable flexibility and allows ADAM to function in
pervasive environments.

References
1 Weiser M: ‘The computer for the twenty-first century’, Scientific

American, 256, No 3, pp 94—104 (1991).

2 Grandison T: ‘Trust specification and analysis for Internet
applications’, PhD Transfer Report, Imperial College of Science,
Technology and Medicine, Department of Computing (2001).

3 Grandison T: ‘Trust management for Internet applications’, PhD
theses, Imperial College of Science, Technology and Medicine,
Department of Computing (2003).

4 McKnight D H and Chervany N L: ‘The meanings of trust’,
University of Minnesota (1996).

5 Abdul-Rahman A and Hailes S: ‘Supporting trust in virtual
communities’, 33rd Hawaii International Conference on System
Sciences (2000).

6 Chopra K and Wallace W: ‘Trust in electronic environments’, 36th
Hawaii International Conference on System Sciences, pp 331—
340 (2003).

7 Marsh S: ‘Formalising trust as a computational concept’, PhD
Department of Computer Science and Mathematics, University of
Sterling (1994).

8 Seleznyov A and Hailes S: ‘A conceptual access control model
based on distributed knowledge management’, IEEE, 18th
International Conference on Advanced Information Networking
and Applications (2004).

9 Estrin D, Culler D, Pister K and Sukhatme G: ‘Connecting the
physical world with pervasive networks’, pp 59—69 (2002).

10 Kindberg T, Barton J, Morgan J, Becker G, Caswell D, Debaty P,
Gopal G, Frid M, Krishnan V, Morris M, Schettino J and Serra B:
‘People, places, things: Web Presence for the Real World’, in Proc
WMCSA2000 (2001).

11 Eustice K, Markstrum S, Ramakrishna V, Reiher P, Kleinrock L and
Popek G: ‘Enabling secure ubiquitous interactions’, 1st
International Workshop on Middleware for Pervasive ad hoc
Computing (2003).

12 Stajano F: ‘Security For Whom? The Shifting Security Assumptions
of Pervasive Computing’, Springer-Verlag, Proceedings of
International Security Symposium (2002).

13 Stajano F and Crowcroft J: ‘The butt of the iceberg: hidden
security problems of ubiquitous systems’, in Basten T, Geilen M
and deGroot H (Eds): ‘Ambient Intelligence: Impact on Embedded
System Design’, Kluwer Publishers (2003).

Co-operation in the digital age — engendering trust in electronic environments

BT Technology Journal • Vol 22 No 3 • July 2004 105

14 Blaze M, Feigenbaum J and Lacy J: ‘Decentralized trust
management’, IEEE Symposium on Security and Privacy (1996).

15 Kagal L, Korolev V, Chen H, Joshi A and Finin T: ‘Centaurus: a
framework for intelligent services in a mobile environment’, The
21st International Conference on Distributed Computing Systems
Workshops (ICDCSW ’01) (2001).

16 Kagal L, Undercoffer J, Perich F, Joshi A and Finin T: ‘A security
architecture based on trust management for pervasive computing
systems’, Grace Hopper Celebration of Women in Computing
(2002).

17 English C, Wagealla W, Nixon P, Terzis S, McGettrick A and
Lowe H: ‘Trusting collaboration in global computing’, The First
International Conference on Trust Management, Springer-Verlag,
Vol 2692, pp 136—149 (2003).

18 Mui L, Mohtashemi M and Halberstadt A: ‘A computational model
of trust and reputation’, 35th Hawaii International Conference on
System Sciences (2004).

19 Veijalainen J, Seleznyov A and Mazhelis O: ‘Security and privacy of
the PTP’, in Makki K, Pissinou N, Makki K and Park E (Eds): ‘Mobile
and wireless Internet: protocols, algorithms, and systems’, Kluwer
Publishers, pp 165—190 (2003).

Alexandr Seleznyov is a research fellow in
the Computer Science Department,
University College, London.

He received his 1st class MSc degree in
Computer Engineering in 1997 from
Kharkov State Technical University,
Ukraine, and PhD from the Department of
Computer Science and Information
Systems, University of Jyväskylä, Finland
in 2002.

His main research interests include
network security, distributed artificial

intelligence, multi-agent systems, mobile networks, sensor networks
and electronic transactions.

Stephen Hailes was an undergraduate at
Trinity College Cambridge and then a PhD
student in the Cambridge University
Computer Lab. Following this, he joined
the Department of Computer Science at
University College, London, as a Research
Fellow.

Shortly afterwards he was made a lecturer,
and then, in 2000, a senior lecturer. He
has been Director of Studies since January
2003.

He is interested in all aspects of mobile
systems and security. But most par-ticularly in ad hoc systems,
pervasive/ambient computing environments, and how to secure these
areas. He is currently the PI of the MARS project, which is a collab-
orative project in conjunction with BT looking at building middleware
components for trust management in pervasive environments, and the
CoI on SENIT, an EC Framework 6 Integrated Project looking at
securing ambient networks. His past projects include 6WINIT, an EC
Framework 5 project, EPSRC-funded projects (PIMMS, MOSQUITO,
and MEDAL), and UKERNA-funded projects such as ACOL and TITAN.

Mohamed Ahmed holds a BSc in Computer
Science and AI and an MSc in Robotics and
AI, both from the Department of
Computer Science, at the University of
Essex, UK.

He is currently pursuing a PhD at the
Department of Computer Science, UCL.
He works within the area of security in
ubiquitous networking environments.

His research focuses on adapting
traditional models of trust and assurance
to be more dynamic and adaptive in

prescribing rights to users and proactive in response to anomalies.

