

David Lewis UH Communications A/S

TMW November 2000

(c) UH Communications A/S

1

Overview

- Challenges of NGOSS
- Relevant Feature of XML
- Application of XML in NGOSS
 - Low cost, flexible user interaction
 - Managing technology specific contract specs
 - Integration with legacy OSS
 - Smooth evolution of contract designs

NGOSS Vision

- Management Systems assembled from **COTS Components**
- Components interact through well-defined **Contracts**
- Components are wholly in one of **3 computing tiers**:
 - Human Interaction Tier
 - Process Automation Tier
 - Enterprise Information Tier
- Generic Requirements for components, contracts and supporting DPE in ACT's GB909
 - Being refined into a useable framework by the NG OSS teams

Relevant NGOSS Requirements

- Contract specifications implementable in different technologies,
 - e.g. CORBA, CMIP, SNMP, HTTP
- Interoperation of legacy OSS with NGOSS
- Smooth deployment of new contract versions

eXtensible Mark-up Language (XML)

- Web-ready derivative of SGML publishing markup
- Applications require an **agreed schema**, user defined tags and structuring rules
- Communities actively standardizing application specific tags and information structures
 - Emerging as the lingua franca of e-commerce
- Management Standards emerging:
 - e.g. DMTF's WBEM, T1M1's tML

XML Features of Interest

- Proliferation of cheap tools for XML document validation, manipulation
 - standard APIs e.g. SAX and DOM
- Breadth of application leading to rapidly growing skills base
- Separates information structure and presentation
 - Document Type Definitions/Schema define XML document structure, content type and tags
 - XML Stylesheet Language Transformations (XSLT) provides an open way of transforming between XML Schemas

TMW November 2000

XML for NGOSS: Overview

- XML does **not** provide a DPE solution
- XML already used for Component Deployment Descriptors
 - EJB and CORBA Component Model descriptors
- XML provides flexible, low cost Infrastructure for HIT
 - Presentation Style Sheets
 - HTTP Transport
- XSL for production of **Technology Specific Contract Specs**
- XSL supports **Interoperability across Technologies**
- XML supports Release Independence

XML for Human Interaction Tier

- XML Stylesheets allow the same management information to be presented and manipulated by users in different ways
- XML/HTTP protocols allow WWW infrastructure to be exploited:
 - Several protocols exist SOAP, XML-RPC etc
 - Can use existing browsers and servers
 - Can use existing HTTP security mechanisms
- XML/HTTP protocol deficiencies:
 - Verbose encoding
 - Lack of common distributed services location, transaction etc
 - Difficulties with notifications from HTTP server

Technology Specialization from UML

- Technology Neutral UML to be used for NGOSS Contracts and Data Models
- Needs transforming to Technology Specific Models, e.g.GDMO, IDL, SMI
 - a bit of a black art optimum transforms are difficult
 - implemented as custom transformation tool

XML for Technology Specialization

- Working from XML version of UML models **opens up** specialization process
 - Use of XSL for defining transforms
 - Use of XSL transform tools
 - Can start with XMI
 - Can support multiple transforms for a specific technology

Interoperability across Technologies

- NGOSS implementations must interoperate with legacy OSS
- NGOSS should support **different technology bindings** for contract implementations, e.g. IIOP, DCOM, SOAP, CMIP, SNMP, WBEM
- Adapters therefore needed to interoperate between components with different contract technologies
- Potentially n² adapter types needed, plus optimizing variants

TMW November 2000

Individual Technology Adapters

XML-Based Adaptation

XML Based Technology Interoperability

- Define a **single XML profile** for each communication technology
- Adapters can be developed using **XSLT docs** and generic transform engines:
 - Can readily prototype new transforms may need custom implementations for speed/scalability
 - Can develop dynamically loadable adapters in NGOSS DPE

Interoperability across Contract Versions

- NGOSS must support contract release independence
 - deployment of new contract versions must not impact other interacting components
- XML based messages or RPC support this
 - New contract versions specified using new tags
 - XML parsers ignore unknown tags
 - Components can avoid supporting multiple contract versions simultaneously

TMW November 2000

Conclusions

- XML can compliment component technologies to support key NGOSS requirements
 - XML transport over HTTP provides flexible low cost HIT component solutions
 - XSL provides an open transform technique to support technological heterogeneity in NGOSS
 - XML based contract implementations will ease release independence

Further Information

- NGOSS Architecture: Technology Specific Group
- EU sponsored R&D: FORM Project – http://www.uhc.dk/form/index.htm
- **tML**: framework for XML schemas for management:
- **DMTF**: XML for management

– http://www.dmtf.org

TMW November 2000