
D9 – Final FORM Framework Page 1 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

FORM

IST-1999-10357

Engineering a Co-operative Inter-Enterprise Management Framework Supporting Dynamic
Federated Organisations Management

Document Number: IST-1999-10357/WIT/WP3/1019

Title of Deliverable: D9: Final FORM Framework

Deliverable Type: (P/R/L/I)* R

Nature of the Deliverable: (P/R/S/T/O)** P

Contractual Date of Delivery to the CEC: 31st January 2002

Actual Date of Delivery to the CEC: 31st January 2002

Workpackage responsible for the Deliverable: WP3

Editor: Eric Leray (WIT)

Contributor(s): Willie Donnelly(WIT), Dave Lewis (UCL), Birgitte Lønvig(LMD), Jens Dyhre
Mouritzsen (TDC), Vincent Wade(TCD)

Reviewer(s): Hervé Karp(ATOS), Niamh Quinn(Broadcom)

ABSTRACT

The FORM project has specified an open development framework for the development of such service
applications. The framework focuses on how to mediate between existing open frameworks, rather than being
highly prescriptive and thus avoids becoming just another framework competing for the attention of industry
stakeholders. The objective of this deliverable is to provide the reader with a detailed specification of the FORM
development framework. The final Open Development Framework (ODF) presented here is targeted at service
applications designers and developers in an open service market. It supports the concept of software component
reuse (based on the concept of building blocks) and focuses on supporting the design and development of such
reusable software components.

KEYWORDS

Open Development Framework, Logical Architecture, Methodology, Technology Selection, Reusable Elements,
Building Block, Inter-Enterprise Service Provider, Business Model, External Information Model

© 2000-2001 by the FORM Consortium.

See http://www.uhc.dk/form/index.htm for further details

* Type: P-Public, R-Restricted, L-Limited, I-Internal

** Nature: P-Prototype, R-Report, S-Specification, T-Tool, O-Other

D9 – Final FORM Framework Page 2 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

IST-1999-10357

FORM

Deliverable D9

Final FORM Framework

Editor : Eric Leray (WIT)

Status – Version : Final

Date : 30/01/2002

Distribution : Limited

Code : IST-1999-10357/WIT/WP3/1019

 Copyright by the FORM Consortium.

The FORM Consortium consists of:

Atos Origin Intégration (France) – Project Coordinator

Broadcom Eireann Research Ltd. (Ireland) Trinity College Dublin (Ireland)

DELTA Danish, Electronics, Light & Acoustics (Denmark) UH Communications A/S (Denmark)

Fraunhofer FOKUS (Germany) University College London (UK)

LM Ericsson A/S (Denmark) Waterford Institute of Technology (Ireland)

TDC Tele Danmark A/S (Denmark) KPN Research (The Netherlands)

D9 – Final FORM Framework Page 3 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

Table of Contents

EXECUTIVE SUMMARY .. 5

1 INTRODUCTION .. 6

1.1 Purpose 6

1.2 Scope 6

1.3 Document Reading Guidelines.. 6

2 THE FORM OPEN DEVELOPMENT FRAMEWORK.. 7

2.1 Genesis of an Open Development Framework... 7

2.2 ODF Aims 8

2.3 ODF Stakeholders .. 8

2.4 Overall Structure of ODF ... 9

2.5 Specialisation of ODF .. 11

3 OVERVIEW OF LOGICAL ARCHITECTURE ... 13

3.1 Architectural Principles .. 13

3.2 Overview of Architectural Model ... 16

3.2.1 Business Context Model .. 18

3.2.2 Domain Model .. 19

3.2.3 Contract Set Specification.. 20

3.2.4 External information Model... 20

3.2.5 Building Block Group.. 21

3.2.6 Management System Model... 22

3.3 Usage of Architectural Model ... 23

3.4 Relationship to Existing Architectures .. 27

3.4.1 OMG Model-Driven Architecture .. 27

3.4.2 TM Forum Telecoms Operations Map ... 28

3.4.3 TM Forum Generic Requirements for Telecommunications Management Building
Blocks 28

3.4.4 TM Forum’s New Generation Operating System Support... 29

3.4.5 Distributed Management Taskforce’s Common Information Model 30

3.4.6 Telecommunication Information Network Architecture.. 30

4 DEVELOPMENT METHODOLOGY .. 31

4.1 Overview 31

4.1.1 Objectives and Scope of Building Block Development Guideline....................................... 31

4.1.2 Objectives and Scope of Business Process Driven System Development Guideline 31

D9 – Final FORM Framework Page 4 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

4.1.3 Overview of Building Block Development Guideline... 32

4.1.4 Overview of Business Process Driven System Development Guideline 32

4.2 Relationship to Logical Architecture... 35

5 TECHNOLOGY SELECTION GUIDELINES.. 37

5.1 Introduction 37

5.2 Addressing the Functional Requirement Criterion... 37

5.3 Addressing the Non-Functional Requirement (NFR) Criterion .. 38

5.4 Addressing the Non Technology Feature-based Criterion.. 40

5.5 Summary 40

6 REUSABLE ELEMENTS .. 41

7 APPLICATION OF ODF – CASE STUDY .. 43

7.1 Application of Architectural Model: Case Study ... 43

8 DETAILED ARCHITECTURAL MODEL... 47

8.1 Structure of Business Context Model .. 47

8.1.1 Requirements Statements... 47

8.1.2 Business Role Model ... 47

8.1.3 Business Organisation Model... 47

8.1.4 Business Use Case Model .. 48

8.1.5 Business Process Model... 48

8.1.6 Business Reference Model... 49

8.2 Structure of Domain Model .. 49

8.3 Structure of External Information Model .. 51

8.4 Structure of Contract Set Specification Model... 52

8.5 Structure of Building Block Group Model .. 54

8.6 Structure for Management System Model ... 54

8.7 Business Rule Issues... 56

8.7.1.1 Workflow.. 56

8.7.1.2 Policy 57

9 FURTHER WORK... 62

10 CONCLUSIONS .. 63

11 REFERENCES... 64

12 ACRONYMS 66

13 GLOSSARY 68

D9 – Final FORM Framework Page 5 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

Executive Summary

The management of telecommunications services and networks has undergone a major paradigm shift
over the last number of years. The increased fragmentation of the telecommunications marketplace has
spawned multiple service providers and connectivity providers. Hence, the emphasis has shifted to
managing network and service QoS in line with service customers’ expectations (as defined in the
Service Level Agreement).

In such an environment, service delivery requires the integration of service components from
customer, network operator and value added service providers. However, from a software perspective
the framework must also reflect the relationship between the software system stakeholders such as
independent software developers, system integrators and standards. Present day application
development platforms are not sufficiently sophisticated to support the required capability. New
frameworks are required that incorporate requirements from multiple perspectives and reflect industry
best practice.

The FORM project has specified an open development framework for the development of such service
applications. The framework focuses on how to mediate between existing open frameworks, rather
than being highly prescriptive and thus avoids becoming just another framework competing for the
attention of industry stakeholders.

The objective of this deliverable is to provide the reader with a detailed specification of the FORM
development framework. The initial step in the approach to developing the framework was to identify
the key players involved in the delivery of such services. Through a process of requirements capture,
within the industry, the project specified the functionality and interdependencies between each of these
players. An initial framework was then developed which was designed to support the needs of the
various players. The framework thus adopts and reconciles concepts from different existing
frameworks in preference to defining new ones.

Key aspects of the framework were validated through the design and implementation of industry
compliant trial subsystems (fulfilment, assurance and billing). The evaluation of these trial systems
against a predefined set of evaluation criteria enabled the project to validate and enhance the
framework. In addition, the project validated the approach through reviews and feedback from
members of the business units within the partner organizations.

The final Open Development Framework (ODF) presented in this deliverable is targeted at service
applications designers and developers in an open service market. It supports the concept of software
component reuse (based on the concept of building blocks) and focuses on supporting the design and
development of reusable software components. The framework enhances the development lifecycle by
integrating four key viewpoints (logical and technological architecture, development methodology and
reusable elements).

D9 – Final FORM Framework Page 6 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

1 Introduction

1.1 Purpose

The purpose of this document is to provide a specification of the FORM Open Development
Framework. This framework supports system designers, implementers and integrators, as well as
service application developers’ needs. It mainly focuses on providing the means for reusable element
development, and also addresses the needs of the various players in the service provisioning and
development value chains.

1.2 Scope

This deliverable represents the final milestone in the development of the FORM Open Framework
within the project lifecycle and constitutes the basis for the elaboration of the ODF public positioning
document. It is a complete specification of the framework and its four key viewpoints (logical and
technological architecture, development methodology and reusable elements).

1.3 Document Reading Guidelines

This document starts by providing an overview of the ODF, describing genesis and aims of the
framework, then presenting the stakeholders, and the way they interact through value chains. It
presents the structure used to separate concerns within the ODF, introducing its four major portions:
The Logical Architecture, the Development Methodology, the Technology Selection Guidelines and
the Reusable Elements.

Section 3 provides details of the Logical Architecture, defining its architectural principles, the benefits
they impart to the ODF stakeholders and an overview of the architectural meta-model. It also provides
a description of how elements of the meta-model may be applied by users conducting specific
development roles within the stakeholders and describes the relationship between the Logical
Architecture and other related architectures.

Section 4 provides a brief overview of the Development Methodology portion of the ODF and its
relationship to the Logical Architecture. A full description of the Development Methodology is given
in FORM deliverable D12 [formD12].

Section 5 describes the Technology Selection Guidelines portion of the ODF. It should be read as set
of guidelines for a technology selection process in the FORM framework context.

Section 6 describes the Reusable Elements portion of the ODF, explaining the structure of these
elements as developed for the IES application domain addressed in FORM. A full specification of
some reusable elements developed in FORM is provided in FORM deliverable D11 [formD11].

Section 7 provides a description of how the ODF was applied in the FORM development trial,
illustrated with examples taken from the project’s development documentation.

Section 8 describes further details of the Logical Architecture, providing the detailed specification of
the meta-model as well as laying out requirements for future revision of this model.

Section 9 provides conclusion on the definition and application of the ODF and is followed by
references, acronyms and a glossary.

D9 – Final FORM Framework Page 7 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

2 The FORM Open Development Framework

2.1 Genesis of an Open Development Framework

Early open management architectures, such as the IETF's Internet Management and the ITU's
Telecommunication Management Network, did not address the modelling of software components,
and modelling was limited to the definition of managed objects in languages such as SMI [rfc2578]
and GDMO [x722] that were tailored to specific management protocols. One of the earliest attempts to
encourage open component-oriented software in the telecommunications domain was Bellcore's
OSCA/INA [osca]. This defined modelling concepts for separately deployable software components
and the distributed computing services they would require, such as object location, event management,
distributed transaction management, amongst others.

These concepts were taken further by the Telecommunication Information Networking Architecture
Consortium (TINA-C) which consisted of many of the world major telecommunications operators.
TINA took a modelling approach based on ISO's Open Distributed Processing (ODP) [x901]
architecture applied to both control and management software. This provided a more co-ordinated
approach to the software lifecycle, using separate models for enterprise (business) concerns,
information aspects of designs, the computation aspect which identified components and their
interfaces, engineering aspects related to the structure of the underlying distributed computing
environment and the technology concerns related to use of specific protocol bindings. When applied to
service control software, the modelling techniques used became more specialised, using formal
modelling techniques with the aim of supporting automated service creation [lucidi]. However, it is
pointed out [lodge] that many of these techniques rely on an existing, well defined and relatively
narrow functional frameworks within which such formal modelling techniques are cost effective. In
the management application domain, where the computing platform is necessarily more
heterogeneous, TINA-C modelling concepts were taken by various R&D projects [kande] [lewis99a]
and aligned with the emerging industry standard for the modelling of software systems, i.e. the Unified
Modelling Language. The EU funded project FlowThru highlighted the need for common modelling
and methodological guidance on the modelling of management components [lewis99b] as well as the
need to support multiple component integration technologies [wade].

In parallel, the TeleManagement Forum (TM Forum) has moved to a component-oriented approach to
management system development. This began with a set of requirements for generic
telecommunication management components that was based on the OSCA/INA work and
characterised such components as Building Blocks [gb909]. These requirements were later used to
inform the TM Forum's New Generation Operating System Support (NGOSS) initiative, which
attempted to promote a separation between technology specific and technology neutral architectural
concerns, while also supporting contemporary software integration techniques such as workflow,
message buses and multi-tiered architectures [tmf053].

The integration of separately-sourced software has often relied solely on the expression of well-
defined interfaces. However, such interface definitions often omit important contextual assumptions or
are optimised for implementation in a specific technology. This makes maintaining interoperability
between separately-sourced components increasingly expensive as system requirements, the
technology base and component capabilities evolve over time. At the same time, the
telecommunications management industry has moved from using just management specific protocols
(e.g. SNMP, CMIP, TL1) to encompassing more general distributed system platforms (e.g. CORBA,
DCOM) and web technologies (e.g. HTTP, XML). As a result, management system development must
address the need to interwork between different technologies and to integrate and maintain the models
in multiple formats, e.g. SMI, GDMO, IDL etc. The approach taken needs to exploit emerging
technologies for integrating separately-sourced software (e.g. EJB, CORBA Components, COM+) and
mechanisms for transforming between models (e.g. XML, XSLT [xslt]).

D9 – Final FORM Framework Page 8 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

2.2 ODF Aims

To help refine the overall goal of the ODF, a set of stakeholders has been defined which represent the
main organisation types involved in developing, deploying and maintaining management systems from
components and which therefore possess the requirements on any suitable framework. These
stakeholders are:

• Standards Bodies, which produce the industry agreements that underpin interoperability and
integration of separately sourced software components.

• Independent Software Vendors (ISVs), which produce and market software components.

• System Integrators, which produce management system constructed from separately sourced
software components, including ones that are developed internally.

• Service Providers, which possess the business requirements for management systems and operate
them.

Considering the needs of these stakeholders, the scope of the ODF is further refined by the following
aims:

1. Support common mechanisms for the communication of products (both spec-ware and software)
between these stakeholders

2. Ensure the processes for developing the products exchanged between stakeholders converge with
industry best practise such as model-based development and the use of UML.

3. Support the management of products, such as specifications and software, once they have been
made available by a stakeholder in order to facilitate their later reuse by others.

4. Encourage the separation of techniques for integrating between different technologies from those
techniques for integrating between different models. This is key to supporting late binding
between models and technologies.

The resulting ability to readily exchange models, related to software interoperability and integration,
in a non-proprietary form is regarded as key to enabling an open market in off the shelf components.

The ODF does not explicitly aim to support automatic model checking or code generation, but does
aim to exploit the current capabilities of widespread modelling tools, e.g. Rational Rose. Additionally,
it is not an aim to endorse any particular technology, though guidance is given in the issues related to
technology selection.

2.3 ODF Stakeholders

The ODF is characterised as addressing the needs of the system development value chain that exists in
the communication management software industry. The system development chain must address the
challenges of integrating separately-sourced software to satisfy rapidly changing management system
requirements. The software industry is moving towards the (re)use of component-oriented off-the-
shelf software and model-driven approaches to the software lifecycle. Applying this to the market for
communication management software requires architectural and modelling principles to be shared
between Standards Bodies, Independent Software Vendors (ISVs), System Integrators and system
customers, i.e. the Service Providers. Service Providers operate in service delivery value chains and
therefore have interoperability requirements between the systems of different Providers.

D9 – Final FORM Framework Page 9 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

Figure 2-1 depicts the major relationships between the stakeholders addressed by the ODF. ISVs
provide software components to System Integrators who in turn integrate components from several
sources into systems that are developed for Service Providers. These systems have to integrate with
the Service Provider’s existing systems as well as potentially interoperate with those of other Service
Providers in a service delivery chain. Standards Bodies play a role in providing industry agreements
on interoperable interface specifications between systems and components and on component
integration mechanisms. More detail of the interactions between stakeholders is given in section 3.3.

Independent
Software
Vendor

System
Integrator

Standards
Body

Service
Provider

Standards

Software
Components

Management
Systems

StandardsStandards

Figure 2-1: Stakeholder Model for FORM Open Development Framework

There may be occasions where organisations take on more than one role represented by these
stakeholders, e.g. a large service provider may produce standards for procurement purposes and may
have internal divisions producing management system or components. However, these stakeholders
provide a relatively simple, but comprehensive, model for the market interactions that the ODF must
address. The primary interactions addressed by the ODF are:

• The consumption of standard specifications by Service Providers for procurement, by System
Integrators and ISVs for software development and by other Standards Bodies.

• The consumption of software components from one or more ISVs, as well as those developed
internally, for management systems development by System Integrators.

� The procurement by a Service Provider from a System Integrator of a management system that
must integrate with management systems from other sources, already present in the Service
Provider’s OSS and those of other Service Providers.

The ODF takes a model-based approach to software development and places an emphasis on
developing a limited number of common models that can usefully be used and exchanged by the
ODF’s stakeholders. The use of model-based development aims to allow the exchange of models in
a commonly understandable way supporting the publication of models and thus supporting the
development of open models that are the result of industry agreement. This is seen as essential to
supporting a market in off-the-shelf software components, and the structure of the models is
designed to allow exchange of models at points in the software lifecycle most likely to encourage
such a market.

2.4 Overall Structure of ODF

As depicted in the Figure 2-2 the ODF is structured into four portions: a Logical Architecture, a
Development Methodology, a Technology Selection Guidelines and a Set of Reusable Elements. This
structure follows a pattern observable in other management related frameworks, e.g. ITU-T’s
Telecommunications Management Network architecture, the OMG’s Open Management Architecture
etc.

D9 – Final FORM Framework Page 10 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

Development
Methodology

Technology
Architecture

Logical
Architecture

Reusable
Elements

Figure 2-2: Structure of the Open Development Framework

The concerns addressed by the four portions of the Framework are:

• Logical Architecture: The Logical Architecture describes the structural concepts of the ODF
and their relationships. This is described in terms of a meta-model that is used to ensure
consistency of the models generated when applying the guidelines present in the rest of the
ODF. The core structural concept is the software Building Block (BB), which is an atomic
unit of software deployment and management. A BB implements a number of Contracts that
are the sole medium via which BBs interact with their environment. Management systems are
built primarily from assemblies of BBs. Systems can be modelled at a business level in terms
of Business Processes and Business Roles. Reference Points exist between Business Roles and
are realised through Contract implementations. To promote their reuse, contract may be
described in a technology neutral format which can be transformed to one or more technology
specific versions for implementation in BBs. Contract definitions also include specifications
of the information passed via the Contract by reference to an explicit information model.

• Development Methodology: The Development Methodology describes the processes and
notations needed to design Contracts, develop Building Blocks and assemble Management
Systems which conform to the ODF. The primary modelling notation used is UML, though
XML is used for packaging UML with other model formats in Contract and BB specifications.
The methodology integrates a number of existing modelling techniques such as use case
modelling, business process modelling and model-view-controller analysis modelling plus the
variety of other modelling approaches supported by UML. The Rational Unified Process
(RUP) is partially used as a template to integrate these techniques. The Methodology contains
two Guidelines, one for the development of Building Blocks and the other for the
development of business processes into management systems that are mostly assembled from
of Building Blocks.

• Technology Selection Guidelines: The Technology Selection Guidelines addresses the
different criteria at stake while selecting a technology or set of technologies to implement
Management System BBs. It diverges from the technology related portion of most other
frameworks in that it does not attempt to promote the use of a specific technology or
integration technique. Issues related to the selection criteria include functional and non-
functional requirements, as well as organizational context issues. Due to the nature and scope
of the project this section aims at raising awareness on the importance given to these criteria
but does not provide a catalog of patterns for implementing functional or non-functional
requirements.

• Reusable Elements: This portion of the ODF is the repository for reusable products that
result when the ODF is applied to a particular application domain, e.g. the IES Management
domain addressed in FORM. The principle types of reusable entities are: Business Role
definitions; Reference Point specifications; Contract specifications and their grouping into BB
Specifications and BB implementations. Other types of reusable elements, such as policy and
business process definitions are also being investigated.

D9 – Final FORM Framework Page 11 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

The Logical Architecture is outlined in Section 3 of this deliverable, with details of its Architectural
Model given in Section 8. An overview of the relationship with the Development Methodology is
given in section 4, but for detailed guidance on using the Development Methodology the reader is
referred to deliverable D12 [formD12]. Aspects of the Technology Selection Guidelines that have
been addressed in FORM are presented in section 5.

2.5 Specialisation of ODF

The ODF is intended to be generic and extensible. The ODF has a core generic part, which in FORM
is extended with others concerns related to the IES Management problem domain, to form the IES
Management Framework. This generic part consists of the Logical Architecture and the Development
Methodology. It is expected that other users of the ODF will extend the generic part to provide
development frameworks for other domains, e.g. optical network management or mobile service
management, and may reuse some of the parts specific to the IES Management Framework.

Generic Open Development
Framework

IES Management Framework
Extensions

Development
Methodology

Technology
Selection

Guidelines

Logical
Architecture

Reusable
Elements

Framework Specialisation

Development
Methodology

Technology
Selection

Guidelines

Logical
Architecture

Reusable
Elements

Development
Methodology

Technology
Selection

Guidelines

Logical
Architecture

Reusable
Elements

IES Management
Framework

Figure 2-3: Specialisation of the Open Development Framework

The IES Management Framework is characterised by the definition of a service provision chain
supporting the provision of an IES. This service provision chain requires different service providers to
collaborate through seamless service management in an environment where market structure, network
capabilities and customer requirements are changing rapidly. Enterprises must be able to create,
reconfigure and dissolve business collaborations at an accelerating pace. The IES scenario examined
in FORM addresses how an IES Provider may manage the dynamic relationships and the quality of
service of electronic business interactions between groups of enterprises, the Application Service
Providers (ASPs) they use and the Internet Service Providers (ISPs) providing communications
infrastructure.

D9 – Final FORM Framework Page 12 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

Figure 2-4 depicts the overall stakeholder model for the IES Management Framework. The system
development value chain represents the more generic set of stakeholders that drive the core set of
generic architectural concepts in the ODF. The architectural concepts of the ODF could be applied to
any service provision value chain where component-oriented management systems were required. The
service provision value chain represents the more specific IES related stakeholders used to exercise the
ODF in FORM.

IES Service
Provider

Internet
Service
Provider

Application
Service
Provider

Business
Customer

Independent
Software
Vendor

System
Integrator

Standard
Bodies

Service
Provider

Service Provision Value Chain:
IES Management Framework Specific

Stakeholders

System Development Value Chain:
Generic ODF Stakeholders

IES

IES

Application
Service

QoS IP
Service

QoS IP
Service

Standards

Software
Building
Blocks

Management
Systems

Role
Specialisation

StandardsStandards

Figure 2-4: Stakeholder Model for the IES Management Framework specialisation of the
Generic ODF

D9 – Final FORM Framework Page 13 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

3 Overview of Logical Architecture

This section describes the Logical Architecture of the FORM Open Development Framework, which
together with the Development Methodology makes up the core of the generic portion of the
Framework. The Logical Architecture consists of the following prescriptive aspects:

• A description of the architectural principles upon which the Logical Architecture is based,
together with the benefits these principles offer to the ODF stakeholders. This is presented in
section 3.1.

• A meta-model describing the main structural elements of the Logical Architecture and how
they relate to each other - this is referred to as the Architectural Model. An overview is
presented here in section 3.2 and presented in more detail in section 8.

The Logical Architecture also contains a descriptive element, addressed in section 3.3 which is
included to explain how the elements of the Architectural Model should be applied to the needs of the
ODF stakeholders. This is described by defining a set of Framework User Roles representing potential
users of the ODF, which are active within stakeholder organisations at different points in the lifecycle
of its main structural elements. This approach illuminates a key feature of a component-based
architecture, which is that it addresses a broad range of the software development lifecycle and
therefore brings together complex, interacting concerns that occur in the overall software lifecycle.

3.1 Architectural Principles

The Logical Architecture is structured around a set of architectural principles. These principles are
heavily influenced by the architectural principles defined for the Technology Neutral Architecture of
the TM Forum’s NGOSS initiative. However, in comparison to the NGOSS principles, the principles
described here place more emphasis on the development and exchange of models and less on the
software integration features required. The principles start with the concept of a Building Block, which
is used in FORM to represent a reusable software component.

P1: Management Systems are software systems that perform some tasks related to
communications or systems management in an operational environment. They are constructed
partially or fully from Building Blocks (BB).

Benefits:

• System Integrators are able to reuse the same BB in different Management Systems.

• System Integrators are able to potentially source BBs from multiple ISVs thus stimulating
competition in the BB market and reducing costs.

P2: Building Blocks are pieces of software that are atomic units of deployment (one can be
replaced in a running system without requiring other BBs to be replaced or modified).

Benefits:

• System Integrators may more smoothly upgrade individual pieces of software with less impact
on the overall system.

• Service Providers suffer less system downtime due to software upgrades.

P3: Building Blocks are atomic units of system management.

Benefits:

• System Integrators may define common system management interfaces at the granularity of a
BB, which in turn may stimulate the development of a market in system management
applications that can exploit such common system management interfaces.

D9 – Final FORM Framework Page 14 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

• Service Providers may gain more comprehensive system management capabilities, either
packaged with Management Systems bought from System Integrators, or, if common system
management interfaces are supported, through third party system management applications.

P4: Building Blocks may support multiple interface types termed Contracts.

Benefits:

• ISVs and System Integrators are both able to hide details of a BB’s internal design and to
changes to its implementation since only the Contracts are visible to BB users. This help
protects the ISVs intellectual property and helps in the management of software upgrades. For
System Integrators this hides details of BB implementation from reuser of BBs in a Systems
Integrator’s organisation.

• ISVs and System Integrators are both able to use multiple interface types to allow separate BB
user views to be given separate Contracts, which can then have different access rights. This
supports courser BB granularity.

P5: A Contract may support multiple business operations.

Benefits:

• Standards Bodies, ISVs and System Integrators are all able to group related functions into a
unit of specification and documentation release.

P6: The Logical Architecture does not prescribe the technology to be used in implementing
Building Blocks or their Contracts.

Benefits:

• ISVs are not constrained in the technology they use to implement BBs and can better match
this to changing market demands.

• Similar constraints are also avoided by System Integrators, which as a result can better match
this to the changing needs of Service Providers.

• System Integrators are able to encompass multiple technologies in a single system, but in turn
face the problem of needing to address interworking between different Contract technologies.
This, however, is seen as an inevitable aspect of Management System development.

P7: Contracts may be defined in a technology neutral form or a technology specific form.

Benefits:

• Standards Bodies can mediate industry agreements on Contract in a technology neutral form
without necessarily excluding specific target technologies, thus potentially making the
specification more long-live in the face of rapid technology churn.

• ISVs can use the technology neutral form to support the same Contract specification for
customers across a range of technologies and over changes in popular technologies.

• Similarly, System Integrators can use the technology neutral form to support the same
Contract specification for reuse within its organisation.

• System Integrators are able to compare Contract specification presented in the technology
neutral form without being forced into an early, potentially excluding, technology decision
and with the knowledge that any implementations obtained may offer stable functionality over
technology changes.

P8: A BB implements a Contract in a technology specific form. When mapped from a Contract
specification in a technology neutral form, this must be performed using an explicitly described
transform.

Benefits:

D9 – Final FORM Framework Page 15 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

• ISVs may use the explicit transform between the technology neutral and technology specific
forms to allow different technologies (or even different profiles of the same technology) to be
used to implement the same Contract to match market requirements.

• Similarly, System Integrators may use such explicit transforms to implement the same
Contract to match the different integration technology requirements of different systems.

• System Integrators may use knowledge of the technology transforms used to implement
different Contracts in managing the separation of technology interworking from model
interworking in any integration solutions used.

• Standards Bodies may specify Contracts that may remain stable over changes in interaction
technologies.

• Standards Bodies may be able to mediate agreements on sets of transforms from Contracts
specified in a technology neutral form to ones in a range of technology specific forms

P9: Different Contracts may support different interface definition paradigms, though one
Contract specification can only support one such paradigm. Interface definition paradigms
include, but are not limited to, model-centric, operation-centric and message-centric. Different
paradigms are typically suited to specific ranges of technologies.

Benefits:

• Standards Bodies, ISVs and System Integrators are all able to design Contracts that take
advantage of the features of a specific interface definition paradigm while still being
independent of individual interaction technologies that implement that paradigm. This may
help tailor and therefore target a Contract specification at particular range of integration
techniques required by various market sectors and, in the System Integrators case, by specific
target systems.

P10: The definition of the information that is passed via a Contract should be published
separately to the Contract specification.

Benefits:

• Standards Bodies are able to encourage commonality in Contract specifications by both using
and publishing industry agreements on information that may be passed via a Contract.

• ISVs and System Integrators are both able to encourage better interworking between the BBs
it produces by separately publishing and reusing the information passed over Contracts it
designs.

• ISVs and System Integrators are both able to encourage better interworking between the BBs
it produces and BB from other sources, by reusing information definitions published by other
BB developers or, in particular, by Standards Bodies.

• System Integrators may be able to make quicker, more accurate selections of third party
Contract implementations by comparing their separately published information content to
information flow requirements identified in systems analyses.

P11: Functionally related Building Blocks can be grouped together for the purpose of software
release.

Benefits:

• ISVs gain a level of release that retains the benefit of individual BBs as units of deployment,
but which is better matched to the needs of sales and marketing, where a coarser level of
functionality than that represented by a BB may be required.

P12: Building Blocks must be released with documentation describing: the related business
context in which the BB is intended to operate and the analysis of this context that led to the
identification of the BB and the design of the Contracts it uses.

D9 – Final FORM Framework Page 16 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

Benefits:

• System Integrators are able to select a BB against a systems business requirements and
systems analysis.

P13: The behaviour of a Contract and interactions with the behaviour of other Contracts on the
same BB may be modified at deployment- or run-time. Where this feature is offered it should
use explicitly defined business-rules.

Benefits:

• ISVs may build user-controlled flexibility into a BB, thus enabling them to address a wider
range of customer needs.

• System Integrators may build more flexible behaviour into a BB, thus increasing the
opportunity to reuse the same BB implementation in a number of different systems

• System Integrators are more easily able to reconfigure the system they produce to meet
changing requirements.

• Service Providers are able to perform some reconfiguration of running systems to meet
changing operational requirements.

These broad principles have been used to guide the structuring of the Architectural Model described in
the next section.

3.2 Overview of Architectural Model

The Architectural Model is a meta-model defining the structure of and relationships between the
different types of models produced and used during the application of the ODF. The main elements of
the meta-model describe models at the granularity in which they might typically be generated and
exchanged by the ODF stakeholders. These models are:

� Business Context Model: This captures the requirements for an area of concern, models its
organisational environment and defines a business-level model of its externally observable
functionality and internal business processes.

� Domain Model: This analyses an area of concern, defining a system analysis level model of its
externally observable functionality, process behaviour and logical decomposition

� Contract Set Specification: This is a set of interface specifications that may be utilised in
designing BB software. It provides the primary means of interoperability in the Architectural
Model by detailing sets of interfaces that can be used for interacting with BBs.

� External Information Model: This is a technology neutral expression of the information that is
potentially passed via a range of Contracts. This provides an important aid to ensuring
interoperability between Contracts defined in different technologies

� Building Block Group: This is a set of Building Block implementations and its accompanying
documentation.

� Management System Model: This is the description of a Management System's design, some
portion of which uses Building Blocks.

D9 – Final FORM Framework Page 17 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

Though these models are described separately, the building of reusable software and the management
systems that use them relies on managing the links between elements of these models. For instance a
Management System Model will refer to elements of one or more Building Block Group models,
which in turn will reference one or more Contract Set Specifications. The structure of the above
models and the possible links between elements in the different models are captured as a set of linked
meta-models. Elements of this meta-model are the basis for the modelling artefacts defined in the
Development Methodology portion of the ODF.

Figure 3-1 gives an overview of the meta-model relationships between the primary parts of the
Architectural Model, shown as a UML class diagram in order to show the associations and
cardinalities between the parts of the meta-model.

External
Information

ModelDomain
Model

Contract
Set

Specification

Building
Block
Group

Management
System
Model

Includes information
objects from

Provides
requirements analysis

model for

Exports
information objects
to

Uses BB
implementations
from

Implements
Contracts from

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

Provides
requirements analysis

model for

Provides
requirements analysis

model for

Business
Context
Model

Reuses
elements

from

0..*

Provides
business

analysis for

Figure 3-1: Relationships between primary models in the Logical Architecture

The following subsections provide an overview of the reasons why the individual models are included
in the architectural model, their structure and their relationships. Section 3.3 provides a description of
how these models address the needs of the ODF stakeholders, while section 8 provides more details of
the prescriptive aspects of the meta-model.

D9 – Final FORM Framework Page 18 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

3.2.1 Business Context Model

The Business Context Model (BCM) captures the requirements upon a domain of interest and models
aspects of the business environment in which that domain exists. The domain for which a BCM is
generated may be of interest for developing a Management System, developing some Building Blocks,
specifying some Contracts or a combination of these. Alternatively, if the domain is broad, a BCM can
be generated for the purpose of identifying sub-domains that are then subject to more detailed
requirements capture in one or more further BCMs. The BCM is included in the architectural model to
facilitate a common understanding and comparison of the requirements and business environment for
products produced by separate organisations.

The structure of the BCM is depicted in Figure 3-2 as a UML component diagram.

Business Context Model

Requirements
Statements

Business Use
Case Model

Business
Process Model

Business
Reference
Model

Business Role
Model

Business
Organisation
Model

Figure 3-2: Structure of Business Context Model

The constituent models of the BCM are:

� Requirements Statements: a categorised collection of the requirements imposed on the domain of
interest.

� Business Role Model: a model of Business Roles representing the different types of organisations
present in the domain of interest and its business environment, and Reference Points representing
the sets of interactions that may operate between pairs of Business Roles. The Business Role and
Reference Points reference any Requirements Statements which contribute to their identification.

� Business Organisation Model: a model of a general business scenario that captures the typical
organisations and users that characterise the domain of interest and its environment. Organisations
in this model enact one or more Business Roles from the Business Role Model. The Model
references any Requirements Statements from which the assumptions underlying the scenario are
derived.

D9 – Final FORM Framework Page 19 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

� Business Use Case Model: an expression of the functionality observed of the domain of interest by
a set of Business Actors, which may include organisations and users from the Business
Organisation Model that are external to the domain of interest. The Use Cases reference any
Requirements Statements that they address.

� Business Process Model: an expression of the Business Processes that may operate in the domain
of interest. Business Processes reference any Use Cases or Requirements Statements from which
they are derived.

� Business Reference Model: a mapping between organisations in the Business Organisation Model
and the Business Processes operated by those organisations.

3.2.2 Domain Model

The Domain Model (DM) expresses an analysis of the requirements and business environment
captured in a single BCM. It therefore provides a more detailed, system-level expression of the
environment with which a domain of interest must interact, the functionality it must exhibit to that
environment and a breakdown of the logical structure within the domain. A DM provides a
requirements analysis for one Contract Set Specification, one Building Block Group, one Management
System, or a combination of these. The DM is included in the Architectural Model to provide a
common mechanism for tracing between specific elements of a Contract Set Specification, a Building
Block Group or a Management System Model and the Business Context Model from which they are
derived.

The structure of the Domain Model and its relationship to the Business Context Model is depicted in
Figure 3-3.

Domain ModelBusiness Context
Model

Business Use
Case Model

Business
Process Model

Domain
Analysis Model

Domain
Process Model

Domain Use
Case Model

Figure 3-3: Structure of Domain Model

The Domain Model consists of a Domain Use Case Model, a Domain Process Model and a Domain
Analysis Model. The Domain Use Case model describes the functionality of the domain as seen by a
set of Domain Actors which represent the system-level entities (both human and automated) with
which the domain must interact. The Domain use cases refer to Business Use Cases from which they
are derived. The Domain Process Model is a refinement of the Business Process Model that reflects
the system level concerns of the Domain Use Case Model. The Domain Analysis Model is derived
from the Domain Use Case Model and the Domain Process Model. It uses the model-view-controller
design pattern to provide static and dynamic models of the domain’s logical structure.

D9 – Final FORM Framework Page 20 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

3.2.3 Contract Set Specification

The Contract Set Specification (CSS) expresses one or more related interface specifications, termed
Contract Specifications that may be used in the implementation of Contracts for Building Blocks. The
CSS is included in the Architectural Model to allow Contract Specifications to be generated and
published separately to the development of Building Blocks. This encourages the reuse of individual
Contract Specifications across separately developed Building Block implementations, thus promoting
the quality of interface specifications, agreements on common Contract Specifications and ease of
Contract interoperability.

The structure of a CSS model and its relationship to other models is show in Figure 3-4.

Domain Model
Contract Set
Specification

Contract
Specification

External
Information
Model

Domain
Analysis Model

Domain
Process Model

Domain Use
Case Model

Contract Set
Information
Model

Figure 3-4: Structure and relationships of Contract Set Specification model

A CS contains a number of Contract Specifications and a Contract Set Information Model (CSIM).
The Contract Specifications are derived from the elements of the Domain Model. The Contract Set
Information Model is the aggregation of the models of information passed via the individual Contract
Specifications. The CSIM may reference information objects in an External Information Model and
information elements of the relevant Domain Analysis Model.

3.2.4 External information Model

The External Information Model (EIM) expresses information that may be passed via Contracts, but
documented in a manner that is separate from the relevant Contract Specifications. The EIM is
included in the Architectural Model to encourage the reuse of the information specifications it contains
across separate Contract designs. This is performed by the extraction of the information content of
Contract Specifications, in a simple common format and the progressive use of this information in
consolidation exercises by individual organisations to generate EIMs. As EIMs stabilise, the
information content of individual Contract Specifications should increasingly consist of references to
EIM elements. EIMs support the following:

• The comparison of EIM elements with information requirements generated, for example, from
business process information flows, allows early identification of Contract Specifications as
possible candidates for addressing control flow requirements. This is part of the selection
process for Building Blocks (or Contract Specifications) and must be coupled with analysis of
the Contract’s BCM.

D9 – Final FORM Framework Page 21 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

• Contract Specification standardisation and BB releases by different organisations may
establish a growing, easily accessible body of accompanying EIMs, which in turn removes
barriers to the reuse of existing information models in the development of new Contracts.

• The risks of developing adaptation functions between different Contract Specifications may be
more easily assessed though identification of common EIM references, comparison of
Contract Set Information Models and knowledge of the number of other Contract
Specifications referencing an EIM element.

The introduction of the EIM therefore potentially improves the similarity between the models of
information used in separately developed Contracts and thus eases any transformation required for
future interoperability. Additionally, EIMs may be used to locate Contract Specifications relevant to a
particular problem domain by comparison to the domain’s information requirements presented in the
relevant BCM and DM.

The information objects in the EIM may be exported from specific Contract Sets and may be
referenced by other Contract Sets.

3.2.5 Building Block Group

The Building Block Group (BBG) expresses for each of one or more Building Blocks; the Contracts
supported by the BB, other Contracts upon which the BB relies, the externally visible behaviour of the
BB and the means for expressing runtime changes to the this behaviour. It also includes the deployable
software for each BB. The BBG is included in the Architectural Model to provide a means for
conveying the usage of the constituent BBs for the purposes of reusing them in developing a
Management System. The BBG is used for this, rather than individual BBs, in order to support the
needs of packaging software for sale between ISVs and System Integrators. The BBG also supports
better the situations where there are functional dependencies between BB that must be maintained.

The structure of a Building Block Group model and its relationship to other models is show in Figure
3-5.

Domain Model

Building Block Group

Building Block
Descriptor

Domain
Analysis Model

Domain
Process Model

Domain Use
Case Model

Contract
Specification

Contract Set
Specification

Contract
Specification

Building Block
Software

Behaviour
Configuration
Vocabulary

Figure 3-5: Structure and Relationships of Building Block Group model

D9 – Final FORM Framework Page 22 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

Within a BBG, each BB is represented by a Building Block Descriptor. The Building Block Descriptor
provides information needed to deploy the BB such as platform dependencies and run-time behaviour
modification capabilities. It references the actual BB software and the Contract Specifications that the
BB supports, which in turn may reference a Contract Specification from a CSS. The Descriptor may
also reference other CSSs for Contract Specifications that are used by the BB. The Building Block
Descriptor also references the Behaviour Configuration Vocabulary, which is a set of interpretable
language elements that can be passed to the BB at runtime in order to modify its externally visible
behaviour. The Building Block Descriptor, therefore, captures the aspects of the BB design that are
visible to its users, and as such also references elements of the relevant Domain Model that drives that
design.

3.2.6 Management System Model

The Management System Model (MSM) expresses the design and implementation of a software
system performing some operational support activities. A MSM is the result of a single development
project by a System Integrator. An OSS, therefore, typically consists of several Management Systems
developed at different times. The MSM is included in the Architectural Model in order to model the
use of BBs in different application domains and to assist in the design and implementation of non-BB
software needed to satisfy the domain’s requirements.

The structure of the MSM and its relationship to other models in Figure 3-6.

Domain Model Management
System Model

Building Block

Domain
Analysis Model

Domain
Process Model

Domain Use
Case Model

Subsystem

Building Block
Group

Building Block
Descriptor

Business
Rules

System
Interface
Specification

Contract Set
Specification

Contract
Specification

Behaviour
Configuration
Vocabulary

Figure 3-6: Structure and relationships for the Management System Model

D9 – Final FORM Framework Page 23 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

The overall structure of the MSM is derived from a single DM. Its constituent BBs come from BBGs
that are referenced by the MSM. The behaviour of Building Blocks, in a particular Management
System deployment, is defined by the Business Rules expressed in the MSM. These Business Rules
use language elements from Behaviour Configuration Vocabularies in relevant BBGs. The MSM also
supports Subsystems, which are software elements not composed of BBs, i.e. where suitable BBs are
not available or not viable to develop for the required functionality. Subsystems may support and use
existing contract Specifications, even though lack of other features, e.g.: distribution or management
unity, preclude them from being characterised as a BB. The MSM must also have a complete set of
System Interface Specifications that define the interfaces via which the System interacts with its
environment, which may include legacy systems and other Service Providers’ systems. Some System
Interface Specifications may be mapped to existing CSSs, either ones implemented by BBs in the
System or ones representing existing or future BBs which form part of the System’s environment.

3.3 Usage of Architectural Model

To support the description of how the Architectural Model delivers the anticipated benefits to the ODF
stakeholder, this section defines a set of Framework User Roles and describes how they use and
exchange the main elements of the Model defined in the previous sections.. As with any component-
based architecture, e.g. J2EE, the FORM architecture addresses concerns over a broad range of the
general software lifecycle. Therefore parts of the Architectural Model that are relevant in one phase of
the lifecycle, e.g. requirements analysis, are not directly visible at another stage, e.g. software
deployment. Therefore these User Roles are introduced to allow readers of this document to
understand the relevance of the various parts of the Architectural Model to their particular sphere of
interest.

The Framework User Roles are:

� Requirements Analyst: Collects business requirements from requirements holders and analyses
them to produce Business Context Models.

� Domain Analyst: Produces Domain Models addressing a scoped domain of management
functionality.

� Contract Designer: Produces Contract Specifications and External Information Models.

� Building Block Developer: Produces software Building Blocks.

� System Builder: Produces and deploys Management Systems and their associated models.

� System Administrator: Monitors and manages a Management System in order to ensure it
operates within required operational parameters.

This section defines elements of the Architectural Model in which each of these Roles has an interest
and how these elements are used in interactions between these Roles. It is important to note, however,
that these are abstract User Roles introduced here purely to aid in understanding the lifecycle of
concepts in the Architectural Model. Real-life developers may therefore take on several of these
abstract Roles. The ODF Development Methodology’s guidelines are based on the needs of such real-
life developers.

To fully understand the relationship between the User Roles and the elements of the Architectural
Model, a clear picture is needed of the relationships between the ODF stakeholders on behalf of which
the User Roles are conducted. Figure 3-7 provides a UML class diagram representing these
relationships.

D9 – Final FORM Framework Page 24 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

Reuse of
BBGs by Service

Provider
System

Integrator

Standards Body0..*

0..*

Independent
Software
Vendor

Reuse of
BCMs, CSSs
and EIMs by

0..*

0..*

0..*0..*0..*

0..*

0..*

0..*0..*
0..*

Reuse of
BCMs, CSSs

and EIMs

Reuse of
BCMs, CSSs
and EIMs by

Supply of
Management

Systems

Supply of BCM
and System
interfaces

BCM = Business Context Model
CSS =Contract Set Specification
EIM = External Information Model
BBG = Building Block Group

Reuse of
BCMs, CSSs
and EIMs by

0..*

0..*

0..*

0..*
Supply of BCM

and System
interfaces

Figure 3-7: Model of relationships between ODF stakeholders

Over time, Service Providers will be supplied with Management Systems from a number of different
System Integrators, as value for money and a specific range of capabilities are sought. Service
Providers will need to provide Business Requirements (in the form of a BCM) and any specific
System Interface Specifications to the relevant System Integrator in order to do this. The Service
Provider may also opt to express its business requirements in terms derived from BCMs available
from Standards Bodies in order to improve the understanding of the requirements and to facilitate
matches to existing solutions derived from the same BCMs. System Interface Specifications may also
be taken from ones available from Standards Bodies, which may be expressed as Contracts or with
reference to EIMs, in order to improve the stability of the System within a changing OSS environment.
A Service Provider will need to exchange Business requirements and System Interface Specifications
with other Service Providers when assembling the requirements for a Management System that
interacts with those of other Service Providers.

System Integrators will aim to provide Management Systems to a number of Service Providers in
order to maximise sales. In doing so they will make use of BBs obtained from a number of ISVs, in
order to obtain the required functionality at optimal price and quality. System Integrators may attempt
to align requirements supplied from Service Providers procuring Management Systems with BCMs
made available by Standards Bodies. This assists in aligning possible design solutions with
corresponding Contract Specifications and EIMs from Standards Bodies and thus increases the
chances of finding a match with BBs from ISVs that implement those standards.

ISVs will aim to provide BBGs to as wide a range of System Integrators as possible in order to
maximise sales. ISVs may also attempt to make use of BCMs made available by Standards Bodies in
the development of new BBGs in order that they provide good matches to standardised Contracts and
EIMs and thus encourage their reuse.

Standards Bodies may use more general BCMs from other Standards Bodies to provide grounding for
a more focussed standardisation effort. Equally, Standards Bodies may wish to use elements of
Contract specifications and EIMs from other Standards Bodies, where appropriate to their domain of
interest, in order to prevent proliferation of unnecessarily dissimilar models, and thus encouraging
take-up of the models that are standardised.

D9 – Final FORM Framework Page 25 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

The motivation for this is described in more detail in the following paragraphs by detailing how the
User Roles active within each stakeholder generate, use and exchange the main elements of the
Architectural Model. Each of the User Roles is played out by personnel in one or more of the ODF
stakeholders. By having the same User Roles operating in more than one stakeholder, the commonality
in the information passed between the stakeholders is more easily analysed and identified. Figure 3-8
depicts how the main elements of the Architectural Model are generated by the different User Roles
working in the various stakeholders. The figure also shows how those User Roles may use Model
elements generated by other User Roles (though the use of models referenced from other models is
omitted for clarity).

Service
Provider

Requirements
Analyst

System
Administrator

Standards Body

Domain
Analyst

Contract
Designer

Requirements
Analyst

ISV

Domain
Analyst

Contract
Designer

BB
Developer

Requirements
Analyst

System Integrator

Domain
Analyst

Contract
Designer

BB
Developer

System
Builder

Requirements
Analyst

BCM DM CSS

EIM

MSM

BBG

BCM
BCM BCM

DM
DM

CSS

CSS

EIM

EIM

BBG

BCM = Business Context Model
DM = Domain Model
CSS = Contract Set Specification
EIM = External Information Model
BBG = Building Block Group
MSM = Management System Model

Figure 3-8: Exchange of main Architectural Model elements between User Roles

Within the Standards Body stakeholder the User Roles may make the following use of the main
Architectural Model elements:

� The Requirements Analyst may use Business Context Models (BCM) from one or more other
Standards Bodies when developing its own BCMs, in order to improve consistency between
standards.

D9 – Final FORM Framework Page 26 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

� The Domain Analyst Role uses a BCM generated by the Standards Body's Requirements Analyst
in developing a Domain Model (DM) for a particular area where open interfaces are to be
developed in the form of a Contract Set (CS).

� The Contract Designer uses a DM generated by the Standard Body's Domain Analyst in order to
guide the design of a standardised Contract Set. It may use the traces available within the Domain
Model to reference relevant parts of the BCM, where this may be needed to resolve design issues.
The Contract Designer may reuse elements of Contract Sets and may reuse information elements
from External Information Models (EIMs), where these are made available from its own or other
Standards Bodies. Information elements developed for the new Contract Set may be published as
part of an EIM.

Within the ISV stakeholder the User Roles may make the following use of the main Architectural
Model elements:

� The Requirements Analyst may use BCMs from one or more Standards Bodies in developing its
own BCM for a planned Building Block Group (BBG) in order exploit existing well-understood
business model elements, which will aid in the later promotion of the BBG. The Requirements
Analyst may maintain an overall BCM, from which BCMs for separate BBGs are derived, in order
to maintain consistency of requirements across its product range.

� The Domain Analyst Role uses a BCM generated by the ISV's Requirements Analyst in
developing a DM for a particular BBG.

� The Contract Designer uses a DM generated by the ISV's Domain Analyst in order to guide the
design of a Contract Set Specification (CSS) for use in development of a BBG. It may use the
traces available within the Domain Model to reference relevant parts of the BCM where this may
be needed to resolve design issues. The Contract Designer may reuse elements of CSSs and may
reuse information elements from EIMs, where these are made available from Standards Bodies or
internally from previous Contract design work. Information elements developed for the new CSS
may be published as part of an EIM to be used in the development of other BBGs, in order to
encourage information consistency across its product range.

� The Building Block Developer uses one or more CSSs to provide the specifications of Building
Blocks (BBs) in developing a BBG.

Within the System Integrator stakeholder the User Roles may make the following use of the main
Architectural Model elements:

� The Requirements Analyst will use elements of a BCM from the Service Provider that is procuring
the Management System as the driving requirements for the BCM for the System. The
Requirements Analyst may also use BCMs from one or more Standards Bodies in developing
Management System's BCM in order exploit existing, well-understood business model elements,
which will aid in the later reuse of elements of the System, including internally developed BBs.
The Requirements Analyst may maintain an overall BCM, from which BCMs for individual
Management Systems are derived, in order to maintain consistency of requirements across its
Management System product range and internally developed BBs.

� The Domain Analyst Role uses a BCM generated by the System Integrator's Requirements
Analyst in developing a DM for a particular Management System. This DM may also form the
DM for relevant BBs that may be developed internally for this System but which are deemed
useful for reuse in future Management System development projects.

D9 – Final FORM Framework Page 27 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

� The Contract Designer uses a DM generated by the System Integrator's Domain Analyst in order
to guide the design of a CSS for use in development of any constituent BB developed for use in
the Management System. It may use the traces available within the Domain Model to reference
relevant part of the BCM, where this may be needed to resolve design issues. The Contract
Designer may reuse elements of CSSs and may reuse information elements from EIMs made
available from Standards Bodies, to encourage future reuse of the Contract Specifications within
the System Integrator. Elements of CSSs and EIMs that resulted from previous internal BB
development may also be reused in order to benefit from development and maintenance cost
reductions across the range of Management Systems developed. Information elements developed
for the new Contract Set may be published as part of an EIM to be used to aid the selection for
reuse of the resulting BBs in future Management System development, in the development of
other internal BBs and in order to encourage information consistency across its product range.

� The Building Block Developer uses one or more CSSs to provide the specifications of BBs in
developing a BBG, which may then be used in future Management System development projects,
in addition to its use in the Management System for which it was developed.

� The System Builder uses a DM generated by the System Integrator's Domain Analyst in order to
guide the design of a Management System. It may use the traces available within the DM to
reference relevant parts of the BCM where this may be needed to resolve design issues. The
System Builder may reuse elements of CSSs and may reuse information elements from EIMs
made available from Standards Bodies, to support interworking with the Management System.
The System Builder will use EIMs and Contract Specification related to both internally developed
BBs and BBs from ISVs in order to select those needed to implement the required functionality
for the Management System.

Within the Service Provider stakeholder the User Roles may make the following use of the main
Architectural Model elements:

� The Requirements Analyst may use BCMs from one or more Standards Bodies in developing
Management System's requirements, in order exploit existing well-understood business model
elements and thus ease the communication of requirements to the System Integrator.

� The System Administrator uses the Management System Model to configure and deploy the
Management System.

The above description of how the User Role make use of the main elements of the Architectural
Model should highlight how this single set of models can be used to meet the internal development
requirements of the separate stakeholder as well as assisting the exchange of models between
stakeholders needed to support an open market in management components.

3.4 Relationship to Existing Architectures

A basic design goal for the ODF is to minimise the generation of new concepts or techniques. Instead
the use of existing architectural models is maximised, where possible using material already subject to
industry agreement through standards bodies or industrial fora. Some of the main concepts imported
into the ODF are described in the following subsections.

3.4.1 OMG Model-Driven Architecture

The Object Management Group (OMG) has recently developed its Model-Driven Architecture (MDA)
[ab/2001-02-01]. This builds on the Object Management Architecture, which provides a framework
for CORBA standards, and encompasses opportunities for improved use of modelling techniques on
the software engineering process offered by its standardisation of UML. The ODF places a similar
emphasis on modelling at all stages of the development cycles for Contracts, BBs and Management
Systems. UML is used as the primary modelling notation as in the MDA, with RUP providing the
skeleton of the development process, an aspect not yet covered in the MDA.

D9 – Final FORM Framework Page 28 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

The ODF also embodies a similar emphasis on developing models that are independent of the
implementation technology, or “platform-independent modelling” as it is termed in the MDA. The
range of technologies over which such independence will be exerted is limited to ones implementing
object-oriented RPC-style interactions (e.g. CORBA etc) and WWW based interactions (e.g. SOAP).
However, the ODF needs to address the full range of interoperability technologies used in
management systems, including message passing and management-agent paradigms, neither of which
are well addressed in the current MDA roadmap.

The MDA places a strong emphasis on basing its models on a well defined meta-model, using the one
already defined as part of the Meta Object Facility (MOF) [ad/97-08-14]. In the ODF a similar meta-
model based approach is taken. However, this is used primarily to ensure that the ODF is well-
structured and self-consistent, and is not exploited directly for model interchange between CASE tools
as is the case with the MOF.

3.4.2 TM Forum Telecoms Operations Map

The TM Forum’s Telecoms Operation Map (TOM) provides a generic, high-level process model for
telecommunications management. The ODF has adopted the notion of using business process
modelling as part of business requirements modelling, however it does not advocate a single generic
process model, but the generation of domain specific Business Process Models by competent
organisations, e.g. the Business Process Model developed for the IES Framework. The most recent
version of the TOM, termed the eTOM [gb921], also includes the definition of generic business roles
and reference points between them, similar to the Business Role Model of the ODF’s BCM. This can
be mapped to business processes in a similar manner to the Business Reference Model supported in
the BCM, as first suggested in [lewis99b]. The eTOM presents a specific model containing business
roles and the reference points between them that may then be applied to any application of the TOM.
In comparison, the ODF uses the Business Role Model to capture potential Business Role networks for
specific application domains and does not propose universally applicable Business Roles, which may
be rapidly out-dated in this fast moving sector.

3.4.3 TM Forum Generic Requirements for Telecommunications Management Building
Blocks

The TeleManagement Forum has produced document, GB909, which is a set of requirements for
generic telecommunications building blocks [gb909], which are heavily derived from Telcordia’s
OSCA/INA work. These requirements were adopted by FORM as an initial set of development
requirements for the ODF. The concepts of Building Blocks and Contracts were informed by these
requirements. After initial implementation trials conducted in FORM a clearer assessment of these
requirements has been formed which has been reflected in the architectural principles presented in
section 3.1.

GB909 places a number of, sometimes conflicting, requirements on the atomicity and separation of
functionality that a Building Block may exhibit. These, therefore, were found difficult to adhere to in
FORM’s development trials. For instance, the ODF now relaxes the requirement for Building Blocks
to exist strictly within one of three computing tiers (Human Interaction, Process Automation and
Enterprise Information tiers). Instead, this separation is encouraged by adopting a Model-View-
Controller design pattern for expressing the Domain Analysis Model, in the ODF’s Domain Model.
This ensures that Contract designs derived from such Domain Analysis Models are encouraged to
exhibit the functional separations essential to these three tiers, while allowing Contract Designers to
breach these separations if practical design or business issues dictate.

D9 – Final FORM Framework Page 29 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

GB909 also specifies the Building Block to be an atomic unit of deployment, management,
distribution, security, and interoperability. Trial experience in FORM has revised this view such that
the Building Block is now simply a unit of deployment and management; the Contract is the unit of
interoperability and of security and a Building Block Group is the unit of software Distribution.

Several GB909 requirements were assessed to be more akin to design guidelines, and therefore are
being considered for inclusion explicitly in the ODF’s Development Methodology. Other requirements
that relate to computing platform services supporting trading, transaction and data stewardship are not
being addressed directly in FORM.

3.4.4 TM Forum’s New Generation Operating System Support

The TM Forum’s NGOSS initiative builds upon the GB909 requirements described above and aims to
produce an architecture for component-based management systems, an aim very similar to that of the
ODF. As a result, FORM has been closely tracking and contributing to this initiative. NGOSS is work
in progress and at the time of writing an initial version of the Technology Neutral Architecture (TNA)
for NGOSS is available for membership comment [tmf053]. However, FORM has included several
concepts from NGOSS into the ODF to varying extents, namely:

• The TNA identifies the use of a Shared Information Model to define common models for
information to be transferred between systems with different internal information models and
to guide the structure of information used in new NGOSS components performing information
handling. A similar approach is taken in the ODF (see section 3.1, principle P10), however,
the use of such common information modelling is restricted to the exchange and reuse of
models between separately developed Contract Specifications via the medium of EIMs. Such
models are not necessarily intended in the ODF to be used for structuring corporate data
repositories, and related issues, such as data stewardship, are not addressed.

• The principle of specifying Contracts and Information Models in a technology neutral manner,
with mappings being developed to specific interface technologies, is adopted in the ODF
(principles P6-P9), though technology neutral Contract modelling is not mandatory

• The separation of component software functions from business logic, with the latter expressed
in a form dictated at runtime is adopted in the ODF (principle P13). However, in NGOSS this
focuses on the logic that drives the external invocation of Contracts, in the ODF this is
extended to address the coupling of the invocation of a BB’s Contract to other aspects of a BB
behaviour, e.g. the emission of events or the invocation of another Contract.

The ODF differs from the NGOSS approach as follows:

• The Contract in the ODF is not specified as a unit of business process as in NGOSS, and may
contain several separate operations that may be invoked from process enactment engines,
other Building Blocks or legacy systems (see principle P5). NGOSS Contracts include formal
pre- and post-conditions that are subject to runtime checking by such process enactment
environments. Such run-time checks are not addressed in the ODF.

• The ODF does not address the specification of abstract Framework Services of which
Building Block implementations make use, as addressed in NGOSS.

D9 – Final FORM Framework Page 30 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

3.4.5 Distributed Management Taskforce’s Common Information Model

The Common Information Model (CIM) meta-schema [cim] used by the Distributed Management
Taskforce (DMTF), which can be used to express information models in XML, is a strong candidate
for expressing the EIM. The CIM meta-schema is an object-oriented meta-model underlying the
Managed Object Format language (MOF – not to be confused with the OMG’s Meta Object Facility),
which is used for defining the DMTF’s information models. It supports object classes and instances
with properties of simple types or arrays of simple types, methods, indications and relationship
properties. Class inheritance is supported, as are association objects representing relationships between
two or more objects. The meta-schema definition uses qualifiers to characterise its different elements.

The CIM benefits from the following with respect to information modelling:

• It is in the management domain, so existing CIM specifications could be imported for use in
EIMs.

• The CIM meta-schema was designed as a technology neutral modelling language and
mappings to several specific technologies including HTTP/XML (Web-Based Enterprise
Management – WBEM) [wbem], Remote Procedure Call (Desktop Management Interface –
DMI), LDAP-based directories (Directory Enabled Networks - DEN) and CMIS [festor] have
been demonstrated.

• Though the CIM meta-schema is expressed in its own language (MOF), the DMTF have an
XML mapping [cim-xml] for it (part of WBEM).

• The DMTF has already demonstrated how the CIM Schema can be used to express and
enhance class models expressed in UML, thus supporting its alignment with the use of UML
in the ODF’s Development Methodology.

However, in order to fully satisfy the requirements for information modelling in the ODF several
modifications need to be made to the CIM Schema as discussed in section 8.3.

3.4.6 Telecommunication Information Network Architecture

Though the Telecommunication Information Networking Architecture Consortium (TINA-C) is no
longer active, several of its architectural concepts are used in the ODF. Elements of the ODL language
evaluated in TINA and now standardised by the ITU-T [itu-odl] have informed the ODF Building
Block structure, in particular the inclusion of references to Contracts that are required by a Building
Block.

In addition, the ODF has adopted the TINA business modelling concepts [mulder] of business roles
and reference points between roles. The ODF maps Reference Points onto sets of Contract
Specifications as suggested in TINA. Unlike TINA, the ODF does not define a generic business model
but advocates the use of domain-specific business models, which can then be mapped onto business
process models for the same domain.

D9 – Final FORM Framework Page 31 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

4 Development Methodology

4.1 Overview

The methodology tackles the twin challenges of designing reusable components and the construction
of business processes driven management systems. The methodology recognises these two different
‘development’ workflows – namely component design, and systems construction using (existing)
components. Typically, such development workflows is carried out by different types of organisations
or roles within an organisation e.g. component developer and systems integrator. Thus the
methodology is presented as two development guidelines which specify the ‘what’, ‘how’ and ‘when’
of the development workflows. Each development guideline consists of a co-ordinated set of
development workflows. Each guideline prescribes the modelling notations and artefacts to be
produced by its development workflows. However, although the methodology is presented as two
separate guidelines, compatibility of the artefacts, notations and models developed by each are
ensured. The two development guidelines are called the Building Block Development Guideline and
the Business Process Driven System Development Guideline. [formD12]

4.1.1 Objectives and Scope of Building Block Development Guideline

The objective of Building Block Development Guideline is the development of re-usable management
Building Blocks Contracts and Building Blocks. The Guideline not only provides advice as to how to
model Building Blocks Contracts, and prescribes how such Building Blocks Contracts should be
represented so as to ensure that the contracts could be reusable by other actors (i.e. actors not involved
in the development of the Building Block Contract).

More specifically, the objectives of the guidelines are to:
• Guide the design activities in developing Building Blocks Contracts & Building Blocks.
• Specify the development workflows required to design the Building Block Contract.
• Identify modelling notations and the models to be developed during each development workflow.

Indicate the traceability of artefacts developed across the development workflows.
• Prescribe sets of artefacts1 to characterise and communicate usage of Building Block Contracts.

The guideline focuses primarily on the development of the Building Block Contract. Thus the guideline does not
fully prescribe implementation and testing workflows.

4.1.2 Objectives and Scope of Business Process Driven System Development Guideline

The objectives of this Business Process Development Guideline are
• To provide support for a ‘Business Process Driven’ approach to management system construction

from re-usable Building Blocks Contracts
• To provide a development guideline which will allow management systems integrators to

construct management solutions from Building Block Contracts.

1 An artifact is a piece of information that is created, changed and used by actors when performing development
activities. An artifact can be a model, a model element or a document [jacobson2000].

D9 – Final FORM Framework Page 32 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

4.1.3 Overview of Building Block Development Guideline

This guideline adopts a Business Model/Use Case Driven approach to represent the management
functional areas of interest (e.g. Fulfilment, Assurance, Billing etc.). The development activities and
workflows to be carried out are identified below. The principle development workflows are listed
below.

1. Perform Business Modelling Workflow – This process workflow facilitates the definition of
business model(s) based upon management business processes. This involves identifying Business
Roles, Business information entities, Business Use Cases and Organisational Units and Business
Workers.

2. Define Reference Architecture Workflow – This workflow specifies the development of a
Reference Architecture that identifies reference points between organisational boundaries, the
placement of process areas within these boundaries and the relationships between these process
areas across organisational boundaries.

3. Perform Requirements Analysis Workflow – This involves such development activities as
performing requirements analysis, development of use cases and supplementary requirements
specification, modelling of activity graphs (diagrams) to represent the various control and data
flows in the use cases.

4. Develop Analysis Object Models Workflow – This involves the development of analysis objects
and development of analysis collaboration models.

5. Model (Re)Organisation – This workflow guides the re-organise the development classes and
models developed in the previous workflow and advises on their potential groupings. This
workflow specifies the modelling and specification of Building Blocks Contracts. The Building
Block Contracts are specified using XML base description.

6. Implement Building Blocks and perform testing. This workflow describes the development
activities required for Building Block implementation and testing.

The approach taken in developing the Building Block Development Guideline was to use best practice
in software development and add new workflows, model, artefacts and specifications where required.
The Building Block Development Process was attempted to be implemented using Rational Unified
Process. Although generally useful, RUP does not support key modelling artefacts and design
activities, which are fundamental to the guideline. Therefore the Build Block development guidelines
added new workflows, artefacts and descriptions to RUP which aim to support Building Block design.
Other changes to RUP involved the phases of development and templates used to describe the models.

4.1.4 Overview of Business Process Driven System Development Guideline

The goal of the Business Process System Development guideline is to facilitate management systems
integrators to construct management solutions from Building Block Contracts. The Guidelines takes a
‘Business Process Driven’ approach to management system construction from re-usable Building
Blocks by explicitly modelling the required system processes and their constituent system activities.
The guideline uses these system activities to determine the Building Block Contracts needed to
implement these processes.

The Guideline itself is divided into eight process workflows. Each workflow has a specific objective
and produces or refines model(s) or artefacts. The workflows iterate the classic development activities
from business modelling, requirements capture & management, system analysis and design modelling,
implementation and testing [fowler97].

D9 – Final FORM Framework Page 33 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

The guideline specifies the mapping of the management system activities (in the management system
processes) to Building Block Contracts. This supports the reuse of existing Building Block Contracts
in implementing the management system processes. This mapping is at the heart of the reuse of
Building Block Contracts in the implementation of management processes. A second part of the
mapping of management activities to Building Block Contracts is the reconciliation of External
Information Model(s) of the Building Blocks Contracts to the information flows in the system
processes.

Figure 4-1 identifies the principle workflows involved in the Guideline. These involve:

(i) Performing Business Modelling: This workflow facilitates the definition of Business Roles,
business use cases and organisational units. The key results of this workflow are the
development of Business Use Case Model(s), Business Model (representing the business roles
and organisational units), and a refinement of the Reference Model for the ODF framework
(i.e. a specialisation of the ODF reference model indicating the management processes and
reference points to be used).

(ii) Define Requirement Analysis: This workflow facilitates the identification of candidate
behaviour of the management (business) processes, software requirement specifications and
supplementary specification. The key result of this workflow is the system use cases and
supplementary use case specifications

(iii) Perform System Process and System Information Modelling: In this workflow the required
system process(s) are represented as system activity diagrams. Thus this workflow facilitates
the modelling of system activities, their control flow, and their information flows. The key
results of this workflow are system activity diagram(s) representing the system processes to be
implemented.

(iv) Re-Model System Processes and Map to Building Block Contracts: This workflow allows the
mapping of system activities (and information flows) to be mapped to Building Block
contracts. This is one of the most important workflows in the guideline. In this workflow the
system activities are decomposed or aggregated to match, as closely as possible, available
Building Block Contract interface specification. This involves matching the BB Contract
interface function(s) as well as their information requirements. Where matching is possible,
the system activities are annotated with the Building Block Contract, which support it. Where
the matched Building Block Contract requires extra information, these extra information
objects have to be included in the system process. Where matching is not possible, the system
activities will be modelled as bespoke system objects, which require separate design and
implementation. This matching of system activities and Building Block Contracts also has an
informational aspect.

The key result of this workflow is the system process modelled as activity diagrams, with the
(some of the) activities annotated with the Building Block Contract associated with them. The
information objects in the activities diagrams are a combination of information objects drawn
from the Building Block Boundary Information models and Information Objects developed
specially for the process (i.e. bespoke information objects).

(v) Model Missing Objects and Information Workflows: This workflow supports the modelling of
system objects and information, which is not supported by the chosen Building Block
Contracts. This workflow concentrates on the bespoke development of management system
functionality/objects, which have to be developed, as there is no appropriate Building Block
Contracts to readily support it. The system objects are modelled as use cases, activity
diagrams, and class diagrams. Where a system activity involves the design of several system
objects, they are grouped together in a subsystem package.

(vi) Implement Building Block Integration: This workflow facilitates the implementation of the
integration of the Building Blocks so that the intended system processes are executable. This
step may be automated if the design tool (used for modelling the system activity diagrams) is

D9 – Final FORM Framework Page 34 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

capable of generating an XMI description of the system activity model. Such an XMI
description can be used to determine the control flow, data flow and appropriate Building
Block Contract invocations. Depending on the integration implementation approach, such an
XMI description could be used to populate a Business (Logic) Object capable of making the
necessary decisions and invocations on the appropriate Building Contracts (interfaces), or
could be used to populate workflow specifications for a workflow execution environment. The
key result of this workflow is the implementation of the control and information flow for the
business process.

(vii) Map Building Block Contracts to Building Blocks and deploy BBs: This workflow facilitates
the selection of Building Blocks to be deployed in the system (if they had not yet been
previously deployed). This workflow can also involve identification and placement of
technology and data gateways where building blocks are implemented using different
technologies (to be Business (Logic) object or workflow integration engine). This would be
needed if the Building Block Contracts were technology neutral (i.e. the interface descriptions
of the Building Block Contracts were not described in a particular distributed implementation
technology). In this way the technological or information representation heterogeneity of the
Building Blocks can be hidden from the integration business logic. Where the Building Block
Contracts are specified using technology specific interfaces, there is no need for these
gateways as the Business (Logic) Object or workflow engine would be generated with the
required technology specific invocations.

(viii) Perform testing and Deployment: This workflow defines and executes the testing necessary
for the management process execution. This involves generating test plans and execution of
those plans.

Figure 4-1: Overview of Process Driven System Development Guideline

D9 – Final FORM Framework Page 35 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

4.2 Relationship to Logical Architecture

The Logical Architecture can support a large number of methodological guidelines tailored to specific
needs to organisation representing the organisation stakeholders in specific application domains. The
two Guidelines developed as part of the Development Methodology in FORM address needs relevant
to stakeholders thought most likely to immediately benefit from the ODF, namely ISV’s and System
Integrator developing Building Blocks (served by the Building Block Development Guideline) and
System Integrators developing management system using Building Blocks (served by the the Business
Process Driven Management System Development Guideline). These Guidelines focus on the internal
development needs of these stakeholders as this is the first place the ODF must be accepted before the
benefits of using the ODF in exchanging products between stakeholders can be realised, initially
though using common models for Building Blocks, their Contracts and EIMs. Further methodological
guidance, such as for the development of Contract Set Specification by Standards Bodies or for
locating and interworking between models using the EIMs, will also be required to support wider
acceptance of the ODF.

Each of the two Guidelines in the Development Methodology follows processes that are structured as
a set of Process Workflows. Each Workflow both uses and generates modelling artefacts.

The following paragraphs lists the Workflows for each of the Guidelines, the UML modelling artefacts
they produce and the mapping of those artefact to elements of the Architectural Model. These mapping
are the idealised mapping of the methodological artefact to the architectural elements, rather than
necessarily the ones performed in the FORM Development Trials. This is because not all aspects of
the Architectural Model were exercised in these Trials, e.g. the collection of Contract’s into Contract
Set Specifications. Details of what architectural elements were actually generated as part of the Trials
is detailed in section 8.

Key UML Models
and Artifacts
Produced by
Methodology

Guidelines

Building Block
Development Guideline

Workflows

Business Process Driven System
Development Guideline

Workflows

ODF

Meta-
Model

Elements

Business Use Case
Model, Business Use
Case Realisation
Model, Business
Activity Model

Developed by the Perform
Business Modelling Workflow
and Define Reference
Architecture Workflow

Developed by the Perform Business
Modelling (and Reference
Architecture Refinement Workflow)

Business
Context
Model

System Use Case
Models, (System)
Activity Models,

Supplementary
Requirements
Specifications

Developed by the Define
Requirements Analysis Model
Workflow and the Develop
Analysis Models Workflow.

Used in Reorganise Analysis
Model Workflow

Developed by Define Requirements
Analysis in combination with Model
System Processes and Information
Workflow.

Domain
Analysis
Model

Building Block
Contract
Specification Model,

Constituent Contracts
developed as part of the
Reorganise Analysis Model
Workflow

Used in Re-Model System Processes
and Map to Building Back Contracts
Workflow

Contract Set
Specification

External Information
Model

Developed as part of the
Reorganise Analysis Model
Workflow

Used in Re-Model System Processes
and Map to Building Back Contracts
Workflow

External
Information
Model

Building Block Developed as part of the Used in Map Building Block Building

D9 – Final FORM Framework Page 36 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

Descriptions Reorganise Analysis Model
Workflow and Implement
Building Blocks Workflow

Contracts to Building Blocks and
Define Component’s Control and
Data Flow Workflow

Block Group

System Process
Model (including
annotation of
Building Block
Contracts and
Information Models)

Not applicable Developed as part of Model Missing
Objects and Information Workflow,
and as part of Implement Integration
and Map Building Block Contracts to
Building Blocks

Management
System
Model

However, one limitation currently of the ODF Logical Architecture is that a clear definition of a
Building Block Contract Interface which was technology neutral was not fully defined. The difficulty
is to define at what level of abstract is an interface deemed to be technology neutral. For example,
there is no clearly defined, widely agreed taxonomy of interface paradigms e.g. RPC, Message Based,
Event Driven. Rather than arbitrarily chose such a taxonomy, the Methodological Guidelines allow the
specification of technology specific Building Block Contracts if the developers so wish.

D9 – Final FORM Framework Page 37 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

5 Technology Selection Guidelines

5.1 Introduction

The technology selection guildeines/guidelines section of the framework is focused on providing
mechanisms for selecting one or more technologies for the implementation of specific applications for
management systems. Selecting a technology is not a trivial task and will constitute a strategic
decision for most organisations. The objective of this section is not to present and compare
technologies but rather to raise awareness about the different criteria to be considered in the
technology selection process. A major mistake in selecting a technology is to look solely at a set of
functions or features that satisfy the business processes needs and that would be acceptable to the
users. Although this will constitute a major step, the precognition of a Building Block based system
architecture means that a number of quality requirements must be met. These requirements, expressed
mostly by the TMForum Application Component Team, play an important role in the selection
process. Criteria for the technology selection process can be divided into three different categories.
The first criterion is purely functional and corresponds to the set of functionalities (business processes)
that the management system is to fulfil. The second criterion is associated with the FORM
Architecture principle and relates essentially to non-functional system requirements. Finally the last
criterion in the technology selection process is more external to the technology features and focuses on
corporate strategy, developer’s training, technology trends, etc…

5.2 Addressing the Functional Requirement Criterion

The system’s functionality is the most obvious evaluation criterion. Simply put, this evaluates a
technology’s features against the functions to be delivered by a system. The definition of a
management system’s functionalities is the result first of the analysis high-level modelling work done
in specifying the logical architecture models. Although the FORM framework does not provide for
“internal” Building Block detailed design guidelines, it becomes also important within the technology
selection process to address the set of functions a building block will “internally” achieve to fulfil its
external role.

System functionalities are usually defined in one of two ways:
• Functional groupings: within enterprise management technologies, these categories could

include enterprise management console functionality, user administration, asset and inventory
tracking, electronic software distribution, server management and monitoring, job scheduling,
backup and recovery, enterprise service desk, etc...

• Process groupings: within user administration for example, this could include profile
development, profile administration, profile distribution and profile manipulation.

Defining all functionalities of a management system is an important step to take before selecting a
technology. A particular care must be taken in matching these functionalities with the features that
such or such technology can offer. For instance, when selecting a technology for implementing an
administration user interfaces one will be very careful not to opt for an implementation environment
that does not support such GUI development (such as prolog for example).

In a telecom management system context, functionalities will often be constrained by communication
constraints. Hence in this context, the distribution facilities a technology can offer will be of greater
importance.

D9 – Final FORM Framework Page 38 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

In the past, Building blocks might have been implemented without the benefit of components or
object-oriented languages. But since a building block enforces its object encapsulation by non-
advertisement of its internal interfaces and by proper access control mechanisms; containers provide
better encapsulation and many implementation conveniences, such as simplified access to DPE
services [gb909]. The concept of containers is present in new component technologies such as J2EE,
CCM [ccm], or COM+. This container concept also has an impact on how non-functional
requirements can be fulfilled as presented in the next section.

5.3 Addressing the Non-Functional Requirement (NFR) Criterion

Non-functional requirement Definition: a description of the features, characteristics, and attributes
of the system as well as any constraints that may limit the boundaries of the proposed solution.

In an environment where software quality importance is ever increasing, it is no more enough to solely
evaluate the technology functionality allowance. Characteristics such as accuracy, security and
performance are quite important concerns for assessing the quality of a system. Quite appropriately,
these concerns, so called non-functional requirement (NFR), have been recognised as playing a crucial
role in requirements engineering and therefore their role and impact in the technology selection
process must be addressed.

Standards bodies, such as the TMForum, have addressed a more “business” non-functional set of
requirements. The TMForum Application Component Team while detailing the general requirements
of Building Blocks has defined a set of non-functional requirements that a BB should aim at
conforming to. From security to recoverability and interoperability, a wide range of non-functional
requirements is covered. Each of them should have an impact on the technology section.

The following Building Blocks concerns expressed in [gb909] have been recognised has important for
the impact they have on the technology selection process:

• Enable a BB to detect if a service or system functionality it requires is unavailable. (GB909,
GR-III.021)

• Enable a BB to inform the system managing the BB in case of abnormal BB behaviour e.g.
caused by a required service or system functionality being unavailable. (P3, GB909 GR-
III.037)

• Enable a BB to validate the users of its services. (GB909, GR-II.31)
• Enable a BB to inform the system managing the BB in case of security violations. (GB909,

GR-II.35)
• Enable a BB to participate in transaction based services. (GB909, GR-II.024)
• Enable a BB to recover e.g. rollback to a pre-transaction state in case of an aborted

transaction. (GB909, GR-III.027)
• Enable a BB to recover with minimal impact on BB functionality in case of a transaction

failure. (GB909, GR-III.028)
• Enable BB to share an identical interface to provide general application management

capability to enterprise systems management facilities. (GB909, GR-V.36)

Overall, the “Generic Requirements for Telecommunications Management Building Blocks” [gb909]
document expresses number of constraints that will help in selecting an appropriate technology to
realise Building Block based systems implementation. However, although the document is helpful it
does not cover entirely the non-functional requirements (NFR) aspect of the technology selection
process. NFRs are often associated with a rich, but potentially confusing set of concepts (sorts), which
can be organised as by Chung, Nixon [chung,nixon] into a hierarchy to guide the developer.

D9 – Final FORM Framework Page 39 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

Figure 5-1: Sort hierarchy [chung,nixon]

The NFR that the Architecture principles (section 3.1) and the GB909 document bring on should help
in defining the “system technology”. A system technology defines the technological environment in
which one or more Building Block can operate successfully in accordance with pre-defined
requirements. This will depends partly on applications architectures, software reusability, easiness of
administration and platform and database support. Relative to other criteria, best practice selections
place a lower relative importance on the system technology criterion. This can be seen as quite
deceptive because the system technology criterion usually houses the majority of an organisation’s
mandatory criteria, which include server, client, protocol and database support, application scalability
and other architectural capabilities. Often, the expression of NFR as a mandatory criterion within
allows to quickly narrow the long list of potential vendors to a short list of applicable solutions.

Life-cycle

NFR-Sort

SecurityPerformance

Confidentiality

Accuracy

Integrity Availability
SpaceTime

User-Friendliness

Completeness
Secondary

Storage
Main

Memory
ThroughputResponse

Time

Cost

Internal Consistency External Consistency

Operating Cost

Development Cost

Operational

DevelopmentInternal
External

System-boundary

D9 – Final FORM Framework Page 40 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

5.4 Addressing the Non Technology Feature-based Criterion

The features a technology allows for will play an important role in the selection process, however,
they should not be seen as the only reason why a technology should be selected. Awareness of the
organisational context is a very important factor that influences the technological selection. Elements
of this organisational context are among others, the organisation’s corporate strategies and enterprise
resource plans (ERP) as these define the (implementation) staff competences/training perspectives,
and these elements should play an important part in the selection process itself. An illustration of the
importance of the organisational context would be to make the decision to select a component-based
technology, such as EJB, without having the BB developer trained on Java technologies. This would
obviously generate a high risk factor in the development cycle and put at stake the realisation of the
product. At stake, strategic plans for technology will be influenced largely by the various technology
trends. Currently, the software industry is heavily influenced by Component based development and
many organisations have already invested in staff training on technologies such as EJB, CORBA or
COM, but since the FORM architecture principles are technology independent, it is essential for future
trends in software industry to be monitored and assessed against the potential benefits they could bring
in fulfilling functional and non-functional requirements.

5.5 Summary

The purpose of the technology selection guildeines part of the framework is not to dictate the use of
specific technologies but rather to help in defining the basis for an improved selection process. As
discussed, the need for a BB to meet certain generic requirements such as unity, release and resource
independence, recoverability and others, generates a set of mandatory non-functional requirements
that should help in narrowing the technology choices. However, an organisation should be aware that
technology decisions must be part of a broader and long-term strategic plan. Performing a selection for
implementation and integration technologies requires an organisation to marry a number of internal
business requirements with a myriad of vendor attributes that relate to both performance as well as the
ability to effectively provide long-term value to the organisation.

D9 – Final FORM Framework Page 41 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

6 Reusable Elements

This section describes the Reusable Elements portion of the ODF, explaining the structure of these
elements as developed for the IES application domain addressed in FORM. A full specification of
these elements is provided in FORM deliverable D11 [formD11].

The Logical Architecture defines the main models of the ODF in a way intended to clearly explain the
main separations in the ODF and to highlight the primary reusable elements of the model. However, to
reuse the models as part of the Development Methodology the elements of reuse are models that
actually span the main elements of the Architectural Model through resolving traces between them.

The reusable elements from the system models are presented as a series of catalogues:

• Reference Architecture. The reference architecture is the base business scenario for the prototype
design and implementation within FORM. It contains reusable networks of Business Roles and
Referneces Point and their mapping to Business Processes

• Reference Point Catalogue. The reference point catalogue is a list of reference points from the
reference architecture, which are addressed by the FORM prototype implementation.

• BB Contract Catalogue. Contains a summary of the Contracts, which have been defined as part
of the prototype development within FORM. Contracts are implemented as actual BBs.

• BB Catalogue. This is a list of the BBs designed and implemented in FORM with indications of
the amount of reuse per BB.

To achieve these reusable elements the FORM development methodology has been applied to the IES
application domain. This application was conducted to exercise and evaluate concepts of the ODF.

The Reference Architecture showing the functional decomposition of management processes and the
reference points is defined as the result of Business Modelling (ODF terminology: Business Context
Modelling). The Business Models consist of:

• Business Processes in terms of Business Use Cases.

• Organisations, business roles and reference points in Business Object Models

• The Reference Architecture

The BB contract catalogue and the BB catalogue constitute the outcome from Systems Modelling
(ODF Terminology: Domain Modelling). In systems modelling the functional requirements are
described in use case models, these use cases are realised in analysis models, which are used as basis
for mapping functionality to BBs. Further the interfaces for BBs are described in contracts. Systems
modelling then have the following outcome:

• Functional requirements in use case models

• The realisation of use cases in Analysis Object Models

• BB and BB groupings

• BB contracts

BB Contracts are assembled into one catalogue, Each system contributes to a BB catalogue, each
system can produce one or more BB Group depending on the separation needs. In addition, each
Contract specification specifies which, if any, of the Reference Points from the Reference Architecture
it supports. Therefore, a catalogue of Reference Points can also be generated that contains for each
Reference Point the Contract Specifications, which are supported by that Reference Point. The figure
below gives an overview of the Contracts which address Reference Points as discussed in [formD10].
The Contracts and square brackets are ones that have not been implemented in FORM but which have
been suggested as further Contracts which address that Reference Point.

D9 – Final FORM Framework Page 42 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

IES Customer

GQIPS-PP

GQIPS
Provider

GQIPS-PM

VPNS
Provider

DS-CP

DS-PP

IES
Provider

VPNS-PM

GQIPS-PM

IES-CM AS-PP

VPNS-CM

Application
Service
Provider

AS-CP

DS-CP

SLAHandlingService
AssuranceConfiguration
CustomerReportingService
BillingInteractionManagement
[access local reports]

Ipsec-pCOPSPRContract

VPNServiceConfiguration AssuranceService

ResourceAllocationManager

CustomerReportingService
InterdomainAcctMgmt
[remittanceExchange]
[PrepaidServiceAccountAccessControl]

ServerMonitor
[billinginteraction call backs]

ServerMonitor

[InterdomainAcctMgmt]

ResourceAllocationManager

ResourceAllocationManager

Figure 6-1: Overview of mapping between Contracts and Reference Points

Though Building Block Groups and Contract Set Specifications were not explicitly addressed in the
trial development, suggestions for such models had been made as part of the trial 2 evaluation in
[formD10].

The full specification of the reusable elements is provided in FORM deliverable D11 [formD11]. D11
consists of a main document applying the FORM methodology “Business Process Driven System
Development Guideline”, and four Annexes applying the FORM methodology “Building Block
Development Guideline”. The assessments of the reusable elements are provided in FORM deliverable
D10 [formD10].

The entire FORM Contract Catalogue can be accessed on-line at the FORM website http://www.ist-
form.org/ContractCatalogue/index.html

D9 – Final FORM Framework Page 43 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

7 Application of ODF – Case Study

The model elements in the meta-model have been mapped to modelling artefacts that make up the
Development Methodology. These modelling artefacts are what have actually been produced by
developers of the FORM Trial 2 systems and the components from which they are contracted. These
models and the experiences of developers in producing them have been used for evaluating the ODF in
this document. This situation is summarised in Figure 7-1.

The development of the FORM Trial 2 systems and the associated systems and component-related
models reflects the guidance given to developers through the Development Methodology Guidelines.
The Trial 2 development experiences, therefore, only indirectly reflect an application of the
architectural principles and the related meta-model from the Logical Architecture.

Architectural
Principles

ODF
Stakeholders

Logical
Architecture

Benefits

Evaluate
clarity and

relevance of
principles

Contract/BB/RP
Catalogues &

EIM

Trial System
Models

Architectural
Meta-Model

Methodological
Guidelines

Technology
Selection

Guidelines

Development
Methodology

Technology
Architecture

Reusable
Elements

Evaluate
developers’
experience

applying
Guidelines

Evaluate
feasibility of
generating

Externalised
Information

Model

Open Development Framework

Evaluate
conformance
of models to
meta-model

and relevance
of benefits

Evaluation of
specific

technology
selections

Artefacts
map to

meta-model
elements

Figure 7-1: Summary of ODF element related to Trial 2 evaluations

7.1 Application of Architectural Model: Case Study

The development work performed in the FORM implementation trials was conducted in order to
exercise and evaluate concepts of the ODF. Expressed in terms of the architectural meta-model the
following paragraphs describe the architectural elements that were exercised during trial development
and illustrate the mapping to certain methodological artefacts that were used in modelling them. The
examples of methodological artefacts are taken from the modelling documentation for the
development Trial, a detailed version of which can be found in deliverable D11 [formD11].

A single overall Business Context Model was developed for the IES Management Framework. This
consisted of a Business Role Model, a Business Organisation Model, a Business Use Case Model and
a Business Reference Model, which provided a mapping of the Business Roles to Business Processes
in a typical organisational model for the IES domain. Therefore the Business Process Model in this
BCM only contained static definitions of process areas and no models of Business Process Flows.

D9 – Final FORM Framework Page 44 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

The Business Role Model was captured as a UML class diagram (see Figure 7-2) with classes
representing the Business Roles, and associations between them representing the Reference Points and
the cardinalities they imposed between the Business Roles. This was supplemented with textual
descriptions of the Business Role and Reference Points.

IES Customer

GQIPS-PP

GQIPS
Provider

GQIPS-PM

VPNS
Provider

DS-CP

DS-PP

IES
Provider

VPNS-PM GQIPS-PM

IES-CM
AS-PP

VPNS-CM

0..*

0..*

0..*

0..*0..*

0..* 0..*

Application
Service
Provider

AS-CP

0..*

0..*

0..*

0..*

0..*

0..*

DS-CP

0..1

0..1

0..1

Figure 7-2: Business Role Model from overall BCM for IES Problem Area

The Business Organisational Model defined an organisational scenario that was used as a basis for all
the individual organisational scenario addressed by the different workgroups in FORM. To fully
exercise the Business Role model, each Role was taken by at least one Organisation. This allowed the
Business Organisation Model to be initially represented as a UML object instance model, with
Organisations being object instance of classes (see figure below). This form of diagram does not
support situations where an Organisation takes on more than one Business Role, and does not support
identification of Human Users within the Organisation, which in the BCM were identifies separately.

D9 – Final FORM Framework Page 45 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

IES-Cust:IES Customer

:GQIPS-PP

ISP-A: GQIPS Provider

:GQIPS-PM

VPNP: VPNS Provider

:DS-CP :DS-PP

IESP:IES Provider

:VPNS-PM :GQIPS-PM

:IES-CM :AS-PP

:VPNS-CM

IRSP: Application Service Provider

:AS-CP

ISP-B: GQIPS Provider

Partner-A:IES CustomerPartner-A:IES Customer

:VPNS-CM

:VPNS-CM

:DS-CP

:DS-CP

:DS-CP

Figure 7-3: Business Organisation Model for the overall BCM for the IES Problem Area

The Business Reference Model was captured in a methodological artefact termed the Reference
Architecture due to the important role it played in capturing the business architecture of the problem
domain. For this a custom diagram was used, as no UML diagram was able to clearly and concisely
capture this model.

Order
Handling

GQIPS
Management GQIPS-PP

VPNS
Provider

IES Provider

GQIPS Provider

VPNS-PM

GQIPS-PM

IES-CM

VPNS-CM

Customer
Reporting

IPSec
Proxy

Charging and
Billing

Assurance
Config

IES Customer

GQIPS-REP

Accounting
Mgmt Reporting

Report
Generation

Perf
monitoring
& reporting

GQIPS
Management

GQIPS Provider (3rd Pty)

ASP

Charging and
Billing

Provider Console

Server Mgmt

IES-AS

IPSec
Provisioning

SLA
Negotiation

Customer
Service
Console

VPN Service
Configuration

VPN
Provisioning

CPE
Mgmt

IES-CM

IES-BS

Figure 7-4: Reference Architecture diagram representing the Business Reference model for the
overall BCM for the IES Problem Area

D9 – Final FORM Framework Page 46 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

A very basic Business Use Case Model was defined for the overall IES BCM. This contained just one
Use Case describing the overall functionality involved in fulfilling, assuring and billing for an IES
service. Seven Business Context Models were then established to address different business process
flows within the context of the single common Business Context Model. Each of these Business
Context Models was developed by a separate workgroup. Four of these workgroups were Trial
workgroups that had the aim of developing Building Block based Management Systems based on
mutually exclusive process flows. The other three workgroups performed paper-based studies
examining process flows that spanned the process flow areas addressed by the Trial development
workgroups. All seven Business Context Models included Business Organisation Models, Business
Process Models and Business Use Case Models based on specific subsets of the common Business
Reference Model.

Partial Domain Analysis Models were developed by the Trial development workgroups. The project
plan required these workgroups to develop both the Management Systems and the Building Blocks
from which they were composed, in effect acting as System Integrators which were developing
Building Blocks for later reuse. Therefore, the Domain Analysis Models generated by each workgroup
supported both the design the Building Blocks and the design of the Management System in which
they reside. Each Domain Analysis Model defined an analysis object model with analysis objects
representing individual Building Blocks. In some cases, the use cases in the Domain Analysis Model
merely reflected the ones used in the corresponding Business Context Models.

Contracts were designed as needed for each working group, and were not developed explicitly as
members of Contract Sets. Equally, Building Blocks were designed to suit the needs of the Domain
Analysis Models shared with the Trial Management Systems, rather than as parts of a Building Block
Group. Contracts were not specified in a fully technology neutral form since the interface of the
Contract signature was specified using whatever language was suitable to the contract implementation
technology used for the Building Blocks as developed for the Management System concerned.
However, the information that could be exchanged by each Contract was explicitly modelled in a
common format. Within some workgroups this information model was co-ordinated across the
different Contracts, while some key piece of information, such as that specifying Service Level
Agreements, was co-ordinated across different workgroups with the aid of insight gained from the
inter-workgroup process flow modelling performed by the other groups. The information models from
all the workgroups' Contracts has been collectively analysed with the aim of generating an External
Information Model covering all the contract developed for the IES Management Framework.

Management System designs consisted of both Building Blocks and their Contracts as well as non-
Building Block subsystems. Several Building Blocks deployed in these Management Systems had
behaviours which were controlled by Business Rules, though no common format was used for these
rules.

D9 – Final FORM Framework Page 47 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

8 Detailed Architectural Model

The following subsections describe the details of the meta-models for the principle elements of the
Architectural Model identified in Section 3. Some types of models, such as Use Case Models,
Information Models and Process Flow Models are present in more than one part of the meta-model
and are therefore only explained in detail the first time they are encountered. To aid understanding of
the structure of the models, their elements are written with initial capital letters. UML class diagrams
are used to precisely define the relationships between elements within the models.

8.1 Structure of Business Context Model

The Business Context Model (BCM) is the description of the business requirements related to a
specific problem area. A wide range of mechanisms exist for capturing business requirements and this
model does not aim to restrict which ones are used, however the core elements defined in the BCM
have been specified as the minimum needed to ensure consistency with the rest of the Architectural
Model. The following subsections give details of the elements required within each of the BCM's
constituent models, plus an overview of the relationships that should be maintained between the
models. It is important to note that one BCM can be used to provide a context for more detail
requirements analyses in one or more other BCMs.

8.1.1 Requirements Statements

This enumerates and categorises existing requirements statements to allow traces to be made to them
from the rest of the BCM and other derived models. Categorisation may be between functional, non-
functional (e.g. adherence to existing standards), exception-related and information related
requirements.

8.1.2 Business Role Model

The Business Role Model defines generic Business Roles relevant to a problem area. Reference Points
can be identified between pairs of roles and used to collect a set of interactions that may occur
between those roles. Zero or more Reference Points may be identified between a pair of Business
Roles.

A Reference Point may be mapped to one or more Contract Specifications once a stable understanding
of the Business Role Model is reached and a suitable population of Contracts exists.

The Business Role Model may represent a subset of Roles and Reference Points from a Business Role
Model in another BCM or may be the combination of ones taken from several BCMs.

8.1.3 Business Organisation Model

The Business Organisation Model can be thought of as an instance of the Business Role Model
constructed to illuminate realistic potential business scenarios and thus drive more detail requirements
capture. Several Business Organisation Models could be generated from one Business Reference
Model capturing the different possible configurations of Roles, e.g. where several organisations
simultaneously play the same Role or Organisations take on several Roles. A Business Organisation
Model may focus on some useful subset of the Roles in the Business Role Model.

D9 – Final FORM Framework Page 48 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

The Business Organisation Model contains one or more organisations, each of which may support zero
or more different types of Human Users. Each organisation must enact one or more roles from the
Business Role Model and each Human User must be allocated to one Role. Potential interaction
between organisations can only exist where relevant Reference Points are supported in the Business
Role Model between Roles taken by the Organisation involved.

Provided it is consistent with the Business Role Model in the same BCM, the Business Organisation
Model may represent a subset of Organisations and Human Users from a Business Organisation Model
in another BCM or may be the combination of ones taken from several Business Organisation Models.

8.1.4 Business Use Case Model

The Business Use Case Model captures the required functionality that is to be observed in a Business
Scenario represented by a Business Organisation Model. This functionally is described from the point
of view of the Human Users identified in the Business Organisation Model. .

The Business Use Case Model is a set of Use Cases that defines the full set of interactions that the
problem area has with Use Case Actors which represent those imposing requirements on the problem
area. Various types of Use Case Actors may be used in Use Cases including the following:

� Human Actors that represent human system users which will interact with a software system that
wholly or partially implements the requirements being analysed. Each Human Actor represents a
different Human User identified in the Business Organisation Model

� System Actors that represent software systems that will interact with a system resulting from the
requirements analysis. This may represent an existing system, or a planned system that is subject
to another BCM defined in parallel to or subsequently to this BCM. Existing systems already may
offer well-defined interfaces via which interactions with that actor must be conducted, either
expressed as references to Contracts Specifications or to other standards

� Process Actors that represents Business Processes that are part of the problem area's environment
and which are taken from the parent BCM to the one in which this Use Case Model resides.

� Role Actors that represent Business Roles that are part of the problem area's environment and
which are taken from the parent BCM to the one in which this Use Case Model resides.

Each Use Case takes one Actor as its primary actor, though any number of other Actors may be
secondary Actors. Use Cases should have pre-conditions and post-conditions, and these may be bound
between Use Cases so that certain post-conditions from one Use Case in the Model may form pre-
conditions to another Use Case.

8.1.5 Business Process Model

The Business Process Model defines a set of business processes operating within the problem area and
the flow of control and information between them. Business Processes enact the functionality of the
problem area identified in the Business Use Case Model. At the highest level of abstraction the
Business Processes may be identified and statically grouped, e.g. by TMN logical layers or according
to the TM Forum Business Process Model. At a more detailed level, Business Process Flows are
defined that capture the end-to-end flow of information and flow of control across the problem area.

D9 – Final FORM Framework Page 49 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

A Business Process Flow identifies Activities that address specific parts of a Business Process.
Activities themselves can be decomposed if necessary into finer grained Activities. Activities have
specific starting and terminating conditions, which control the flow of Events between Activities and
between Activities and Event Sinks and Event Sources. Activities may also exchange Information
Objects and exchange information with Information Sources and Information Sinks. A Use Case from
the Business Use Case Model will drive one or more Business Process Flows. Actors from such Use
Cases will map to Event Sources and Sinks and Information Sources and Sinks.

8.1.6 Business Reference Model

It is possible to map elements of the Business Process Model onto elements of the Business
Organisation Model. This is termed a Business Reference Model and consists of the following
mappings:

• A Business Process from the Business Process Model may be mapped onto a Business Role as
positioned in an Organisation in the Business Organisation Model. The same Business Process
may be replicated in more than one Business Role or Organisation, but a single Business
Process cannot span more than one Business Role.

• Business Process Flows from the Business Process Model may be mapped to Reference Points
from the Business Role Model as positioned in the Business Organisation Model.

These mappings allow consistency checks to be performed. This may ensure that the control and
information flows between two Business Processes residing in different Business Roles are supported
by the presence of a Reference Point between those two Business Roles. Similarly the need for and
requirements upon a Reference Point is clarified by understanding the control and information flows
between Business Processes that pass across that Reference Point.

8.2 Structure of Domain Model

The Domain Model represents an analysis of a domain of interest and of its interaction with its
environment. This analysis is based upon, and traceable back to, the requirements and business
modelling elements from a single Business Context Model. The Domain Model represents a logical
model of the software system that satisfies the requirements for a problem area expressed in the
Business Context Model. The Domain Model consists of the following three models:

� Domain Use Case Model: This is a set of Use Cases that defines the full set of interactions that the
domain has with a set of Domain Actors. These Use Cases and Domain Actors are derived
respectively from the Use Cases and Actors of Business Use Case Model of the originating BCM.

� Domain Process Model: This is a set of Process Flows derived from Process Flows from the
Business Process Model of the originating BCM.

� Domain Analysis Model: This is a logical object-oriented model of the domain. It consists of
Analysis Objects (AOs), class definitions and definitions of the static associations and dynamic
interactions between them. AOs take one of three stereotypes that reflect the Model-View-
Controller design pattern:

� Boundary AO: This models the interactions between the domain and a Domain Use Case
Actor.

� Entity AO: This represents information within the domain

� Control AO: This models functional, algorithmic or process oriented aspects of the domain

Figure 8-1 shows the relationships between the constituent elements of the Domain Use Case Model,
Domain Process Model and Domain Analysis Model.

D9 – Final FORM Framework Page 50 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

Analysis Class
Model

Domain Use
Case

Static
analysis

Maps to

1..*
Analysis
Object

Domain Actor

Entity
Object

Control
Object

Boundary
Object

Analysis
Object

Association

Analysis
Interaction

Model

Domain
Analysis Model

Maps to

Dynamic
analysis

0..*
0..*

0..*

1..* 1..*1..* 1..*

0..*

Domain Use
Case Model

1..*

Analysis
Interaction

1..*

1..*

Domain
Process Model

Mediates
interactions with

Activity

Information
Object

1..*1..*

0..*

1..*

Logical component performing

Logical component representing

1..*

Figure 8-1: Meta-model mapping between sub-models of the Domain Model

The Domain Model must exhibit consistency between its constituent models. Therefore, though the
Domain Process Flow Model and the Domain Use Case Model are derived from a BCM's Business
Process Model and Business Use Case Model, they need to be adapted so they are consistent with the
Domain Analysis Model. This requires consistency of the following relationships between the
constituent models:

� Each information object passed between Activities in the Process Flow Model maps to one Entity
Object.

� Each Activity must be enacted by only one Control Object.

� Each Event Sink and Source and Information Sink and Source must be mapped to a Domain
Actor.

� The interactions of a Domain Actor with the logical system represented by the Analysis Objects
should be via a single Boundary Object.

D9 – Final FORM Framework Page 51 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

8.3 Structure of External Information Model

An External Information Model (EIM) externalises the information content of one or more Contract
Specifications. Such models are often embedded in interface definition languages that, therefore,
create difficulties in comparing the information content of interfaces, especially when different
languages are used, and to design suitable information gateways. Information models placed in an
EIM are made available for use in subsequently developed Contract Set Specifications to support
comparison of information content with other models.

An EIM is a specialisation of an Information Model. An Information Model, as defined in the ODF
consists of Information Objects (IOs). An IO has a class name and a number of attributes. IOs can be
inherited from other IOs, which involve all of the attributes of the latter IO being present in the
inherited IO. The term Information Object is used here to refer to object classes describing both the
structure of data and the associations between items of data. Therefore, a specialised type of IO called
an association object, represents associations between other IOs and has properties that represent the
roles played by other IOs in the association.

IOs from one Information Model may be included in another Information Model. Included IOs may be
imported, in which case they are effectively copied into the administrative scope of the new
Information Model and will not reflect future revisions to the IO in the originating Information Model
(though they must contain a reference to the source IO). Alternatively, included IOs may be expressed
as a reference to one in another Information Model, in which case its expression in the importing
Information Model will reflect revisions to the IO in the originating Information Model.

Regardless of whether an IO is imported or referenced, it may be subject to an Attribute Filter within
the Information Model that allows attributes in the original IO to be excluded from the Information
Model.

Figure 8-2 provides an overview of the structure of the Information Model used in the Architectural
Model.

Information
Object

1..*

Information
Model

External
Information

Model

Association
Information

Object

0..*

0..*
Associated

with

Attribute

Type
InitialValue

0..*

0..1
0..*

Inherits
from

Originating
Information

Model

Included from

Attribute
Filter

0..1

0..1

Figure 8-2: Structure of Information Models

D9 – Final FORM Framework Page 52 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

The following rules should be followed in generating Information Models:

• The objects in an Information Model may only represent information that is passed via a
Contract. They should not represent information internal to any software that provides an
implementation of a Contract but which is not visible via a Contract.

• An Information Model should contain class elements and associations between classes.

• Classes may only possess a class name and attributes, classes may not possess methods.

• Class attributes may only be simple type or arrays of simple types. Currently the set of simple
types is char, string, real, integer, Boolean, though this may be expanded in future. Complex
types must be broken down into classes.

• Class attributes can be given initial values

• Classes may be inherited from other classes in the model.

• Associations must be named. The classes at each end of the association should be given a
name indicating their role in the association. If no name is given, the name of the class is used
to indicate their role in the association.

• The cardinality of each end of an association should be given.

The relationship of EIM elements to elements of a Contract Set Specification are explained in detail in
the next section.

The relationships between an EIM and a Domain Model consist of mappings between Entity Object
classes in the Domain Analysis Model of the latter and IO classes of the former.

8.4 Structure of Contract Set Specification Model

A Contract Set Specification (CSS) is the main mechanism within the Architectural Model for
specifying interoperability. A CSS primarily consists of one or more individual Contract
Specifications together with a Contract Set Information Model (CSIM) that contains definitions of the
Information Objects (IOs) describing the information passed in individual Contract operations. The
IOs may be defined specifically for use in the CSS or they may be included from an EIM. An IO in
the CSIM referenced from a specific Contract Specification may be done so via an Attribute Filter.
Where a Contract Set needs an IO that is similar to one in a EIM, but which requires additional
attributes, a new IO may be derived within the scope of the CSS by inheriting from the original IO
(which may be included from the EIM).

A Contract Specification within a CSS may be included as a reference to a Contract Specification in
another CSS. A Contract Specification included by reference must therefore reflect revisions to the
referenced Contract Specification. In addition, any IOs used by a Contract Specification included by
reference must be included in the CSS as a reference to the relevant IOs in the CSS containing the
referenced Contract Specification.

Two type of Contract Specification may be used, though only one type may be used for all Contracts
in a single CSS:

� A Technology Neutral Contract Specification (TNCS) which is specified in form that is
independent of any implementation technology. TNCSs may, however, be expressed in a style that
is bound to a particular Interaction Pattern. An Interaction Pattern captures a style of interface
specification that may be common to a range of interface implementation technologies.
Interactions Patterns are differentiated primarily on the basis of how individual interactions are
expressed, e.g. RPC operations, notification, message sequences, and how this expression makes
use of an information model.

D9 – Final FORM Framework Page 53 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

� A Technology Specific Contract Specification (TSCS) which is expressed in a form that is specific
to an implementation technology, using an interface definition language such as GDMO or IDL.

A TSCS references a single TNSC and binds it to a Technology Transform that maps the TNCS
format to a specific interface implementation technology. The generation of a TSCS from a TNCS
may follow a standardised or a proprietary Technology Transform. References to existing Transforms
and details of any bespoke Transforms used are recorded in the TSCS.

The meta-model for Contract Sets is outlined in Figure 8-3.

Contract
Specification

Contract Set

Information
Model

Contract Set
Information

Model

References
IOs from

Attribute
Filter

0..1

1..*

0..1

External
Information

Model

IOs included
from

Attribute
Filter

0..1

0..1

Conforms
toInteraction

Pattern

Technology
Neutral Contract

Specification

Technology
Specific Contract

Specification

Transformed from

Technology
Transform

0..*

Figure 8-3: Structure of Contract Set Specification Model

A CSS is based on the requirements analysis from one Domain Model.

The lifecycle of a CSS and the Contract Specifications it contains and the lifecycle of an EIM are
essentially separate with the relationships between them managed by the inclusion of references in a
CSS. However, a Contract Specification may export IOs into a new or existing EIM. This may be
performed in concert with the IOs exported from other CSSs in order to construct an EIM common to
a range of CSSs.

When an included IO or a derivative of an included IO is exported to an EIM, the inclusion tag
referring to the originating EIM IO and any inclusion filter must also be included. In this way, a model
adaptation tool can quickly identify similarities between IOs that come from common design paths, as
well as details of differences in terms of derivation and filtering information.

D9 – Final FORM Framework Page 54 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

8.5 Structure of Building Block Group Model

A Building Block Group is a model containing a collection of Building Block Descriptors and
accompanying implementations. A Building Block Descriptor contains one or more TSCSs. Each
TSCSs can either be taken from a CSS containing TSCSs or can be a mapping from a TNCS using a
Technology Transform, which must be recorded in the BB descriptor. It is possible for a BB to
implement different (or even the same) TNCSs in different technologies. The BB Descriptor also
contains a Behaviour Configuration Vocabulary for the BB, which provides the language from which
Business Rules can be constructed to modify the behaviour of BB at runtime.

A BBG is ready for release once each of its BB’s has a complete set of TSCSs defined and their
implementations integrated with the BB’s hard-coded internal logic and assembled into a single unit of
deployable software, i.e. a BB. Some of the BB’s internal logic may be ‘soft-coded’, i.e. specified by a
Behaviour Configuration Vocabulary that may be used to express at deployment or run time Business
Rules that control the BB's behaviour at run-time.

Figure 8-4 represents the meta-model for Building Block Groups.

Building Block
Group

Building Block
Descriptor

References

1..*

1..*

Technology
Transform

Technology
Specific
Contract

Specification

Technology
Neutral

Contract
Specification

Behaviour
Configuration
Vocabulary0..1 1..*

1..*

Building Block
Implementation

References1..*

Figure 8-4: Structure for Building Block Group Model

8.6 Structure for Management System Model

The Management System Model is a representation of the design of a software system intended to
perform some set of management-related tasks in an operational context.

The model consists of the following:

• One or more System Interface Specifications via which the Management System will interact
with its environment. The architecture imposes no restrictions on how a System Interface is
structured or represented.

• One or more Building Blocks taken from one or more Building Block Groups.

D9 – Final FORM Framework Page 55 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

• Zero or more Subsystems, which are software components that do not conform to the required
structure of a Building Block. Typically these may be legacy components or glue code needed
to integrate Building Blocks. The architecture imposes no restrictions on how a Subsystem is
structured or represented.

• Zero or more Business Rules which express aspects of a Building Block’s behaviour using
that Building Block's Behaviour Configuration Vocabulary. Business Rules can typically be
changed after the Building Block has been implemented.

Building Blocks communicate with other entities using implementations of the TSCS to which they
are bound. A subsystem that interacts with a Building Block must use or implement, as appropriate,
the relevant TSCS.

A System Interface Specification can be implemented directly by a Subsystem, bound to one or more
TSCSs or a combination of both.

Business Rules determine how a Building Block behaves, as observed via the Contracts it offers and
the Contracts it uses. The conditions that determine the triggering and outcome of a Rule evaluation
are derived from one the following:

• the result of an interaction by an external entity with one of the BB’s Contracts,

• the result of the BB interacting with the Contracts of other BBs

• specific system events such as timeouts and system errors.

The format of Business Rules is not yet fully established in the ODF, however it is intended that it
should support at least two types of rule expression. The first type is Process Flow rules that determine
the order in which Contracts and System Interfaces are called across a system. The target BB for such
rules therefore typically plays a co-ordinating role in the pattern of interaction between different BBs
and Subsystems, in a manner similar to a workflow engine. Such a BB is therefore designed in a very
generic way, and expected to use a wide range of Contract and System Interface types not known at
implementation time. The second type is Policy Rules. These are intended to provide some flexibility
in the existing behaviour of a BB, but not to support interaction with arbitrary Contracts on other BBs.

Interacts with a BB
or Subsystem

using

Building Block

Management
System Model

Implements

1..* 0..*

System
Interface

Specification

Technology
Specific Contract

Specification

Subsystem Business Rule

0..*

2..*0..*

Implements

1..*1..*

Interacts with
a BB using

1..*

1..*0..*

1..*

0..*

Implements

Maps to
0..*

0..*
Determines the

behaviour of

0..*0..*

Figure 8-5: Structure of Management System Model

The requirements capture and analysis that typically precedes the generation of a Management System
Model should be expressed in or traced through a Domain Model. In such a case, the System Interface
specification may be derived, wholly or in part, from a Reference Point definition.

D9 – Final FORM Framework Page 56 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

8.7 Business Rule Issues

8.7.1.1 Workflow

A workflow is a description of a sequence of tasks that need to be carried out to achieve an objective.
These tasks may be carried out manually (i.e. by a person) or automated by a computer system. A
Workflow Management System (WFMS) manages an organisations set of workflows (also termed
business processes). Typical workflows in an organisation may describe the sequence of tasks
necessary to process an insurance claim, fulfil a book order or handle a customer complaint. The
WFMS streamlines these workflows by automating tasks that can be competently completed by the
system, leaving the worker free to handle more challenging tasks [wfmc]. A process definition is a
complete system specification of a business process that can be executed at runtime in the WFMS. The
process definition defines the control flow, data flow and actors involved in the business process.

The benefits of a workflow approach in constructing enterprise business systems are rapid
implementation of business processes with little or no coding, built-in process administration and
monitoring tools, and a tight coupling between the business domain process model and the actual
process definition implementation. It is also noted that these business processes are the most transient
part of an enterprise system; the WFMS enables rapid modification/ updating of these transient
processes. However the downside of current enterprise workflow systems is that they are still very
proprietary. An organisation wanting to adopt this approach will have to buy into the workflow
vendor’s complete solution. The biggest drawback currently is their use of proprietary graphical
process models, proprietary process definition languages and lack of extension mechanisms for
handling more complex control structures [wfPattern].

Approach taken in FORM

FORM was interested in using this WFMS approach to manage its telecom management system
business processes, however we wanted to avoid the use of a proprietary solution and thereby increase
its potential of uptake within industry. We define our approach, as a Business Process Management
Framework (BPMF), which attempts to provide a solution that is standards based, open and
configurable to suit the particular organisations development style and needs.

The BPMF uses the outputs from the Business Process Driven System Development Guideline (i.e.
UML activity diagram and class diagrams) as its process model. These standard UML models are
automatically mapped, using XMI [omgXMI], to the BPMF process definition. The process control
and data flow is defined as a structured collection of Condition – Action rules. An example rule
(defrule activity:processBill condition:(process_start) => action:(invoke processBill)) defines that
Activity processBill is invoked on Condition process_start. A generic Rule Interpreter interface
enables a wide range of rule languages and rule engine implementations to be used for implementation
of the process flow. A process executes by coordinating invocation of its activities (FORM Building
Block methods) according to its defined process flow (rules). This rule approach is a more flexible
means of implementing control and data flow than the more common petri-net and state transition
techniques [knolmayer].

The BPMF approach enables an organisation to use standard UML output from it’s UML modelling
tool and also choose their preferred rule language for the process flow definition. The UML activity
diagram has the basic set of process control structures, i.e. sequencing, branching, synchronisation,
iteration. However, more complex structures are often needed, for example the Discriminator pattern
[wfPattern]. The UML activity diagram can be extended in a standard manor (i.e. stereotyping) for
specification of additional control structures and the rule based process definition is flexible enough to
enable implementation of these more complex control structures.

D9 – Final FORM Framework Page 57 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

The core components of the BPMF consist of Definitions to store defined processes, Instances to store
process state, a Process Interpreter (rule engine) to execute process definitions and Adaptors to map
conceptual process activities to specific Building Block implementations. An example business
process in FORM is the Order Handling of a Customers request for an e-Learning Service over VPN
(this scenario is described in detail in Section 6 of Deliverable 11).

Relation to policies

The workflow-based BPMF in FORM defines process control and data flow as a structured collection
of Condition-Action rules. The generic Rule Interpreter interface enables use of any common rule
engine and its associated rule language to implement this process control and data flow. Similarly,
policies consist of a collection of Event-Condition-Action rules. One of the approaches to policy in
FORM [UCL] also couples the policy language and policy interpreter together, enabling use of
different policy engine implementations to implement the policies.

However, workflow defines a deterministic sequence of actions (via the structured collection of rules)
to produce an objective. It lies at the higher levels of process abstraction, integrating Building Block
Contracts together, dealing with both control flow and data flow issues. It also provides additional
process management functionality such as runtime administration and monitoring. It is suitable for
high-level business processes such as Customer Ordering/ Fulfilment. When the business processes
become fine grained the overhead of runtime process interpretation outweighs the benefits of easy
process management. In FORM the policies work at a lower level of granularity. They are used inside
Building Blocks for dynamic configuration, and complex condition processing. Examples of this usage
are: dynamic configuration of the Server Monitor building block, dynamic configuration of the Virtual
Topology by the VPN Provisioning building block and complex condition logic inside the SLA
Negotiation Building Block.

A more detailed comparison of workflow and policies will be given in the white paper W22, Workflow
for component integration.

8.7.1.2 Policy

Several policy models and policy languages are available at the moment. These languages mostly
relate to specific application areas.

The joint effort by IETF/DMTF aims at developing policy based systems for controlling network
resources in order to guarantee an agreed QoS. The Ponder language that has been developed by
Imperial College in London provide the means to describe certain rights and permissions that manager
roles can have on a set of managed objects primarily, but it intends to cover other application areas as
well.

A number of European IST project have also been looking at policy languages and policy-based
systems: Tequila, Aquila, Cadenus and others. Most of this work is in progress.

A special TMF Policy Group has been active and the first results are expected in due course.

Despite the research effort in policy-based systems up to now a significant list of open issues remains:

• Policy taxonomy

• Generic policy language

• High/Low level policy organisation

• Transformation between high and low level policies

• Policy validation

D9 – Final FORM Framework Page 58 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

• Conflict resolution

• Policy domains

• Security concerns

A policy rule as used in FORM have the overall format: ‘when <event(s)>, if <condition> then
<action>’ with sub-elements defined as follows:

• Event: This is what triggers the evaluation of a condition in a policy rule

• Condition: If a policy rule condition evaluates to be true an action will take place

• Action: A process that is executed depending on the evaluation of a condition in a policy rule

Approach Taken in FORM

As described in [formD10], policies were used in 5 different BB designs, but no single approach was
taken to applying policies, and different policy languages were adopted. The SLA Negotiation Engine
BB used a custom XML-based policy language, POLML, which is a superset of the IETF/DMTF
languages, designed to allow for better design time grouping of policy rules. The VPN Provisioning
BB used the DROOLS policy language (see http://drools.org/). The IPSEC-P BB used the policy
language from the IETF, and in particular work from IPSEC working group. The IPSEC-P BB used
the policy elements from the IETF Drafts "IPSec Configuration Model" and "IPSec Policy Information
Base", for the Policy Objects to be exchanged between IPSec-P and VPN-P (i.e. the BB on the layer
above). The Server Monitor and Performance Monitor BBs made use of the DMTF Policy Model. Its
policies were generated at run-time based on terms obtained from an SLA, so they made little use of
existing rules, policies or conditions, expect for the DMTF representation for a time period condition.

The POLML approach took the broadest architectural view in applying policies, and this is used below
in related policies to the ODF’s Architectural Model.

Relation to Architectural Model

The design of POLML supported specifying a number of policy principles and a policy language. The
objective was that the policy language is generic enough so that it can be used for policies in any
application area. Underlying POLML is the model depicted in the following figure. This shows the
breakdown described above for a Policy Rule, but also identifies the possibility of a rule identifying
vectors pointing to the particular entity that may, either handle events, interpret conditions and actions
and validate conditions and actions. This allows POLML to express the relationship of a specific
Policy Rule to elements of software architectures, such as specific Contracts.

D9 – Final FORM Framework Page 59 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

PolicyConditio
n Interprete

r

PolicyConditio
n Validato

r

PolicyConditio
n Statemen

t

PolicyActio
nInterprete
r

PolicyActio
nValidato

r

PolicyActio
nStatemen
t

EventDependencies
*

PolicyConditio*
n

1

0..

1

0..

1

0..

1

0..

1

1

1

1

PolicyAction
*

1

0..

1

0..

1

0..

1

0..

1

1

1

1

Events
*

RuleDependencies
*

PolicyRul
e11

1

1

0..

1

1

1..

1

1..

1

1..

1

1..
11

1

Event
Engin
e

11

1

Figure 8-6: Underlying model for POLML

While this model of policy rules allows a high degree of flexibility in expressing how a Rule may be
processed by software elements, a more concrete structure is needed to provide more practical
guidance on applying policies. Therefore a policy execution environment has been defined with the
following components:

• The Policy Manager: is the component that provides the interface between the human
user/administrator and the policy-based system. It allows the administrator to load policies: root
policies, policy groups or policy rules. It also allows them to enable/disable these policies and to
manage the events that trigger them.

• The Policy Execution Engine: is the component that when an event is received it will be asked to
“evaluate” or “execute” the policy (root, group or rule). For a policy rule it can check if the
conditions are true and it can execute actions. For policy groups it can determine the order of
evaluation of the corresponding policy rules (evaluation pattern) and perform it. Similarly, for root
policies it can determine the order of evaluation of policy groups and perform it.

• The Event Engine: is the component is in a position to determine that an event occurred. When an
event happens, the event engine will notify the policy execution engine.

• The Policy Store: is the component in which policies are stored. These policies can be enabled or
disabled. Only enabled policies can be evaluated.

• The Clock: is the component that provides a reliable clock. This is important for time-related
events.

The following diagram shows the Policy Execution Environment components and their relationships:

D9 – Final FORM Framework Page 60 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

Policy Manager

Policy
Execution
Engine

Event Engine

Policy Store

Clock

enable/disable set add
remove add/remove

get_time/set_alarm

get_time/set_alarm

register/unregister

Figure 8-7: Policy Management and Execution Environment

The following diagram shows how these components work together for the following scenario:

1. Add a policy group and a number of policy rules to the policy execution environment.

2. Add the relevant events.

3. Enable the added policy groups/rules.

4. Register the enabled policies with the event engine.

5. Event occurs.

6. Evaluation of relevant policies

Policy Manager

Policy
Execution
Engine

Event Engine

Policy Store

Clock

add (group)
add (group, rule_in_group)
add (group, rule_in_group)

register (event, event_handler)

call (event_handler)

Event occurred

Evaluate &
Take action

add (event)1

2

3

4

7

6

5
enable (group, rule_in_group)
enable (group, rule_in_group)

Figure 8-8: Policy Management and Execution Scenario

D9 – Final FORM Framework Page 61 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

This environment would need to be supported in a suitable component-software platform, such an EJB
container, though an additional service API. The policy execution engine would use the binding
between event engine, validators for conditions and actions and interpreters for conditions and actions
to manage the communication between different BBs via their Contracts, without those BBs being
aware of those bindings. In this was the policy execution environment acts similarly to a workflow
execution environment, albeit with difference in the expressive power of the ‘Business Rule’ language
used.

D9 – Final FORM Framework Page 62 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

9 Further Work

The ODF developed and evaluated in FORM contains much useful guidance that can be taken up
immediately by the targeted stakeholders. Included in this is the Architectural Model presented in this
document. However, the architectural principles laid out for the Logical Architecture are ambitious
and not all aspects have been realised in detail in the Architectural model, nor have they therefore been
mapped to development guidelines and assessed in the Development Trials. The following is a list of
issues related to the Architectural Model that require further definition and evaluation work:

� Use of EIM: Though good progress was made is using a CIM-based information modelling
schema for extracting information content from Contract Specifications, this has not been used
to actually select Contracts or to develop model interworking gateways. The potential of the
EIM for this needs to be evaluated, ideally using third party EIMs.

� Technology Neutral Contract Specifications (TNCS) Language: Only Technology Specific
Contract Specifications were captured during the FORM Development Trials as no suitable
language was identified for expressing TNCSs. For this, a clear set of Interaction Patterns
need to be identified and characterised for the ODF and then a language needs to be selected
and possibly adapted. The essence of such a language seems to be in flexibly binding the
definition of Contract operations to its information content. WSDL is an example of such a
language since it can be used to define both RPC-style services and message-passing style
services. This was considered insufficient for the ODF as it did not capture the rich, managed
object based interactions needed for manager-agent style interactions, support of which is
essential for the ODF’s management application domain. However, the use of XML for
WSDL is seen as a sensible direction, with elements of XSLT being used to bind operations to
information model also represented in XML (for which existing CIM-XML mapping from the
DMTF could be used). In addition, any TNCS language would need to readily support the
application of Technology Transforms to existing technology specific languages such as IDL,
GDMO etc. Here the capabilities of XSL should be investigated.

� Behaviour Configuration Vocabulary: No language is identified for this Vocabulary and their
use in defining Business Rules. The use of both policies and workflow languages has been
assessed in FORM, however these are yet to be reconciled into a common model. In addition
any such common model needs to be clearly bound to elements of a TNCS language.

� Maintenance of model: The models generated in the FORM development Trial were mostly
first generation model, so no experience has been gained on the modification and maintenance
of these models and the impact this may have on existing reusers of the models.

� Tool support: Existing UML case tools and XML editing tools were used in the FORM
Development Trial. However, beyond the definition of DTD for XML rendered models, little
effort was made to customise these tools to more directly support the Architectural Model and
the publication and exchange of its elements. Such tools customisation and the generation of
suitable transformation and rendering tools exploiting the capabilities of XMI and XSLT
should be investigated.

� Platform Services: The Technology selection guildeines touches on the considerations to be
made in technology selection, and for many platforms this involves the identification of
common services provided to component-based software. Currently however, the use of such
services is not addressed in the Architectural Model. An assessment needs to be made if such
services can be represented in a technology neutral manner and if so then investigation into a
suitable language needs to be conducted. Such a language would need o be accommodated in
the BB descriptor so that service related deployment information may be included. The use of
policy languages may assist here in managing technological diversity, and ongoing work in
the TM Forum’s NGOSS initiative may also provide useful input in the definition of platform
services.

D9 – Final FORM Framework Page 63 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

10 Conclusions

This deliverable has presented a detailed specification of the FORM Open Development Framework.
The framework is comprehensive and represents the results of a major technical effort. It is based on
industry best practice and incorporates the knowledge and expertise of a group of leading system
designers, architects and software developers. The work in developing the framework has been
carried out over a two year period with constant modifications and enhancements based on the output
of the project trials and validation activities, as well as comments and feedback from the broader
telecommunications community.

The strengths of this approach is that it reflects not only the telecommunications business model,
defining roles and relations, but also the software stakeholder model which incorporates the roles of
independent software vendors and system integrators. An additional strength of is the inclusion of
emerging standards from a broad range of industrial fora (TMForum, TINA, DMTF etc) as well as the
incorporation of technological drivers (off-the-shelf software, XML, wedbased services etc).

The framework has been structured into 4 viewpoints, each enabling the system designer/development
to focus on key aspects of the overall system in a more manageable way. The logical architecture
describes the logical architectures and their relationships. The development of a Meta model ensures
the consistency of the overall system models. This is further supported through describing systems in
terms of their business process models. At the core of the logical architecture is the concept of a
software building block (BB) that is an atomic unit of software deployment and management. A
second important aspect of the logical architecture is the concept of contracts. It is through contracts
that building blocks interact. The logical architecture enables one to capture and model the
functionality of the systems without having to address the implementation specific aspects of the
systems. This is addressed in the technological architecture. The technological architecture addresses
how the concepts developed in the logical architecture can be implemented using individual
technologies. The key link between the two viewpoints is the development methodology that
addresses the design of the overall physical system. It describes the processes and notations needed to
design contracts and develop building blocks and assemble management systems. The final part of the
framework is the reusable elements that provide a repository for reusable products that results when
the ODF is applied to a particular application domain.

However, the real strength of the framework is in its ability to produce frameworks’ specifications for
different telecommunications domains (optical, mobile). The core strength of the approach is the
availability of a repository of reusable building blocks, which will support the movement to a
telecommunications software development environment capable of supporting rapid and dynamic
system development and deployment.

D9 – Final FORM Framework Page 64 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

11 References

[ad/97-08-14] Meta Objet Facility, revised submission, ad/97-08-14, OMG, Aug 1997

[ab/2001-02-01] Model Driven Architecture, A Technical Perspective, OMG Architecture Board,
Review Draft, 14th February 2001, Doc number ab/2001-02-01:
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01

[ccm] CORBA Component Model, OMG 1999:
http://www.omg.org/cgi-bin/doc?orbos/99-07-01

[cim] Common Information Model v2.5, DMTF 2000:
http://www.dmtf.org/spec/cim_schema_v25.html

[cim-xml] CIM XML Mapping v2.0, DMTF 1999:
http://www.dmtf.org/download/spec/xmls/CIM_XML_Mapping20.htm

[chung,nixon] Dealing with non functional requirements: three experimental studies of a Process-
Oriented approach, L. Chung, B. Nixon, Proceeding of the 17th International Conference on
Software Engineering, Seattle, April 1995.

[festor] Integration of WBEM-based Management Agents in the OSI Framework, O. Festor, P. Festor,
N.B. Youssef, L. Andrey, Proceedings of the Sixth IFIP/IEEE International Symposium on
Integrated Network Management, Boston, USA, pp 49-64, IEEE, May 1999.

[formD10] D10 - Validation of Inter-Enterprise Management Framework, Niamh Quinn, IST-1999-
10357/BRI/WP5/02xx, due February 2002.

[formD11] D11 - Final Inter-Enterprise Management System Model, Birgitte Lønvig, IST-1999-
10357/LMD/WP4/0522, due March 2002.

[formD12] D12 - Guidelines for Co-operative Inter-Enterprise Management, Vincent Wade, IST-
1999-10357/TCD/WP3/012, due February 2002.

[fowler97] UML Distilled - applying the standard object modelling language, M Fowler, K Scott,
Addison Wesley, 1997, ISBN 0-201-32563-2.

[gb909] Generic Requirements for Telecommunications Management Building Blocks: Part I of the
Technology Integration Map - GB909 v3.0, TeleManagement Forum, January 2001.

[gb921] eTom - The Business Process Framework for the Information and Communication Services
Industry, GB921 v2.5, TeleManagement Forum, October 2001.

[jacobson2000] The Unified Software Development Process, I Jacobson, G Booch, J Rumbaugh,
Addison Wesley, ISBN 0-201-57169-2.

[kande] Applying UML to Design an Intrer-Domain Service Management Application, Kande, M.M.,
Mazahaer, S., Prajat, O., Sacks, L., Wittig, M., Proceedings of UML'98 Conference,
Mulhouse, France, pp173-182, OMG, Jun 1998.

[knolmayer] Modeling Processes and Workflows by Business Rules, Knolmayer G., Endl R., Pfahrer
M., Business Process Management, pp 16-29, LNCS 1806, Springer February 2000.

[lewis99a] The Development of Integrated Inter and Intra Domain Management Services, Lewis, D.,
Wade, V., Bracht, R., Integrated Network Management VI: Proceedings of the Sixth
IFIP/IEEE International Symposium on Integrated Network Management, Boston, USA,
pp279-292, Addison-Wesley, May 1999

[lewis99b] A Development Framework for Open Management Systems, Lewis, D., Journal of
Interoprable Communication Networks, vol. 2/1, pp11-30, Mar 1999

D9 – Final FORM Framework Page 65 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

[lodge] Alignment of the TOSCA and SCREEN Approaches to Service Creation, Lodge, F., Kimbler,
K., Hubert, M., Proceedings of the 6th International Conference on Intelligence in Services
and Networks, Barcelona, Spain,, pp277-290, Springer-Verlag, Apr 1999

[lucidi] Development of TINA-like Systems: The DOLMAN Methodology, Lucidi, F., Idzenga, H.,
Batistatos, S., Proceedings of the 5th International Conference on Intelligence in Services and
Networks, Antwerp, Belgium, pp379-392, Springer-Verlag, May 1998

[mulder] TINA Business Model and Reference Points, v4.0, Mulder, H. (ed), TINA baseline
document, TINA-C, May 1997

[omgWf] OMG, Workflow Management Facility Specification, v1.2, April 2000.

[omgUML] OMG, Unified Modelling Language 2.0 Proposal, ad/2001-10-01.

[omgXMI] OMG, XML Metadata Interchange, V1.2, formal/2002/01/01

[osca] Telecordia TR-STS-000915, The Bellcore OSCA Architecture, Issue 1, 10/92

[rfc2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M. and S. Waldbusser,
"Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, IETF, April
1999.

[tmf053] NGOSS Architecture, Technology Neutral Specification, TMF053, Membership Evaluation
Version 2, TeleManagement Forum, July 2001

[itu-odl] ITU - Object Definition Language (ITU-ODL), ITU-T, Jan 1998

[wade] Three Keys to Developing and Integrating Telecommunications Service Management Systems,
Wade, V., Lewis, D., IEEE Communications Magazine, vol. 37, no. 5, pp140-146, 1999

[wbem] Web-Based Enterprise Management, DMTF 1999:
http://www.dmtf.org/spec/wbem.html

[wfmc] Workflow Handbook, 2001, Lawrence P. (ed), Workflow Management Coalition, Wiley.

[wfPattern] Workflow Patterns, Van der Alst W., Hofstede A., Kiepuszewski B., Barros A.,
http://tmitwww.tm.tue.nl/research/patterns/

[wfUML] UML Activity Diagrams as a Workflow Specification Language, Dumas M., Hofstede A.,
<<UML>> 2001 – The Unified Modelling Language, 4th International Conference, pp 76-90, LNCS
2185, Springer October 2001.

[x722] Information Technology - Open Systems Interconnection -Structure of management
information: Guidelines for the Definition of Managed Objects, ITU-T Recommendation
X.722, 1992

[x901] Open Distributed Processing- Reference Model: Part 1: Overview and Guide to Use, ITU-T
Recommendation X.901/ ISO/IEC International Standard 10746-1, 1995

[xslt] XSL Transformations v1.0, W3C 1999:
http://www.w3.org/TR/xslt

D9 – Final FORM Framework Page 66 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

12 Acronyms

Acronym Definition

AOs Analysis Objects

ASP Application Service Providers

BB Building Block

BBG Building Block Group

BCM Business Context Model

BOM Business Organisation Model

BPM Business Process Model

BPMF Business Process Management Framework

BRM Business Role Model

BUCM Business Use Case Model

CASE Computer Aided Software Engineering

CCM CORBA Component Model

CIM Common Information Model

CIM Common Information Model

CMIP Common Management Information Protocol

CS Contract Set

CSIM Contract Set Information Model

CSIM Contract Set Information Model

CSS Contract Set Specification

DM Domain Model

DMTF Distributed Management Taskforce

DPE Distributed Processing Environment

EIM External Information Model

EIM External Information Model

GDMO Guidelines for Definition of Managed Objects

GUI Graphic User Interface

HTML HyperText Markup Language

IDL Interface Definition Language

IES Inter-Enterprise Services

IOs Information Objects

ISV Independent Software Vendor

ISV Independent Software Vendors

J2EE Java 2 Enterprise Edition

D9 – Final FORM Framework Page 67 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

LDAP Light Data Access Protocol

MDA Model-Driven Architecture

MOF Meta Object Facility

MSM Management System Model

NFR Non-Functional Requirement

NGOSS New Generation Operating System Support

ODF Open Development Framework

ODL Object Definition Language

ODP Open Distributed Processing

OMG Object Management Group

OSSs Operational Support Systems

QoS Quality of Service

RPC Remote Procedure Call

RUP Rational Unified Process

SMI Structure of Management Information

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

TL1 Transaction Language 1

TMN Telecommunication Management Network

TNA Technology Neutral Architecture

TNCS Technology Neutral Contract Specification

TNSC Technology Neutral Contract Specification

TOM Telecoms Operation Map

TSCS Technology Specific Contract Specification

TSCS Technology Specific Contract Specification

UML Unified Modelling Language

WBEM Web-Based Enterprise Management

WFMS Workflow Management System

WWW World Wide Web

XML eXtensible Markup Language

XSLT Extensible Stylesheet Language Transformation

D9 – Final FORM Framework Page 68 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

13 Glossary

Term Definition

Attribute Filter A filter that masks attributes from an IO in an information model from
use in a version of that IO that is included in another information model

Building Block A piece of software that represents a unit of deployment and system
management.

Building Block Developer An architectural user role concerned with the design, implementation
and release of Building Blocks

Building Block Group A set of Building Blocks groups for the purpose of software release

Business Analysis Model A type of model within the ODF capturing the requirements and the
analysis of those requirements for a domain of interest.

Business Context Model A model that captures requirements and business context for a problem
domain.

Business Process Model A model that captures the structure and process flow of a set of business
processes for a particular domain of interest.

Business Role A representation of a notional organisational agent that has a set of
business relationships with other Business Roles

Business Role Model A model that defines the relationship between a set of Business Roles in
terms of the Reference Points that exist between them.

Contract A general term used to describe an interface to a Building Block

Contract Designer A notional user role of the ODF responsible for generating contract
Specifications and extracting their information content into an External
Information Model

Domain Actor A representation of an element of the environment within which a
domain resides

Domain Analysis Model A model representing

External Information
Model

An information model containing IOs from one or more Constract
Specifications.

Information Model A collection of information objects, the associations between them and
the constraints that exist on those associations.

Information Object An information definition within an information model, which exhibits
characteristics of attributes and inheritance, but not methods

Interaction Pattern A definition that characterises a class or style of interaction that may be
used in interaction with Contracts and which has an impact on the most
convenient form used by in the relevant Contract Specification

Logical Architecture The portion of the ODF that expresses the structure of the models used
throughout the rest of the Framework.

Management System
Model

A model that defines the software structure of a management system in
terms of Building Blocks, Business Rules, external interfaces, non-BB
software and the relationships between them.

Business Reference Model A model within a Business Context Model that maps elements from a
Business Process Model and a Business Role Model form the same

D9 – Final FORM Framework Page 69 of 69

IST-1999-10357/WIT/WP3/1019 © FORM Consortium

Business Context Model. The mapping is of Business Processes onto
Business Role and of aggregate Business Process Flows onto Reference
Points

System Builder A notional ODF user with responsibility for building management
systems and documenting their design in a Management System Model.

Technology Specific
Contract Specification
(TSCS)

A mapping of a TNCS to a format that may be implemented directly in a
specific technology.

