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Abstract. Service-oriented computing (SOC) offers a promising solu-
tion for dealing with coordination complexity in distributed software
systems. Naturally, the infrastructure and technologies for composing
services form the backbone of SOC. We argue that SOC has immense
potential in enabling collaborations between distributed autonomous ser-
vices in open dynamic environments, in addition to the restricted busi-
ness environments that have been the main focus of the work done in
SOC so far. We discuss some of the important issues and challenges in-
volved in composing services in open dynamic environments, and give an
overview of the Dino approach that we have been developing with an aim
to meet these challenges effectively. Dino provides a runtime infrastruc-
ture for comprehensively supporting all stages of service composition,
namely: service discovery, selection, binding, delivery, monitoring and
adaptation. We conclude with a discussion on some of the ongoing and
future work on Dino.

1 Introduction

Software systems are already a part of our everyday life, and are destined to be-
come even more pervasive in the coming years. These systems will be increasingly
distributed, and operate in dynamic conditions. The high value and efficiency
offered by a multitude of software systems comes at a price of high complexity
involved in the development and operation of these systems.

The complexity of software systems can be divided into: computational com-
plexity and coordination complexity. While the efforts to deal with computational
complexity have been ongoing for the last several years with considerable suc-
cess, the focus on managing coordination complexity has been more recent and
is mainly driven by the advent of highly distributed software systems.

Service-oriented computing (SOC) offers a promising solution for managing
coordination complexity in distributed software systems. SOC builds on the idea
of modelling interactions between distributed software components as services
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provided and consumed by the components. The notion of services allows loose
coupling between software components, as the services can be described and
accessed independently, using standard platform- and implementation language-
independent service description languages and communication protocols. The
loose coupling in turn allows reusability of software components, implying that
a new software system can be developed by composing many of the existing
independently-deployed and readily-accessible software components, while requir-
ing to implement only a minimal number of new application-specific components
to be integrated with the existing components. Although loose coupling is not
a new concept and is well-recognized within software community as a way to
manage coordination complexity, the open XML-based standards proposed as a
part of the research on SOC have resulted in their widespread acceptance and
have thereby facilitated realization of the loose coupling in practice.

The work on SOC so far has been mostly targeted toward enabling inte-
gration of business applications – either within an enterprise (i.e. enterprise
application integration) or, more commonly, beyond enterprise boundaries (i.e.
B2B integration). However, the potential of SOC is immense in enabling collab-
orations between autonomous services in open dynamic environments. Service
composition in open dynamic environments, though building on the foundational
techniques for integration of business applications, is significantly more complex
and challenging than the latter. Below we discuss some of the major challenges
involved in composing services in open dynamic environments, and argue for the
need for comprehensive research in addressing these challenges.

The current applications as well as focus of research on SOC are toward
composing services at design time rather than at runtime. Design time service
composition is the preferred approach when service partners are known in ad-
vance, for example in restricted business environments. However, design time
service composition is not feasible in open dynamic environments where services
participating in a composition may not be known in advance, i.e. these services
can be discovered and composed only at runtime.

Runtime service composition implies that all steps related to the composi-
tion process i.e. service discovery, selection, binding and delivery are done at
runtime and in an entirely automated manner. This, in turn, imposes additional
challenges for rich description of services and intelligent matchmaking. More-
over, since service partners are not known in advance and are discovered only at
runtime, the level of trust between partners is typically low. This calls for ap-
propriate monitoring of service agreements, and preferably maintaining a trust
rating for different service providers.

Another challenge is that the current SOC techniques mostly assume a rel-
atively stable execution environment. That is, once a service composition is
formed, the composition is assumed to be largely stable for the period of exe-
cution, with only a limited fault-tolerance capability provided to deal with any
unforeseen changes in the environment. In open dynamic environments, on the
other hand, runtime changes in the execution environment are a norm. These
changes might be in the form of changes in the resources available to a service,



which in turn affect the QoS provided by the service or the availability of the
service itself. Runtime changes in the execution environment therefore call for an
approach for self-adaptive service composition able to deal with such changes.

The above challenges have motivated our work on developing an approach
for dynamic and adaptive composition of autonomous services, called Dino. In
this paper, we give an overview of the Dino approach, and discuss how it helps
in meeting the above challenges effectively.

The rest of this paper is organized as follows. In Section 2, we discuss the
state of the art in service composition. In Section 3, we provide a detailed de-
scription of the Dino approach, including specifications of service requirements
and capability, and the runtime infrastructure provided by Dino for enabling
dynamic and adaptive composition of autonomous services. Finally, in Section
4, we conclude this paper and discuss future directions of our work on Dino.

2 State of the Art

In the last few years, there has been a significant amount of work done in the area
of service composition, mostly for composing Web services. The existing work on
service composition broadly covers two main areas: (1) specification languages for
describing service compositions, and (2) infrastructure for composing services.
Below, we give an overview of the work done in these two areas.

Specification languages for describing service compositions: Most of
the ongoing work on service composition, and in particular the standardization
effort so far, has been on providing specification languages for describing service
compositions. These languages are used for modelling a service composition as
a workflow of service interactions.

The interactions between service partners in a service composition can be
described either as an orchestration or a choreography. An orchestration describes
a local view of a service composition from the perspective of one service partner
and its interactions with other partners. A choreography, on the other hand,
describes a global view of a service composition comprising of all service partners
and messages exchanged between these partners.

A choreography-based approach is, in effect, a top-down approach where a
choreography is designed and analysed first, before it’s executed by the corre-
sponding service partners. An orchestration-based approach, on the other hand,
follows a bottom-up approach where each orchestration is designed and imple-
mented individually, while the resulting choreography is formed automatically
at runtime by the executions of these orchestrations. The main advantage of a
choreography-based approach is that it allows centralised analysis of a service
composition prior to its execution, which is not possible in orchestration-based
approaches where a choreography is formed on-the-fly.

However, a choreography-based approach presumes that all services partic-
ipating in a composition are known in advance. This is possible only if the



concrete providers for the participating services are also known in advance, be-
cause different providers providing the same type of service might have different
service requirements. That is, inclusion of different providers for a given service
might result in different compositions. Therefore, a global view of a service com-
position prior to its execution requires the knowledge of concrete service partners
forming the composition. This may not be possible in open dynamic environ-
ments, where concrete service partners can be discovered and composed only at
runtime, rendering choreography-based approaches inappropriate for such envi-
ronments. Orchestration-based approaches are better suited for open dynamic
environments, as here each service partner needs to model only its own inter-
actions with other services, and this can be done at an abstract level without
knowledge of the concrete service providers.

On the other hand, in order to counter the lack of centralised analysis
possibility available to orchestration-based approaches (when compared to
choreography-based approaches), stronger distributed analysis and runtime
enforcement techniques need to be developed for these approaches.

An emerging standard for describing a choreography is WS-CDL (Web Ser-
vices Choreography Description Language) [12], and that for describing orches-
trations is BPEL (Business Process Execution Language for Web Services) [2].
Both WS-CDL and BPEL are XML-based languages. A service orchestration
described in BPEL is like a flow-chart, specifying control logic and flows of in-
teractions between the host service partner (on whose behalf the orchestration
is being described) and other partners involved in the orchestration. Since WS-
CDL and BPEL have managed to emerge as de-facto standards for describing
choreographies and orchestrations respectively, we do not discuss other (mostly
similar in principle) service composition languages in this paper.

Infrastructure for composing services: The issue of providing infrastruc-
ture for composing services has received relatively less attention, as compared
to the research on providing specification languages for describing service com-
positions. A primary reason behind relatively less work in this area has been
an implicit assumption that once a service composition is described clearly, the
infrastructure simply needs to support the execution of the defined composition.
A popular example of infrastructural support for service composition is the im-
plementation of execution engines for service orchestrations defined in BPEL,
such as ActiveBPEL [1]. Such engines are responsible for simply carrying out
the execution of an orchestration process defined in BPEL, i.e. handling service
requests from other partners and invoking operations on other partners etc.

The role of a service composition infrastructure is much more important in
open dynamic environments, as compared to its role in restricted business envi-
ronments. BPEL has been originally designed, and mostly used, in the restricted
environments where service partners are known in advance, and service require-
ments and capability are not likely to change during execution. Therefore, BPEL
engines allow discovery and binding of partners either at design time or the latest



at deployment time. That is, once a binding is established, it cannot be changed
at runtime.

An extension to the BPEL infrastructure to allow discovery and invocation
of services at runtime, based on the semantic specification of services, has been
proposed in [6]. However, with this approach, a service partner is discovered
every time an operation is to be invoked, resulting in considerable performance
overhead. Moreover, this approach is an extension to BPEL, while our attempt
in this work is to provide a general infrastructure for service composition inde-
pendent of the implementation language of services.

Sycara et al. [11] propose a broker-based approach where brokers are dele-
gated the task of service composition. This approach is closest to our approach,
as our approach also relies on the concept of brokers for service compositions.
Even though we share the same aims, our approach differs from the above ap-
proach on several fundamental issues. For instance, our approach requires formal
description of service requirements, in addition to the description of service ca-
pability, to allow reliable automated matchmaking. In addition, our approach
focuses on explicit and detailed specification of QoS in the description of service
requirements and capability, as the QoS plays an important role in selecting a
service provider. One of the novel features of our approach is the comprehen-
sive support for automated adaptation of a service composition, which involves
monitoring the QoS being delivered and detecting any violation of the service
agreement established between service partners.

Yu et al. [14] also propose a broker-based approach for selecting and compos-
ing services based on their QoS. However, this approach assumes a choreography
view of the service composition to be available, and aims to identify optimum
service partners to be composed together in accordance with this choreogra-
phy view. Clearly, such an approach is not appropriate for the open dynamic
environments that we have been targeting.

3 The Dino Approach

W3C defines a service as “an abstract resource that represents a capability of
performing tasks that form a coherent functionality from the point of view of
providers entities and requesters entities. To be used, a service must be realized
by a concrete provider agent.” [13].

In the SOC paradigm, distributed software components interact with each
other by providing services to other components and consuming services provided
by other components. A software component providing a certain service is called
a service provider (SP), and a software component interested in consuming a
service provided by another component is called a service requestor (SR). SR and
SP are just the logical roles played by a software component. In fact, the same
software component can – and, in fact, is likely to – play the role of a SP as well as
SR in a given composition. That is, a component might provide certain services,
and at the same time require some services from some other components. Services
are provided and consumed by way of message exchanges between a SR and a



SP. We will simply refer to a software component providing and/or requiring a
service as a service entity when the role played by the component is not relevant.

The service composition approach of Dino builds on the idea of rich specifi-
cation of service requirements and capability to allow automated discovery and
selection of services. Dino provides a runtime infrastructure for service compo-
sition. The runtime infrastructure consists of a number of Dino brokers, which
are responsible for service discovery, selection, binding, delivery, monitoring and
adaptation. Detailed description of the various stages of service composition in
Dino is given below.

First, we introduce the concept of modes of a service entity. A service entity
might have alternative modes of operation, only one of which is active at a
given time. A change in mode is usually triggered by a change in the execution
environment of the service entity, such as a change in the resources available or
a change in user’s needs / preferences. A change in mode implies a change in the
internal configuration of a service entity. From an external perspective, a change
in mode might mean a change in service requirements or capability of the service
entity. Hirsch et al. [3] provide an architectural approach, based on the Darwin
architecture description language [5], for modelling different modes of a software
component in terms of differences in their required and provided interfaces. We
build on the foundational work by Hirsch et al. for modelling modes of a service
entity at the architecture level, and provide support for the different modes of
operation during service composition.

To illustrate the design and operation of Dino, we take an example from the
automotive domain, which is adopted from the case study used by Hirsch et al.
[3] for explaining the concept of modes. A service entity called Driving-Assistant
provides a route planning service (RPS) for providing route-guiding instructions
to a driver. Driving-Assistant, in turn, requires some other services to be able to
provide the route planning service. The services required by Driving-Assistant
depend upon its current mode of operation. That is, a change in mode might
imply a change in the service requirements of Driving-Assistant.

3.1 Service composition stages in Dino

3.1.1 Specification of service requirements and capability: Specifica-
tions of service requirements and capability play a very important role in the
automated composition of services. Ideally, these specifications should be as un-
ambiguous and comprehensive as possible. A simple syntactic specification of
a service interface, such as the one described using industry standard WSDL
(Web Services Description Language), does not offer a completely unambiguous
solution. Recent work on semantic specification of services, led by OWL-S [8],
aims to utilize shared ontologies for avoiding any potential ambiguity in service
descriptions.

In Dino, every SR is required to specify its service requirements in an XML-
based document called ReqDoc. Similarly, every SP is required to specify its
service capability in an XML-based document called CapDoc. Both ReqDoc and



CapDoc rely on OWL-S [8] for specifying service functionality, which is an OWL-
based ontology for the semantic specification of services. In addition, ReqDoc and
CapDoc provide special constructs for describing the QoS for each required and
provided service. Though OWL-S allows extension of its basic specification for
describing non-functional properties, we have decided in favour of maintaining
the functional and non-functional descriptions separately for easy manageability.
In particular, for every service, the functionality of the service is described in a
.owl file and the QoS is described in a .qos file. QoS parameters described in the
.qos file can refer to the service operations described in the .owl file, if required.

Both ReqDoc and CapDoc are divided into mode segments, with each mode
segment specifying services required or provided in the corresponding mode. Fig-
ure 1 shows a simplified version of the ReqDoc of Driving-Assistant service entity.
Driving-Assistant has three possible modes: autonomous, convoy and detour. In
the autonomous mode, the route is planned autonomously by Driving-Assistant,
and it requires only a GPS service and Map service. In the convoy mode, the
driver needs to follow another vehicle, and therefore Driving-Assistant requires
input from the route planning service of another vehicle. And in the detour mode,
the vehicle is guided by an external emergency system (to avoid some problems,
such as accident or works in the street), and therefore Driving-Assistant requires
highway emergency service (HES).

<ReqDoc name="Driving-Assistant">
 <mode name="autonomous">
  <service name="GPS" functional="gps-req.owl" qos="gps-req.qos"/>
  <service name="Map" functional="map-req.owl" qos="map-req.qos"/>
 </mode>
 <mode name="convoy">
  <service name="RPS" functional="rps-req.owl" qos="rps-req.qos"/>
 </mode>
 <mode name="detour">
  <service name="HES" functional="hes-req.owl" qos="hes-req.qos"/>
 </mode>
</ReqDoc>

Fig. 1. Requirements document of Driving-Assistance

In Figure 1, the .owl file referred by the functional attribute of a
<service> element contains the functional description of the service in
OWL-S, and the .qos file referred by the qos attribute contains the QoS de-
scription of the service. The name of a service is used for internal reference
only. Format of CapDoc is similar to that of ReqDoc. However, the functional
description in ReqDoc is more abstract than the one in CapDoc, as explained
below.

OWL-S description of a service consists of three parts: profile, process model
and grounding. Profile describes operations of a service complete with infor-
mation about their input messages, output messages, preconditions and effects.
Process model describes in detail what the service does in terms of atomic pro-
cesses that can be executed directly and composite processes that are formed by



combining other atomic and/or composite processes. However, composite pro-
cess descriptions are not relevant to the working of Dino, as these are used for
describing composite services (similar to BPEL) and are not used in the working
of Dino. Finally, grounding describes details of how to access the service includ-
ing details of communication protocols, serialization techniques etc. For more
details on OWL-S, please refer to [8].

The .owl file in ReqDoc specifies the OWL-S profile of a required service,
while the .owl file in CapDoc contains at least the grounding information in
addition to the OWL-S profile for a provided service. The advantage of OWL-
S is that the descriptions of the required and provided services can refer to
the shared ontologies for the common understanding of the terms used in the
descriptions. This helps in removing any ambiguity and allows for automated
matchmaking. Another advantage offered by OWL-S is that services can be
described following the principle of design-by-contract by including preconditions
and effects for every operation, as opposed to a simple interface specification that
can be described using WSDL.

Below we give a brief overview of the QoS specifications in a .qos file. Similar
to the .owl file, the .qos file also contains pointers to the shared ontologies for
the common understanding of the terms used in the QoS specification.

We assume that all QoS parameters are quantifiable. Examples of QoS pa-
rameters include domain-independent parameters like response time, through-
put, availability, cost, location (even though cost and location are not actually
‘quality’ parameters, these are usually correlated with other quality parameters),
and domain-specific parameters like accuracy of results, fidelity of data etc. Each
QoS parameter is specified in a <qos> element. Attributes of the <qos> ele-
ment are: name (specifying the unique name of a QoS parameter), operation
(reference to the service operation(s) in the .owl file to which this parameter
corresponds; if no operations are specified then this parameter corresponds to
all operations specified in the .owl file), unit (unit of measurement), minVal (for
numerically quantifiable values only; this is the lowest value of an offered QoS
and it appears in CapDoc only), maxVal (opposite of minVal, i.e. the highest
value of an offered QoS), mpVal (for numerically quantifiable values only; this
is the most preferred value of a required QoS and it appears in ReqDoc only),
lpVal (opposite of mpVal, i.e. the least preferred value of a required QoS), enum
(enumeration of discrete values; the order of enumeration is from the most pre-
ferred to least preferred when appearing in ReqDoc, while in CapDoc the order
is not important), confidence (confidence level of the service provider in these
values), priority (relative priority of this parameter compared to other param-
eters; it appears in ReqDoc only). Many of the above attributes are optional in
a QoS specification. An example specification for an offered QoS described in
CapDoc is shown in Figure 2.

A number of <qos> elements can be grouped together within an <and> or
<alt> element. An <and> element indicates a conjunction, i.e. all elements en-
closed within an <and> element hold together. An <alt> element, on the other
hand, indicates an exclusive disjunction, i.e. only one of the elements enclosed



<qos name="responseTime" operation="id1" unit="ms" 
 minVal="50" maxVal="250" confidence="0.99"/>

Fig. 2. QoS specification for an offered service

within an <alt> element holds. Either of these elements may contain other
<and> or <alt> elements in addition to the <qos> elements. An <alt> el-
ement can be used, for example, by a SP to indicate different alternative QoS
values it can offer, probably at different prices. An <and> element can be used
for grouping several <qos> elements together within an <alt> element, to
present these elements collectively as an atomic alternative.

The <and> and <alt> elements together allow specifying complex QoS
policies of service entities. These policies are used by Dino brokers for match-
making.

We assume that detailed description of the operations required and provided
by service entities is sufficient for automated matchmaking. The preconditions
and effects described in the OWL-S specifications of operations provide implicit
constraints on the order of invocation of these operations. The conversation
logic, i.e. what messages to exchange using these operations, is implemented
within the service entities involved in the exchange. The conversation logic can
be implemented in a conventional programming language or a special-purpose
service orchestration language like BPEL. However, if the conversation logic
is implemented in BPEL, the conventional use of BPEL needs to be modified
to take advantage of the Dino infrastructure instead of simply using a BPEL
execution engine. Next, we discuss the service discovery and selection in Dino.

3.1.2 Service discovery and selection: Once service entities have specified
their service requirements and capabilities in the respective ReqDoc and CapDoc
documents, they can utilize the Dino runtime infrastructure for collaborating
with other service entities by forming a service composition.

The process of service discovery is always initiated by a SR. A SR invokes a
Dino broker, and passes its ReqDoc to the broker. Additionally, the SR provides
the broker with an ordered list of modes that it is willing to accept. The list is
ordered according to the preference of the SR. It is possible that the SR provides
only a single mode that it is willing to accept. Providing a list of modes gives
more flexibility to the Dino broker such that if the most preferred mode of the
SR cannot be accepted due to unavailability of the required services, then the
Dino broker may attempt to satisfy the requirements for the next mode and so
on.

A Dino broker can be located anywhere in the network, e.g. on the same node
as a SR or on a trusted third party node. However, as discussed later, for the
better monitorability reasons, it is recommended that a Dino broker be hosted
on the same node as a SR interested in using the service of the broker.
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Fig. 3. Working of Dino broker

Upon invocation, the Dino broker begins search for the services that can
satisfy the service requirements specified in the ReqDoc passed to it. A search
for services is done using a number of different mechanisms, which are provided in
Dino with an aim to widen the chances for a positive search result. The search
mechanisms include searching a service registry such as UDDI extended with
OWL-S [10], local registry of Dino brokers where services can register, a search
engine such as a peer-to-peer search engine for services developed as a part of
the Dino project, or simply past records maintained by Dino brokers containing
the previous search results. Figure 3(a) shows a SR registering its ReqDoc with
a Dino broker, and Figure 3(b) shows the Dino broker searching for the required
services.

Although a CapDoc contains information on services that a SP can provide in
all its different modes, the published capability of the SP (i.e. the one published
on a service registry, or the one made searchable by a search engine) at a given
time contains information only on those services that the SP is currently able to
provide.

The search for candidate services is done by matching the functionality and
QoS. The functional matching is done by matching the OWL-S profiles de-
scribed in service requirements with the OWL-S specifications in service ca-
pability descriptions. For the functional matching, a number of matchmakers for
OWL-S specifications are available. We have used the OWL-S API developed
at MINDSWAP [7] for developing a matchmaker for functional matching. For
matching the QoS, we use our own matching algorithm. When more than one
service match a service requirement, the Dino broker uses a QoS-based selection
algorithm for selecting the best match.

Once the best match for each of the required services is selected, the Dino
broker establishes service agreements with the selected SPs.

3.1.3 Service delivery and monitoring: Once all the required services are
selected and the corresponding service agreements have been established, the
delivery of services from the selected SPs to the SR can begin. As mentioned



earlier, a service is delivered by exchange of messages between a SR and a SP.
Currently, we consider only point-to-point RPC style interactions between ser-
vice entities for service delivery. However, in future we plan to provide support
for other interaction styles, such as publish-subscribe and shared tuple space,
that might be useful for group communication in some service-oriented applica-
tions.

In the RPC style interactions in Dino, the SR sends a service invocation
message to the Dino broker. The Dino broker then forwards this message to
the corresponding SP. Similarly, the response from the SP is sent to the broker,
which then forwards this response to the SR. Figure 3(c) shows service interac-
tions between the SR and SP. SR and SP do not have a direct reference to each
other, and interact only through Dino broker. This is useful in case an adapta-
tion of the service composition is required, as discussed in the next subsection.
However, Dino provides flexibility to the SR to opt for a direct delivery of ser-
vice (i.e. without the involvement of Dino broker), if required, for example due to
hard real-time constraints on the response time etc. If direct delivery is desired,
then the <service> element in the ReqDoc contains a special attribute called
direct-delivery with a value of yes. In such a case, the Dino broker simply
provides a reference of the SP to the SR at the end of the service selection phase,
and the SR and SP interact with each other directly thereafter. However, the
default method of delivery is through a Dino broker.

When a service is delivered through a Dino broker, the broker is able to
perform syntactic mapping of the messages exchanged between the SR and SP,
when these messages have matching semantics but differing syntax, as explained
next. Recall that the matchmaking is performed on the basis of semantic specifi-
cations of service requirements and capability. However, there might be syntactic
incompatibilities between the SR and SP, e.g. they might use different names for
an operation while assuming the same semantics for the operation. To avoid this
problem, the SR always sends messages using the same nomenclature as in the
profile used to specify service requirements in ReqDoc. The Dino broker inter-
nally translates these messages into the nomenclature expected by the SP, using
the information available from the SP’s grounding information. The response
returned by the SP is similarly translated back by the Dino broker before being
forwarded to the SR. This translation is facilitated by the OWL-S API [7].

Apart from the syntactic mapping, Dino also provides support for translating
messages across heterogeneous communication protocols. This implies that the
SR and SP might use otherwise-incompatible communication protocols, but are
still able to communicate with each other. This kind of translation is made
possible by integrating Dino broker with an underlying technology called Service
Bridge, which is developed as a part of the Dino project. As the name indicates,
a Service Bridge is able to translate messages dynamically across heterogeneous
communication protocols. More details on the Service Bridge can be found in
[9].

Delivery of messages is carried out in a transactional manner by Dino bro-
kers. A failed delivery is retried several times (with the actual number of retries



dependent upon the current network conditions) to ensure reliable delivery of
messages. In future, we intend to provide support for secured delivery of mes-
sages using the Dino runtime infrastructure.

In addition to supporting delivery of service messages, Dino brokers play
an important role in monitoring the service agreements. This involves mainly
monitoring the QoS being delivered, and detecting any violation of the service
agreement. The actual monitoring is performed by collaboration between the SR
and Dino broker. This is because only a few QoS parameters can be monitored
independently by the Dino broker (such as availability), while others (such as
accuracy of results) can be monitored by the SR only. For some parameters, such
as response time, even though the precise values can be obtained when monitored
by the SR, reasonably approximate values can be obtained when monitoring is
done by the Dino broker, if the broker and the SR are located on the same
network node. Our aim is to maximise the proportion of monitoring done by the
Dino broker, to relieve the SR from the overhead involved in monitoring. For the
parameters that can be monitored by the SR only, the SR provides feedback to
the Dino broker in case any violation of the service agreement is detected.

Next, we discuss the adaptation actions performed by the Dino broker in
response to any violation of the service agreement.

3.1.4 Service recomposition: When a Dino broker discovers a violation of
a service agreement (either by monitoring on its own, or by getting feedback
from the SR), it initiates adaptation actions. At this stage, we are not concerned
with the actual cause behind a violation – be it a hardware failure, mobility of
a node, or even malicious behaviour of a SP. The adaptation involves selecting
an alternative SP to replace the current SP.

If more than one SP had matched successfully during the initial search, the
Dino broker need not conduct a new search, and tries to establish a service
agreement with a SP that had previously matched successfully. Otherwise, the
Dino broker needs to search for an alternative SP, in a similar manner as done
initially. The criteria for selecting a SP from among several candidates remains
the same as during the initial search. It is possible that no alternative SP is
found for a required service. In this case, the SR can either inform a new mode
or lower its criteria for the selection of the required services in the current mode.

If an alternative SP is found successfully and a new service agreement is
established, the Dino broker is responsible for managing the handover from the
old SP to the new SP, ideally in a way transparent to the SR. The handover
typically involves transferring the state of the old SP to the new SP, so that
the new SP is able to resume the execution correctly. For the state transfer, we
argue for a change in the conventional way of maintaining the persistent state in
a service entity (i.e. the state that needs to remain persistent in between invoca-
tions). In the conventional way, the state of a software component is its internal
matter and is hidden from the external world. Even though some parameters of
the state can be queried, the structure of the state is largely oblivious to other
components. We argue that increasingly (and in particular in SOC), a SR might



be interested in switching its SP at runtime, especially for long running inter-
actions. At the same time, the SR would not like to loose the results of its past
computations, i.e. its state maintained by the SP. One option will be for the SR
to maintain a copy of the state relevant to it at all times. But this is likely to
create unnecessary overhead for the SR, and the SR may not even understand
the semantics of the state.

This is similar to a real world situation where a patient (i.e. SR) wants to
switch her family physician (i.e. SP), for example due to relocation. But at the
same time, the patient would not want to loose her past medical history records,
as these are very important for the patient. The common solution in this case is
for the patient’s current family physician to send her records to her new family
physician. These records are already in the form that any qualified physician
will be able to understand and make sense of. The same model of transfer of
records can be replicated in dynamic service recomposition, with the state of
the old SP being transferred to the new SP. This transfer can take place with
the Dino broker acting as an intermediary. A fundamental problem with this
scheme, however, is that the new SP should be able to understand and make
sense of the state being transferred to it, in order to use the state properly.

The only solution to the above problem is for all the SPs providing similar
functionality, i.e. the ones that can potentially replace each other at runtime, to
have a common shared understanding of the persistent state to be maintained.
Fortunately, this solution is realizable using the XML schemas, similar to the
ones referred by WSDL and SOAP for providing information on the data struc-
ture of messages. In particular, we argue that for the ‘transferable’ state (i.e. the
state that needs to be transferred from one SP to another, in case a SR wants to
switch the providers at runtime), the mutually-replaceable SPs should conform
to a shared XML schema of the state. Conforming to a shared XML schema
implies ability of a SP to expose its state according to the XML schema in case
the SP is to be replaced by another SP, as well as the ability of a SP to load a
state specified according to the XML schema in case the SP is replacing another
SP. We are currently working on formalizing the details of such a state transfer.

However, in case of an abrupt loss of a service, the state transfer between
SPs may not be possible. The concerned service entities need to implement
appropriate recovery mechanisms for such a case.

Once the new SP is ready, the service requests from the SR are forwarded to
the new SP instead of the old SP, even though the SR itself might be oblivious
to a change in the actual SP. During the time that the new SP is selected and
activated, any service requests from the SR are queued within the Dino broker,
to be forwarded to the new SP once the new SP is ready to accept requests.

A runtime change in the mode of a SR or SP might result in changes in the
corresponding service requirements or capability. The concerned Dino brokers
are responsible for carrying out recomposition of services accordingly to accom-
modate these changes. In particular, a change in the service capability might
result in the violation of a service agreement, and thus trigger adaptation of
the service composition as described above. Whereas, a change in the service re-



quirements results in the invocation of a Dino broker to discover and select new
SPs for the newly required services, in a similar manner as done initially, while
bindings with any obsolete (no longer required) services can be closed safely.

The dynamic service recomposition ability allows a Dino-managed service-
oriented application to continue its execution unhindered even in the wake of
unpredictable changes in its execution environment.

3.2 Implementation of the Dino runtime infrastructure

A prototype Dino broker is implemented in Java, and is accessible as a SOAP
Web service. A partial specification of the DinoBroker interface (showing basic
functions) is shown in Figure 4. A WSDL description is generated from the
DinoBroker interface for SOAP access.

public interface DinoBroker {

public String startSession();

public void quitSession(String sessionId);

public void registerReqDoc(String sessionId, String reqDocURL);

public SelectedModeResponse selectMode(String sessionId,

String[] requestedModes);

public Param[] invokeService(String sessionId, String serviceName,

Param[] params);

}

Fig. 4. The Java interface to the Dino broker

Continuing with the automotive case study used earlier on in the description,
we take another example scenario from this domain. A mobile client (in a mov-
ing vehicle) is interested in performing location-sensitive search for restaurants.
There are two modes in which the client can operate. The user-input-location
mode requires only the restaurant-search service. This service takes a num-
ber of inputs, including the location, which are used to search for restaurants.
In this mode, the client needs to ask the user for the current location. In the
gps-location mode, two additional services are required. The gps service re-
turns the latitude and longitude at which the client is located. This will be a
local service, possibly an OSGi component which accesses a GPS device. The
latlong-to-city service takes a latitude and longitude, and returns the town
or city which best corresponds to the location. Generally, the client will ask for
gps-location as the preferred mode and user-input-location as an alterna-
tive mode.

To start using the Dino broker, a client must call the startSession method.
This method returns a session identifier which must be used for all subsequent
communication with the Dino broker. As multiple clients can use the Dino bro-
ker simultaneously, and the Dino broker maintains state for each client, session
identification is necessary to match client calls to existing session state.



Having obtained a session, the client can register a ReqDoc using the
registerReqDoc method. This requires a URL to be provided from which the
Dino broker can retrieve the ReqDoc. Each session has a single ReqDoc, and
calling this method again results in an existing ReqDoc being replaced by the
new ReqDoc.

Once a ReqDoc has been registered by a client, it must select which mode
it wants to use. This will determine what services the Dino broker has to dis-
cover. The client provides an array of possible modes that it is willing to accept,
in the order of preference. The Dino broker attempts to satisfy the require-
ments of one of the modes and, if successful, reports which mode it has se-
lected inside a SelectedModeResponse object. If no mode can be satisfied, a
ServiceDiscoveryException is thrown. Once a mode has been selected, the
client can invoke services which are required in the selected mode, using the
invokeService method. The parameters which are passed to the service and
returned by it are OWL-S parameters which are translated by the Dino broker,
using the OWL-S API [7] and the OWL-S description of the invoked service,
into the form understood by the invoked service.

In the restaurant search scenario, the gps service is invoked with no param-
eters and returns a parameter representing latitude and longitude. This output
in then used as input to the latlong-to-city service which requires latitude
and longitude as input and returns the name of a city. This city name is then
used as one of the input parameters to the restaurant-search service.

4 Conclusion and Future Work

In this paper, we have identified challenges involved in composing distributed
autonomous services in open dynamic environments, and introduced the Dino
approach to meet these challenges effectively. Dino allows dynamic composition
of autonomous services by formalizing functional and non-functional specifica-
tions of service requirements and capabilities, and providing an infrastructure
for composing services at runtime. The runtime infrastructure provided by Dino
consists of a number of Dino brokers, which are responsible for discovery, selec-
tion, binding and delivery of services. In addition, the Dino brokers are responsi-
ble for monitoring the services being delivered and taking adaptation actions in
response to any violation of a service agreement or a change in service require-
ments, thereby enabling self-adaptive service compositions.

Although a prototype implementation has been built, Dino is still in its
evolutionary phase. Below we discuss some of the work that is ongoing or is
planned for near future.

We are currently working on supporting multiple interaction styles, such as
publish-subscribe and shared tuple space, in addition to the RPC style interac-
tions in Dino. We are also in the process of formalizing details of the runtime
state transfer during service recomposition, and evaluating the state transfer
approach by applying it to a number of case studies.



We will continue our work on developing the Dino prototype system for
evaluating current as well as future design features of Dino. We plan to deploy
the prototype in a real-world setting and carry out detailed evaluation, in large
part through our work in the EU-funded project SENSORIA.

In Dino, the service requirements and capability specifications provided by
individual service entities act as the validity constraints for a service composi-
tion formed by combining these entities. The runtime infrastructure provided by
Dino is responsible for ensuring that these validity constraints are satisfied at all
times. Correctness and completeness of these validity constraints is, therefore,
important in this respect. We are currently working on ways to analyse and ver-
ify the correctness and completeness of the service requirements and capability
specifications. We plan to build tools for the automated generation of service
requirements and capability specifications from the architectural descriptions of
the service entities, in addition to the verification of these specifications. With
the help of these tools, we intend to address the need for distributed analysis in
service orchestrations.
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