
Type:
Experiences

Title:
A XML based Policy-Driven Information Service

Abstract:
The use of XML as a vendor, implementation and operating system neutral means of
describing system events and system management policies is described. The need for
handling heterogeneity in emerging distributed systems by management solutions and
the utility of XML in this regard is discussed. The design and architecture of a
prototype implementation of a XML based policy-driven information server is
described.

Key-Words:
Emerging Management Technologies and Frameworks
XML
Policy-Driven Management
Experiences
Information Service

Authors:
Ramkumar Natarajan
Software Engineering Research Center
1398, Department of Computer Sciences
Purdue University, West Lafayette,
IN 47907-1398, USA
Ph: +1-(765)-494-7812
nrk@cs.purdue.edu

Paul McKee
BT Adastral Park, Martlesham Heath
Ipswich, IP5 3RE, UK
paul.mckee@bt.com

Aditya P. Mathur
Software Engineering Research Center
1398, Department of Computer Sciences
Purdue University, West Lafayette,
IN 47907-1398, USA
apm@cs.purdue.edu

A XML based Policy-Driven Information Service

Ramkumar Natarajan
Software Engineering Research Center

1398, Department of Computer Sciences
Purdue University, West Lafayette,

IN 47907-1398, USA
nrk@cs.purdue.edu

Paul McKee
BT Adastral Park, Martlesham Heath

Ipswich, IP5 3RE, UK
paul.mckee@bt.com

Aditya P. Mathur
Software Engineering Research Center

1398, Department of Computer Sciences
Purdue University, West Lafayette,

IN 47907-1398, USA
apm@cs.purdue.edu

Abstract
The use of XML as a vendor, implementation and operating system neutral means of
describing system events and system management policies is described. The need for
handling heterogeneity in emerging distributed systems by management solutions and
the utility of XML in this regard is discussed. The design and architecture of a
prototype implementation of a XML based policy-driven information server is
described.

1. Introduction and Motivation
There is a rapid growth in the number and flexibility of new services being

offered on current networks. Also, the technology keeps evolving and is in a state of
perpetual flux. These factors pose significant challenges for developers and
maintainers of large scale distributed systems.

Developers have responded to the challenge by increasing the use of software
components thus increasing the reuse of common functionality and speeding the
introduction of new services. As component technology matures we expect to see the
dynamic instantiation of services on users end systems or on general purpose
computing nodes within the network. Active networks [1] currently under
development allow network users to easily add new services. Users may supply their
own application code for execution on routers within the active network increasing
dramatically the range of available network functions dramatically.

Added to this is the fact that in a growing Internet economy, leveraging
existing technology infrastructure and integrating it with external infrastructure is
becoming critical to businesses. This leads to highly heterogeneous distributed
systems. The explosion in the number and flexibility of applications, coupled with
the heterogeneity of emerging distributed systems will demand flexible and novel
management solutions to both system and service management.

We believe that a successful management solution in such an environment
must possess the following attributes:

• Ability to devolve authority to the lowest possible level, in many cases to the
clients themselves. This demands a very flexible approach to system management,
where there should be no restriction on the degree of delegation allowed. This
kind of delegation is required due to the sheer scale of Internet based distributed
systems.

• A vendor, implementation and operating system neutral information model for
resource management to facilitate interchange of management information. The
model must be capable of adequately representing any entity of the system. These
entities can be a network, a server, a service or any other computational or storage
device. The model should also be extensible to support emerging entities in the
system. Such an information model is a must given the heterogeneity and
dynamic nature of emerging distributed systems.

• Ability to be tailored at run-time to meet new requirements, either in terms of
providing additional functionality or adapting to environmental changes. Given
the dynamic nature of evolving network systems, any management solution must
be extensible and adaptable to the changing environment.

• Ability to interact and co-operate with other management solutions. Increasingly,
services are provided by businesses, which in turn make use of other services
provided by other businesses. A successful management solution for such an
environment must be one that is capable of not only managing its own domain,
but also capable of co-operating and interacting with external management
solutions.

With these objectives in view, a prototype implementation of an information
server was built. Details of the design and implementation of the prototype are
presented in the rest of the paper, organized as follows. Section 2 discusses the
generic architecture of a system where such an information service can be used. The
use and advantages of XML in this scenario is discussed in Section 3. The
architecture and design of the information server is described in Section 4. Section 5
analyzes related work. Future directions are elaborated in Section 6.

2. Architecture of an Information Service
An Information Server can be viewed as a generic extension of the basic unit

of a publish and subscribe service. In this context, we define an Information Server as
one that can receive directives from management and act on the information that it
receives from system components based on these directives. The system component
[2], can be a service, an object, an interface, a method or a physical entity with a
corresponding representation in the system. The type of actions that an Information
Server can perform on the information it receives can range from simple subscription
based forwarding to sophisticated aggregation, filtering and logging of Information.
Apart from this, custom extensions can be provided to take specific actions based on
recognised information. From a management perspective, we have positioned the
Information Server as a means of tracking and handling system events. Thus the
information server in this context receives event information from the system
components and acts on them as per the policies specified by management.

In a previous publication [3], the initial structure of a network of store and
forward event servers that we propose to use in our heterogeneous management
system has been described. Implicit in this structure is the assumption that the entire
domain that is to be managed is partitioned and organized in some manner. One way
of achieving this partitioning and organization is based on logical partitioning of the
deployment space into zones [2].

Public
Networks

Producer

Consumer

Public Domain

Private Domain
Gateway Server

Lightweight
Server

Figure 1. Architecture of an Information Service
As shown in Figure 1, our proposed architecture contains two classes of

information servers, lightweight partially functional servers which can exist with any
entity in the system, and fully functional servers that will typically be located at
gateways between networks. The prototype implementation described in this paper is
a lightweight server. The lightweight servers are intended to support load sharing of
events within a single domain. Any event or policy it receives that is outside this
domain will be passed to the associated gateway server. At this point in the design we
place no constraint on the nature of events or policies except that they be well-formed
XML documents whose structure will be described in the next section. We propose a
generic event collection service that may be used in a variety of scenarios. Some
sample scenarios where such a service can be used are in handling:
• Events reporting failures that require corrective action
• Events that record usage of resources for billing
• Events relating to system security
• Events that collect and report routine usage data specific to the application

domain.
• Events that report configuration changes
• Events used in performance testing and debugging the application.

Similarly, no prescriptive policy syntax is required. As explained later, the
system uses a wrapper mechanism to identify a policy that conforms to a generic
template. However, the user has the freedom to alter the exact form of their policies
based on individual requirements. The system stores all policies received, and then
matches detected events against available policies. The policy generation can be
further augmented and automated, if the generator of events is capable of providing
policy templates for its events.

We propose to use multicast on this network for the distribution of policies,
events and requests. Roles assigned to the store and forward nodes control the
multicast groups they join and the sets of policies and events they may receive. Event
based systems are of considerable interest in supporting the evolution of current
distributed systems into those that will support the emerging class of dynamic
applications that require a response to asynchronous distributed happenings. Event
based systems allow any type of event or combination of events to be used as triggers
for further actions within the system. Some examples of event based management
systems are GEM from Imperial College [4] and work at the University of Cambridge

[5] both of which use the concept of event filtering, which we use as part of our
proposed architecture.

3. The Use of XML
One of the design goals of our system was flexibility. As stated earlier, the

system was aimed at being capable of handling heterogeneity. It was also aimed at
being extensible. Another important concern was the capability to utilize existing
communication protocols and security mechanisms.

As an example of the heterogeneity that is expected to be handled by the
system, an application may be created using components developed in different
languages, on different operating systems and we would like to use a single
management structure. As mentioned previously, we have proposed the use of XML
as an information exchange medium in component based systems and believe that it is
of equal applicability in this management context.

XML was proposed by the World Wide Web consortium (W3C) [6] as a
simplified form of SGML and a replacement for HTML. It allows the separation of a
document’s content and any visual presentation. An advantageous spin off of this
separation is the use of XML in applications where visual display is not important,
and the document’s contents in this case being treated purely as data. XML is being
used to describe components and applications in a vendor and language neutral way
and therefore already has a role in distributed systems. XML is also being used as a
data interchange format between components and applications in loosely coupled
large-scale applications.

XML provides a simple standard way to delimit and interpret text data. It
provides a set of rules for forming semantic tags that break a document into parts and
identifies those parts. Unlike the fixed set of tags in HTML, XML is extensible; it is a
meta-markup language and the user can define tags as needed. XML tags name the
element being described and named attributes modify the tagged structure. This
flexibility allows the user to formally describe a syntax they have developed and share
it in a programming language and platform agnostic way with others. XML is often
referred to as self-describing in that each item carries a name that can be referred to in
an external model. In addition, XML allows the structural definition of the data to be
specified with the data itself. This provides a mechanism for initial validation of the
data, so that it conforms to a generic pattern and then further interpretation of the
individual elements can be delegated to sub-systems that are capable of doing so.
Also, due to its status as a proposed replacement for HTML, XML transport receives
the same support that HTML currently has. In addition to all these factors, XML has
the added advantage of being a text-oriented format that makes it human-readable.

We propose that XML be used to describe events, policies and even more. A
component’s metadata can be described in XML and might contain a list of the events
it could produce. This would allow automatic examination of components and
component based applications to produce a list of events with a suggested list of
required policies. Such automation should contribute to the generation of
significantly more robust applications. Our initial policy representation used in this
work is based upon the work of Sloman et al. [7] [8] that describes a policy notation
for both authorisation (rights) policies and obligation (responsibility) policies.
Because we want flexibility in policy definitions, we have also examined the
representation of policies expressed using Ponder [9] being developed by Sloman et al
at Imperial College. Ponder is a more complicated policy language but it is still
possible to express policies as well formed XML documents.

 Driven by our stated need for flexibility our current system is based on
wrappers. Any communication entering the system conforms to a generic pattern of a
message, which is composed of a fixed (but extensible) header and a flexible body.
The header of the message is analyzed to identify the message type and the message is
passed on to the appropriate sub-system for further processing. Thus, both events and
policies arrive in the system as messages with a header. The header contains
information that is used in interpreting the contents of the body. It also contains
information on the intended recipient of the message, which can be a sub-system of
the information server or any other entity in the system. We therefore make no
assumptions about the policy definition language or event structure. Each message
will be handled or matched according to its own document type definition. The
overall structure of an incoming message containing an event is described in Figure 2.
As mentioned above, the event template consists of a fixed header and a flexible
body. This is a generic template for an event message and can be extended by
embedding XML fragments into the individual fields that could be interpreted further.

Figure 2. Template of an Event message

Should the message contain a policy then the template shown in Figure 3 is
applicable.

.
Figure 3. Template of a Policy Message

Figure 3 is the generic template for any policy entering the system. The actual
data pertaining to the policy is stored in the policydata field. As an example, the

policydata field structure for one of the sub-systems of the information server is
shown in Figure 4.

Figure 4. Policy data for the EventHandler sub-system

As can be seen from the above example, using XML lends itself to easy
extension of the generic templates to match specific requirements or any particular
representation of events and policies that the user might choose.

4. Architecture of an Information Server
Figure 5 shows the overall architecture of the information server prototype

implementation. The prototype has been implemented completely in Java.

C
om

m
unication R

eceivers

R
outer

XML Parser

PP

EC

EP

EP

MP

Policy Handler

Policy Registrars

Event Handler

Policies

Events Event Logger

Event
Log

Event Filter

Registry
Registry
Requests Forwarder

XML Fragments

Communication Senders

EC PU MT

PP: Policy Provider
EC: Event Consumer
EP: Event Producer
PU: Policy User
MP: Message Producer
MT: Message Target

Policy
Store

Figure 5. Architecture of an Information Server

4.1 Users of the Information Server
Before analyzing the architecture in detail, here is a brief overview of the

proposed users of the information server. The users of the server can be broadly
classified into two groups: Information senders and Information receivers. It is
possible that the same component is both an information sender as well as a receiver.
Information senders can be further classified into the following categories:
• Event Producers, which send information about local events to the server.

• Event Consumers, which can register interest in specific or generic events from
individual Event Producers or classes of Event Producers.

• Policy Producers, who can generate policies that can control the usage and
operation of the information server.

• Message Producers, who can produce messages that can be routed to their
destinations by the Information Service, provided the service has knowledge of
the destination.

Similarly, the Information receivers can be categorized as follows:
• Event Consumers, which receive information on event occurrences for which they

have registered an interest with the service.
• Message Targets, who can register with the service in order to receive messages

targeted at them.
• Policy Users, who are the targets of propagated policies that are relevant to them.

4.2 Communication Layer
The system was designed keeping in mind the need to separate communication

mechanisms from the operation of the server. Thus, communication was
implemented as a separate controllable layer. This layer acts as the single point of
contact between the external world and the server and is in turn controllable through
policies sent to the system. Due to this separation of communication from the
operation of the server, it is possible to use different protocols for the communication.
This flexibility aids interoperability between heterogeneous systems and ultimately
will allow the choice of transport protocols that offer definite qualities of service, or
guarantees of correctness for different classes of communication. At present, as a
lowest common denominator approach, a simple TCP/IP based communication
mechanism has been implemented. At the client end, a similar abstraction is provided
that hides the complexity of the underlying communication from the client. To
achieve this, a simple multicast-based discovery mechanism has been implemented
that lets clients connect transparently with an Information Server. The discovery
mechanism itself has been implemented as a swappable component, so if needed
directory services such as JNDI or similar alternatives can be used.

4.3 Router
The flexibility of the server in handling various message types correctly and

its extensibility to handle new message types is implemented through the router
component. The router parses the incoming XML document and proceeds to analyze
the header in detail. At present, we are using the Xerces XML parser from Apache
[10] and parsing the incoming document into a DOM tree [11]. The rationale behind
parsing the incoming documents into a DOM tree is that the documents are expected
to be small (typically around 1 KB). Apart from this, the DOM tree representation
lends itself nicely to the handling of documents whose actual structure is determined
by the initial contents of the document itself. The router examines the header portion
of the incoming message to determine the destination and type of the message. Once
this is done, it passes the parsed message on to the relevant sub-system if it is
intended for the server. Otherwise, it passes it on to the forwarder sub-system that
takes care of forwarding services.

4.4 Policy Handler
Any message that is identified as a policy by the router is passed on to the

policy handler. The policy handler is aware of the general template of a policy and
analyzes the policy message further to determine the intended subject (user) of the
policy. The policy handler then redirects the policy to the relevant policy registrar. In
our current implementation we have policy registrars associated with each sub-
system, that controls policies relevant only to that sub-system. It is possible to have a
central policy registrar that replaces these individual policy registrars, though it might
lead to a loss of flexibility in terms of controlling the policy registration mechanism of
the sub-systems.

4.5 Policy Registrar
The policy registrar is the component that is responsible for storing and

controlling the policies that pertain to a particular sub-system. The policy registrar
keeps track of policies, activating or de-activating them as mandated by the policy
producer or the policy itself. In addition, it also does garbage collection of the policy
store by removing expired policies from the store. The policy store itself is separate
from the registrar. At present, due to the continuous need for retrieving policies, they
are stored as parsed objects in custom data structures. As XML storage and retrieval
technology matures, we expect the policy store to be a standard XML database that
can be queried through conventional techniques.

4.6 Event Handler
Any message that is identified as an event by the router is passed on to the

event handler. The event handler is aware of the generic template of an event and
queries its policy registrar to find matching policies for each incoming event. Based
on the matching policies, the event handler takes appropriate action on the event. At
present, this could be either passing the event on to the event filter for sophisticated
filtering of the information, logging it into a local event log, discarding the event,
delivering it to interested recipients or taking a custom action specified by the policy.

4.7 Event Logger
The event logger acts as an intelligent interface to a local event log. If a

policy is in place to log events that match a particular template, then the event handler
redirects these events to the event logger. The event logger stores these events in the
local log. Apart from this, the event logger can be controlled by policies that state the
retention period for events in the local log, periodic purges of events matching
templates or transmission/back-up of the local store (selectively if needed). At
present, the event log itself is implemented to use XSet [12], an in-memory
implementation of a XML database with limited ACID semantics.

4.8 Event Filter
The event filter acts as the mechanism for devolving intelligence and authority

to the local information servers. It is envisioned that the event filters will act based on
policies to perform sophisticated prioritisation, filtering, aggregation, averaging,
threshold detection or other operations on incoming raw events. Through this
implementation of policy-driven filtering, the decision-making process of the
management system will be spread through the system rather than being concentrated
on individual nodes.

4.9 Registry
The registry acts the mechanism that keeps track of recipients interested in

receiving notifications on occurrences of events. It also keeps track of known
message targets, which is used in forwarding messages to the intended target. In this
aspect, the registry acts like a conventional address book. It must be noted though
that this functionality is not a necessary part of the service and its removal does not
affect the rest of the service. Again, the registry can be controlled by policies to allow
or deny registrations, determine lease duration for registrations etc.

4.10 Forwarder
The forwarder is the primary point through which all outgoing communication

from the information server is directed. It interacts with the registry to determine the
transmission mechanism for each message and takes care of the delivery. The
forwarder can also be controlled through policies to determine transmission
characteristics to meet protocol and reliability requirements

4.11 Implementation details and sample usage
The server implements prioritization of events and policies by using different

class-based queues for the messages after they cross the router sub-system. Thus,
based on their priority determined from controlling policies on the router, any
incoming message is placed into an appropriate class queue for the corresponding
sub-system.

At present, the server does not employ a pool of parsers to concurrently parse
incoming message fragments. The rest of the server is capable of handling messages
concurrently. Setting up a parser pool would lead to much better throughput of the
system in terms of number of messages processed per unit time.

Due to the flexible nature of the server, typical message sizes would depend
on the user’s information model for the messages. For the event and policy
representation that we have used in our work, messages are typically 1 KB long.

To conclude our discussion on the prototype we give a sample usage scenario
for such a server. There are many large-scale commercial products such as
webservers that are supplied with comprehensive management tools by their vendors.
These management tools are capable of managing single instances or large clusters
but are usually single vendor solutions. Our ultimate goal is the unified management
of an enterprise’s complete set of applications and not just those of a single vendor. If
our proposed solution is to be viable it is essential that we be able to generate and
collect events from such commercial products. To explore the feasibility of using our
information store with a commercial product, we used Weblogic Server by BEA
systems [17] as an example of a large scale widely used commercial product. The
Weblogic server provides an Event API [18] in which events are published internally
and external entities may subscribe to receive events of interest. The clients of the
server can specify conditions in an evaluator method. When these conditions are
satisfied the event occurs and a client specified action method is called. The action
method can generate an XML fragment and externalise it for collection by the
Information server. The Information Server can be used as an extension to such an
application that is capable of externalizing events. In such a situation, the Information
Server can be plugged into the application using a bridge like the one mentioned
above, that converts the native application events into XML fragments corresponding
to the Information Server’s input and vice-versa. This would add dynamic
management ability to the application by letting the manager specify policies that take

different actions, either on the application’s components or otherwise, based on
different events. As an example, a policy to divert traffic or alert administrators in the
presence of high loads can be enforced on a Weblogic server that is capable of
providing traffic events per unit time.

5. Related work
The information service we have proposed is quite different from conventional

event services or similar systems with publish-subscribe semantics. Unlike traditional
publish-subscribe systems, the proposed information service also has the capability of
implementing management policy at all levels. Thus apart from the simple filtering
capabilities of publish-subscribe systems, the information service can be made
capable of making management decisions at the lowest possible levels in the system.

Generally, existing event-based services can be categorized as channel-based,
subject-based or content-based. Due to the flexibility of XML in expressing self-
defining data, the proposed information service can be made to fit into any of these
three categories based on the requirements.

Among the channel-based event services is the CORBA Event Service [13].
The CORBA Event Service provides only rudimentary filtering of events and does not
lend itself to easy extensions for implementing additional functionality into the
service itself. The Jini distributed event model [14] provides another framework for
event services. The Jini event model puts the onus of event propagation on the event
producers and consumers themselves. This does not scale well and leads to complex
interactions in the system, in the absence of third party agents such as the one
described in this work.

SIENA [15] is an event-based service that offers a scalable and content-based
publish-subscribe mechanism. Gryphon [16] is another system that also provides
content-based messaging. These systems primarily focus on efficient matching and
distribution of messages based on their contents. In contrast, the information service
has been focussed on being flexible and capable of being extended at run-time to
perform actions based on matching events. Given the flexibility and expressive
power of XML, the notations of these systems can be expressed in XML. Thus it is
conceivable that the techniques developed in these two systems can be applied to the
information service to improve its efficiency.

6. Summary and future work
We have presented the motivation for a management solution that is capable

of handling heterogeneity and is highly flexible and extensible. The utility of XML in
the implementation of such a solution has been discussed. The design and
implementation of a prototype information server along with the architecture of a
generic information service has been presented. The information service’s relation
with similar work has also been discussed.

There are a lot of issues that need to be addressed with the current
implementation of the information server. The actual topology and implementation of
the proposed information service architecture is one of them. As mentioned earlier,
the service is envisioned as one that uses IP multicast in local domains and
heavyweight gateway servers to get across domains. Gryphon [16] and SIENA [15]
are systems that provide efficient techniques for propagation of events and policies
through such a service and this is an area of interest for future work.

Empirical studies need to be made to determine the scalability and efficiency
of such a service. Transactional semantics for policy implementation is another

improvement that can be made on the existing implementation. The current
implementation does not provide any transactional semantics or implementation
guarantees for policies. This can be modified to provide different classes of
guarantees for policy implementation ranging from best effort to guaranteed
implementation.

Storage and retrieval technology for XML based policies and events is another
area of active development. The use of emerging schema standards and XML
databases in the system can lead to improvements in reliability and error-recovery.
Conflict resolution in the presence of multiple governing policies is another important
area of work.

Integrating the information service with current management solutions should
be attempted and the impact of the service in a truly heterogeneous environment with
multiple management solutions needs to be demonstrated. The overhead associated
with such a service in this scenario has to be measured to determine the feasibility and
requirements of the service.

References
 [1] I. W. Marshall et al “Application-level programmable internetwork environment”. BT

 Technology Journal, Vol. 17, No. 2, pages 82-94, April 1999

 [2] Baskar Sridharan, Sambhrama Mundkur and Aditya P. Mathur. “Non-intrusive Testing,
 Monitoring and Control of Distributed CORBA Objects”. In Proceedings of the 33rd

 International Conference on Technology of Object-Oriented Languages, pages 195-206,
Mont-Saint-Michel, France, June 2000.

 [3] I. W. Marshall et al “Active management of multi-service networks”. In Proceedings of
the IEE colloquium 99/147 - control of next generation networks

 [4] M. Mansouri-Samani, M.Sloman, "A Generalised Event Monitoring Lanaguage for
 Distributed Systems", IEE/IOP/BCS Distributed Systems Engineering Journal, vol 4, no
 2, pages 96-108, June 1997.

 [5] M. Spiteri and J. Bates, "An architecture to support storage and retrieval of events",
 Proceedings of MIDDLEWARE 1998, IFIP International Conference on Distributed
 Systems Platforms and Open Distributed Processing, Lancaster, UK, September 1998.

 [6] http://www.w3.org/TR/1998/REC-xml-19980210

 [7] E. Lupu, M. Sloman, “A Policy Based Role Object Model”, In Proceedings of the 1st
 International Workshop on Enterprise Distributed Object Computing (EDOC’97),
 pages 36-47, Gold Coast, Australia, October 1997.

 [8] D. A. Marriott, M. Sloman, Nicholas Yialelis, “Management Policy Service for
 Distributed Systems”, Imperial College Research Report DoC 95/10, September 1995.

 [9] http://www-dse.doc.ic.ac.uk/policies/ponder.html

[10] http://xml.apache.org/xerces-j/index.html

[11] http://www.w3.org/TR/REC-DOM-Level-1

[12] http://www.cs.berkeley.edu/~ravenben/xset/

[13] Object Management Group, Event Service Specification v 1.0, December 1997.

[14] Sun Microsystems Inc., The Jini Distributed Event Specification (EV) v 1.0.1,
 November 1999.

[15] A. Carzaniga, D. S. Rosenblum, A. L. Wolf, “Interfaces and Algorithms for a Wide-
 Area Event Notification Service”, Technical Report CU-CS-888-99, Department of
 Computer Science, University of Colorado, October 1999.

[16] G. Banavar et al, “An efficient multicast protocol for content-based publish-subscribe
 systems”, In The 19th IEEE International Conference on Distributed Computing
 Systems (ICDCS ’99), Austin, TX USA, May 1999

[17] http://www.bea.com/products/weblogic/server/index.html

[18] http://www.weblogic.com/docs51/classdocs/API_em.html

