
IEEE Network • July/August 199916

he ability to rapidly create, deploy, and manage new net-
work services in response to user demands presents a
significant challenge to the research community and is a
key factor driving the development of programmable

networks. Results from this field of research are likely to have a
broad impact on customers, service providers, and equipment
vendors across a range of telecommunication sectors, calling for
major advances in open network control, network programma-
bility, transportable software, and distributed systems technolo-
gy. In the near future competition between service providers is
likely to hinge on the speed at which one provider can respond
to new market demands over another. Existing network archi-
tectures such as the Internet, mobile, telephone, and asyn-
chronous transfer mode (ATM) exhibit two key limitations that
prevent us from meeting this challenge:
• Lack of intrinsic architectural flexibility in adapting to new

user needs and requirements
• Lack of automation of the process of realization and deploy-

ment of new and distinct network architectures
In what follows we make a number of observations about the
limitations encountered when designing and deploying net-
work architectures. First, current network architectures are
deployed on top of a multitude of networking technologies
such as land-based, wireless, mobile, and satellite for a bewil-

dering array of voice, video, and data applications. Since these
architectures offer a very limited capability to match the many
environments and applications, the deployment of these archi-
tectures has predictably met with various degrees of success.
Tremendous difficulties arise, for example, because of the
inability of TCP to match the high loss rate encountered in
wireless networks or for mobile IP to provide fast handoff
capabilities with low loss rates to mobile devices. Protocols
other than mobile IP and TCP operating in wireless access
networks might help, but their implementation is difficult to
realize. Second, the interface between the network and the
service architecture responsible for basic communication ser-
vices (e.g., connection setup procedures in ATM and tele-
phone networks) is rigidly defined and cannot be replaced,
modified, or supplemented. In other cases, such as the Inter-
net, end user connectivity abstractions provide little support
for quality of service (QoS) guarantees and accounting for
usage of network resources (billing).

Third, the creation and deployment of a network architec-
ture is a manual, time-consuming, and costly process. To help
deal with complexity, network designers capture the blueprint
that parameterizes the design space into an architecture. Net-
work architectures identify the network hardware and soft-
ware components, and show how they can be arranged to

Spawning Networks
Andrew T. Campbell, Michael E. Kounavis, and Daniel A. Villela

Columbia University
John B. Vicente, Intel Corporation

Hermann G. De Meer, University of Hamburg
Kazuho Miki, Hitachi Ltd.

Kalai S. Kalaichelvan, Nortel Networks

0890-8044/99/$10.00 © 1999 IEEE

TT

Abstract

The deployment of new network architectures, services, and protocols is often man-
ual, ad hoc, and time-consuming. In this article we introduce “spawning networks,”
a new class of programmable networks that automate the life cycle process for the
creation, deployment, and management of network architectures. These networks
are capable of spawning distinct “child” virtual networks with their own transport,
control, and management systems. A child network operates on a subset of its
“parent’s” network resources and in isolation from other spawned networks.
Spawned child networks represent programmable virtual networks and support the
controlled access to communities of users with specific connectivity, security, and
quality of service requirements. In this article we present a framework for the
realization of spawning networks based on the notion of the Genesis Kernel, a
virtual network operating system capable of creating distinct virtual network
architectures on the fly. We discuss the motivation and principles that underpin
spawning networks and focus on the design of the transport, programming, and
life cycle environments, which comprise the main architectural components of the
Genesis Kernel.

12

IEEE Network • July/August 1999 17

build a complete environment to sup-
port service requirements. Thus, net-
work architectures clearly embody
the major building blocks and their
interaction. At its most advanced, the
creation process utilizes offline tools
for network planning, emulation, and
simulation. These tools are, however,
invariably narrow in scope and primi-
tive in use, and fail to highlight sig-
nificant integration problems. To the
network architect the creation pro-
cess is typically ad hoc in nature,
based on handcrafting small-scale
prototypes that evolve toward
widescale deployment. There is a
need to design architectures based
on solid theoretical foundations that
call for clearly reasoned system-level
models. Fourth, multiple parameteri-
zations of the network design space
are needed and should be used for
systematic exploration before the
final realization of the architecture is deployed. Such capabili-
ties hardly exist, and as a result the deployment cycle is typi-
cally a “blind” iterative process based on “design, deploy, and
analyze.” While such a trial and error approach is essential
when assessing the advantages and disadvantages of selecting
a particular subset of the architectural design space, an archi-
tectural design methodology is needed to support such capa-
bilities. As a result, the network life cycle process is iterative,
lacking systematic exploration of the network design space.

In response to these limitations, we argue that there is a
need to propose, investigate, and evaluate alternative network
architectures to the existing ones (e.g., IP, ATM, mobile).
This challenge goes beyond the proposal for yet another
experimental network architecture. Rather, it calls for new
approaches to the way we design, develop, deploy, observe,
and analyze new network architectures in response to future
needs and requirements. We believe that the design, deploy-
ment, architecting, and management of new network architec-
tures should be automated and built on a foundation of
spawning networks, a new class of open programmable net-
works. We describe the process of automating the creation
and deployment of new network architectures as spawning [1].
The term spawning finds a parallel with an operating system
spawning a child process. By spawning a process the operating
system creates a copy of the calling process. The calling pro-
cess is known as the parent process and the new process as the
child process. Notably, the child process inherits its parent’s
attributes, typically executing on the same hardware (i.e., the
same processor). We envision spawning networks as having
the capability to spawn not processes but complex network
architectures. This is a radical approach to architecting and
deploying next-generation networks.

Spawning networks support the deployment of pro-
grammable virtual networks. We call a virtual network installed
on top of a set of network resources a parent virtual network.
We propose the realization of parent virtual networks with the
capability of creating child virtual networks operating on a sub-
set of network resources and topology, as illustrated in Fig. 1.
This is a departure from the operating system analogy. The
two architectures (i.e., parent and child) would be deployed in
response to possibly different user needs and requirements.
For example, part of an access network to a wired network
might be redeployed as a picocellular virtual network that sup-
ports fast handoff (e.g., by spawning a Cellular IP [2] virtual

network), as illustrated in Fig. 1. In this case the access net-
work is the parent and the Cellular IP network the child.
Another example is offered by virtual networks that can be
under the control of either a service provider (e.g., an Inter-
net Service Provider, ISP) or the customer. Child networks
operate on a subset of the topology of their parents and are
restricted by the capabilities of their parents’ underlying hard-
ware and resource partitioning model. While parent and child
networks share resources, they do not necessarily use the
same software for controlling those resources. Typically,
spawned network architectures would support alternative sig-
naling protocols, communications services, QoS control, and
network management to those of the parent architecture.

In this article we describe a framework for spawning net-
works based on the design of the Genesis Kernel, a virtual net-
work operating system capable of automating a virtual network
life cycle process; that is, profiling, spawning, architecting, and
managing programmable network architectures on demand.
The article is structured as follows. In the next section we pro-
vide an overview of programmable networks and discuss the
notion of spawning networks in relation to the field. For a com-
prehensive survey of programmable networks see [3]. Following
this, we present an overview of the Genesis Kernel and discuss
the principles that underpin spawning networks. We then
describe the three main architectural components of the Gene-
sis Kernel framework. We present the detailed design of the
transport, programming, and life-cycle environments, respec-
tively. The framework presented in this article offers a system-
atic methodology for spawning virtual network architectures
over the same physical network hardware. The implementation
of spawning networks raises a number of engineering and
research issues. We discuss open issues associated with imple-
menting the Genesis Kernel framework. Following this, we pre-
sent the related work and some concluding remarks.

Programmable Networks
A number of research groups are actively designing and devel-
oping programmable network prototypes. The Open Signaling
(Opensig) community [4] argues that by modeling communi-
cation hardware using a set of open programmable network
interfaces, open access to switches, routers, and base stations
can be provided, thereby enabling third-party software
providers to enter the market for telecommunications soft-

■ Figure 1. Spawning networks.

Child
virtual network

Network

Computing

Differential service
virtual network

Nested virtual network

Cellular IP
virtual network

Routelet

Separation

Base
station

Mobile device

End system Physical
network

Link

Router

Parent virtual
network kernel

Child virtual
network kernel

Virtual link

IEEE Network • July/August 199918

ware. The Opensig community argues that by opening up the
network devices in this manner, the development of new and
distinct architectures and services can be more easily realized.
Open Signaling, as the name suggests, takes a telecommunica-
tions approach to the problem of making the network pro-
grammable. Here there is a clear distinction between transport,
control, and management that underpin programmable net-
works, and an emphasis on service creation with QoS.

The Active Network community [5, 30] advocates the
dynamic deployment of new services at runtime mainly within
the confines of existing IP networks. The level of dynamic run-
time support for new services goes beyond that proposed by
the Opensig community, especially when one considers the dis-
patch, execution, and forwarding of packets based on the
notion of active packets. In one extreme case of active network-
ing, capsules [6] comprise executable programs, consisting of
code (e.g., Java code) and data. Active networks allow the cus-
tomization of network services at packet transport granularity,
rather than through a programmable control plane (which is
the goal of Opensig). Active networks offer maximum flexibili-
ty in support of service creation but at the cost of adding more
complexity to the programming model. The Active Network
approach is, however, an order of magnitude more dynamic
than Opensig’s quasi-static network programming interfaces.

A common set of characteristics [3] govern the construction
of programmable networks:
• Networking technology implicitly limits the programmability that

can be delivered to higher levels. For example, some technolo-
gies are more QoS programmable (e.g., ATM), scalable (e.g.,
Internet), or bandwidth-limited (e.g., mobile networks).

• Level of programmability indicates the method, granularity,
and timescale over which new services can be introduced
into the network infrastructure. This in turn is strongly
related to language support, programming methodology,

and middleware adopted. For example, distributed object
technology can be based on remote procedure call (RPC)
[7] or mobile code [6] methodologies, resulting in quasi-
static or dynamically composed network programming
interfaces, respectively.

• Programmable communications abstractions indicate the
level of virtualization and programmability of networking
infrastructure requiring different middleware and, poten-
tially, network node support (e.g., switch/router, base sta-
tion). For example, programmable communications
abstractions include virtual switches [8], switchlets [9],
active nodes [10], virtual base stations [11], and virtual
active networks [12].

• Architectural domain indicates the targeted architectural or
application domain (e.g., transport, signaling, manage-
ment). This potentially dictates certain design choices and
impacts the construction of architectures and services
offered, calling for a wide range of middleware support.
Examples include composing application services [13], pro-
grammable QoS control [8], and network management [14].

We believe that the introduction of new network architectures
on demand represents a difficult and complex problem. The
complexity stems from the fact that it is difficult to predict all
interactions between independently placed architectural com-
ponents inside the network. We broadly define a network
architecture as having the following generic components and
attributes:
• Network services, which the network architecture realizes as

a set of distributed network algorithms and offers to the
end systems

• Network algorithms, which include transport, signaling/con-
trol and management mechanisms

• Multiple time scales, which impact and influence the design
of the network algorithms

• Network state management, which includes the
state the network algorithms operate on (e.g.,
switching, routing, QoS state) to support con-
sistent services
Little work has been reported in the litera-

ture on automating the process of realizing dis-
tinct network architectures on demand.
Spawning networks address this limitation by
automating the network life cycle, providing a
systematic approach to the design, deployment,
and management of distinct internetworking
architectures. Spawning networks provide a
foundation for composing and deploying virtu-
al network architectures through the availabili-
ty of open programmable interfaces [15],
resource partitioning [9], and the virtualization
of the networking infrastructure found in
today’s programmable networks [3].

The Genesis Kernel Framework
The Genesis virtual network kernel [29] repre-
sents a next-generation approach to the devel-
opment of programmable networks, building
on our earlier work on open programmable
broadband [8] and mobile networks [11]. The
Genesis Kernel has the capability to spawn
child network architectures that can support
alternative distributed network algorithms and
services. The Genesis Kernel acts as a resource
allocator, arbitrating between conflicting
requests made by spawned virtual networks.
Virtual networks spawned by the Genesis Ker-■ Figure 2. The Genesis Kernel framework.

Parent virtual
network kernel

Network
architecture #2

Child virtual
network kernel

Programming
environment

Metabus #2

Network
architecture #3

Metabus #3

Network
architecture #1

Metabus #1

Life cycle environment

Transport environment

(Root or parent virtual network)

Spawning

Network
architecture #4

Metabus #4

Binding interface
base

IEEE Network • July/August 1999 19

nel operate in isolation, with their traffic being carried securely
and independently from other networks. Furthermore, child
networks, created through spawning by parent networks,
inherit architectural components from their parent networks,
including life cycle support. Thus, a child virtual network can
be a parent (i.e., provider) to its own child networks, creating
the notion of nested virtual network architectures within a virtu-
al network. In this respect the child network becomes a
spawning network to its own child networks. In what follows,
we provide an overview of the Genesis Kernel framework as
illustrated in Fig. 2.

The Transport Environment
At the lowest level of the framework, a transport environment
delivers packets from source to destination end systems
through a set of open programmable virtual router nodes
called routelets. Routelets represent the lowest-level operating
system support dedicated to a virtual network. A virtual net-
work is characterized by a set of routelets interconnected by a
set of virtual links, where a set of routelets and virtual links
collectively form a virtual network topology. Routelets process
packets along a programmable data path at the internetwork-
ing layer, while control algorithms (e.g., routing and resource
reservation) are considered to be programmable using the vir-
tual network kernel. Thus, the transport environment repre-
sents a programmable data path at a router. Genesis routers
are capable of supporting multiple routelets, which are com-
ponents of distinct virtual networks that share computational
and communication resources.

The Programming Environment
Child routelets are instantiated by the parent virtual network
during spawning, as illustrated in Fig. 2. These routelets oper-
ate on a subset of the parent’s resources and operate indepen-
dently of the parent network. In addition, routelets are
controlled through separate programming environments. Each
virtual network kernel can create a distinct programming envi-
ronment that supports routelet programming and enables the
interaction between distributed objects that characterize the
spawned network architecture illustrated in Fig. 2. The pro-
gramming environment comprises a metabus that partitions
the distributed object space supporting communications
between objects associated with the same spawned virtual net-
work. The metabus is a per-virtual-network software bus for
object interaction. A binding interface base [8] supports a set
of open programmable interfaces on top of the metabus,
which provide open access to a set of routelets and virtual
links that constitute a virtual network.

The Life Cycle Environment
A key capability of the Genesis Kernel is its ability to support
a virtual network life cycle process that supports the dynamic
creation, deployment, and management of virtual network
architectures. The life cycle process comprises three phases:
• Profiling, which captures the blueprint of the virtual network

architecture in terms of a comprehensive profiling script.
Profiling captures addressing, routing, signaling, security,
control, and management requirements in an executable
profiling script that is used to automate the deployment of
programmable virtual networks.

• Spawning, which systematically sets up the topology and
address space, allocates resources, and binds transport,
routing, and network management objects to the physical
network infrastructure. Based on the profiling script and
available network resources, network objects are created
and dispatched to network nodes, thereby dynamically cre-
ating a new virtual network architecture.

• Management, which supports virtual network resource man-
agement based on per-virtual-network policy to exert con-
trol over multiple spawned network architectures. In
addition, virtual network architecting is supported, which
allows the network designer to analyze the pros and cons of
a virtual network design space.
As illustrated in Fig. 2, the metabus and binding interface

base also support the life cycle environment, which realizes the
virtual network life cycle process. When a virtual network is
spawned a separate virtual network kernel is created by the
parent network on behalf of the child. The transport environ-
ment of the child virtual network kernel is dynamically created
through the partitioning of network resources used by the par-
ent transport environment. In addition, a metabus is instantiat-
ed to support the binding interface base and life cycle service
objects associated with the child network. The profiling and
spawning of a child network is controlled by its parent virtual
network kernel. In contrast, the child virtual network kernel is
responsible for the management of its own network.

Design Principles
The Genesis Kernel framework is governed by the following
set of design principles.

Separation — Spawning results in the composition of a child
network architecture in terms of transport, control, and man-
agement algorithms. Child virtual networks operate in isola-
tion with their traffic carried securely and independent from
other networks. The allocation of parent network resources to
support a child virtual network is coupled with the separation
of responsibilities and transparency of operation between par-
ent and child architectures. We refer to this as the principle of
separation. Once a child network has been spawned, the child
has complete freedom to manage and control its own
resources in an autonomous manner based on its instantiated
architecture.

Nesting — A child network inherits the capability to spawn
other virtual networks, creating the notion of nested virtual
networks within a virtual network. This is consistent with the
idea of creating infrastructure that supports relatively long-
lived virtual networks (e.g., a corporate virtual network that
operates over a long timescale) and short-lived networks (e.g.,
a collaborative group network operating within the context of
the corporate network but only active for a short period).
Spawned networks represent virtual networks and their associ-
ated subscribers, where every child virtual network can be a
parent (i.e., provider) to its own child networks. The parent-
to-child relationship represents a virtual network inheritance
tree. As illustrated in Fig. 1, two child networks are spawned
by the parent network. The first child network is a Cellular IP
virtual network that supports wireless extensions to the parent
network. The other child network (illustrated in Fig. 1) sup-
ports a differentiated services architecture [16] operating over
the same network infrastructure. An additional level of nest-
ing is shown where the Cellular IP network spawns a child
network. The relationship between spawned networks in this
example is captured by an inheritance tree [17].

Inheritance — Child networks can inherit architectural compo-
nents (e.g., resource management capabilities and provisioning
characteristics) from parent networks. The Genesis Kernel,
which is based on a distributed object design, uses inheritance
of architectural components when composing child networks.
Child networks can inherit any aspect of their parent architec-
ture represented by a set of network objects for transport, con-
trol, and management. Inheritance allows the network designer

IEEE Network • July/August 199920

to leverage existing network objects when constructing new
child networks. In contrast, the child network composition may
be distinct from its parent, thereby not using inheritance.

Transport Environment

The Genesis transport environment consists of a set of open
programmable virtual nodes called routelets that are connect-
ed by virtual links to form the lowest programmable layer of a
virtual network kernel.

Routelet Architecture
The routelet operates like an autonomous virtual router that
forwards packets at layer three from its input ports to its out-
put ports, scheduling virtual link capacity and computational
resources. Routelets support a set of transport modules that
are specific to a spawned virtual network architecture, as illus-
trated in Fig. 3. A routelet comprises a forwarding engine, a
control unit, and a set of input and output ports.

Ports and Engines — Ports and engines manage incoming and
outgoing packets as specified by a virtual network profiling
script. A profiling script captures the blueprint of a virtual
network architecture, capturing the composition of the
routelet components. Ports and engines are dynamically creat-
ed during the spawning phase from a set of transport modules,
which represent a set of generic routelet plugins with well
defined interfaces and globally unique identifiers. Transport
modules can be dynamically loaded into routelets by the Gen-
esis Kernel to form new and distinct programmable data
paths. We define a generic set of transport modules that can
be extended to accommodate new classes of data path that
are made programmable:
• Encapsulators, which add specific headers (e.g., RTP, IPv4)

to packets at the end systems or routelets
• Forwarders, which execute particular packet forwarding

mechanisms (e.g., IPv6, MPLS, Cellular IP) at routelets

• Classifiers, which separate packets in order to receive special
treatment by routelets

• Processors, which process packets based on architecturally spe-
cific plugins (e.g., police, mark, monitor, shape, filter packets)

• Schedulers, which regulate the use of virtual link capacity based
on a programmable buffer and queue management capability
Child ports and engines can be constructed by directly

inheriting their parents’ transport modules or through dynam-
ic composition by selecting new modules on demand. For-
warding engines bind to input and output ports, constructing a
data path to meet the specific needs of an embryonic network
architecture. Input ports process packets as soon as they enter
the routelet and process them based on the instantiated trans-
port modules. In the case of a differential services routelet,
for example, the input ports would contain differential-ser-
vice-specific mechanisms (e.g., meters and markers used to
maintain traffic conditioning agreements at boundary routers
of a differentiated service [16] virtual network). A virtual link
is typically shared by user/subscriber traffic generated by end
systems associated with the parent network and aggregated
traffic associated with its child networks. This user and child
network traffic contend for the parent’s virtual link capacity.
The output port regulates access to communication resources
associated with a virtual link among these competing ele-
ments. Routelets can be used to support a wide range of net-
work architectures. For example, an IPv4 forwarding engine
can be combined with output ports that enforce suitable per-
hop behavior for differential services. Differential service
routelets would mark and forward IP packets based on a fixed
number of per-hop behaviors. Differential service virtual net-
works would use programmable signaling and policy mecha-
nisms to deliver differentiated QoS to their subscribers. In this
case, all the necessary signaling for the establishment of ser-
vice-level agreements can be made entirely programmable on
top of the programming environment.

Control Unit — A routelet is managed by a control unit that
comprises a set of controllers:

■ Figure 3. Routelet architecture.

Spawning
controller

Composition
controller

Allocation
controller

Data path
controller

Input port Output portPackets PacketsForwarding
engine

Binding interface base

Control unit

Metabus

Routlet state

CPU

IEEE Network • July/August 1999 21

• A spawning controller, which bootstraps child routelets
through virtualization

• A composition controller, which manages the composition of
the routelet using a set of transport module references and
a composition graph to construct ports and engines

• An allocation controller, which manages the computational
resources of a routelet

• A data path controller, which manages communication
resources and transportation of packets

The spawning, composition, and allocation controllers are com-
mon to all routelets associated with specific virtual networks. In
contrast, data path controllers are dynamically composed during
the spawning phase based on a profile script. Data path con-
trollers manage transport modules that represent architecture-
specific data paths supporting local routelet treatment (e.g., QoS
control using transport modules such as policers, regulators,
buffering, queuing, and scheduling mechanisms).

Routelets also maintain state information that comprises a
set of variables and data structures associated with their archi-
tectural specification and operation. Architectural state infor-
mation includes the operational transport modules reflecting
the composition of ports and forwarding engines. State infor-
mation also includes a set of references to physical resource
partitions that maintain packet queuing, scheduling, memory,
and name space allocations for routelets. Routelet state also
contains virtual-network-specific information (e.g., routing
tables, traffic conditioning agreement configurations).
Routelets generalize the concept of partitioning physical
switch resources introduced in [8, 9]. In [9], for example,
switchlets support the coexistence of multiple control architec-
tures operating over the same physical ATM switch. Routelets
apply the concept of resource partitioning to the internet-
working layer supporting the programmability of new internet-
working architectures with programmable QoS. Routelets are
designed to operate over a wide variety of link-layer technolo-
gies rather than simply ATM technology, as is the case with
virtual switches [8] and switchlets [9]. The underlying link-
layer technology, however, may impact the level of pro-
grammability and QoS provisioning that can be delivered at
the internetworking layer, as discussed earlier.

Nested Routelets
Nested routelets operate on the same physical node and main-
tain their structure according to a virtual network inheritance
tree, as discussed previously. Routelet nesting is built on the
network virtualization process, resource partitioning, and the

separation of control between parent and child networks. Child
routelets are dynamically created and composed during the
spawning process, where parent computational and communi-
cation resources are allocated to support the execution of a
child routelet. Each reference to a physical resource made by a
child routelet is mapped into a partition controlled and man-
aged by its parent. In addition, user traffic associated with a
child routelet is handled in an aggregated manner by the parent
routelet. The nesting principle helps deal with complexity and
maintain transparency of operation and separation between
child and parent networks. Nesting maintains the autonomous
nature of routelets. Routelets are unaware that packets are pro-
cessed according to inheritance trees. A routelet simply receives
a packet on one of its input ports associated with its virtual
links, sends the packet to its forwarding engine for processing,
and then forwards the packet to an output port, where it is
finally scheduled for virtual link transmission. Based on parent
policies, child packets may traverse one or more routelets and
their abstracted virtual links through a hierarchy, exiting at the
root of the tree onto the physical link.

We use an example scenario to illustrate how nesting is
supported in a Genesis router. As illustrated in Fig. 4, two
packets arrive at a Genesis router. Every packet arrival must
be demultiplexed to a given spawned virtual network. A virtu-
al network demultiplexer is programmed to identify each
packet’s targeted virtual network (i.e., its routelet) based on a
unique virtual network identifier assigned during the spawning
phase. Each packet that arrives at a Genesis router must
eventually reach the input port of its targeted virtual network
routelet. The routelet’s forwarding engine maps and forwards
packets to its output port for further packet treatment and/or
virtual link scheduling, as illustrated in Fig. 4. The first packet
in the example traverses the first level (child routelet). The
other packet traverses the parent network routelet directly.
Mapping is always performed between the child and parent
transport environments. Mapping is done through the man-
agement of transport module references by parent and child
composition controllers, which are capable of realizing specif-
ic binding models between the ports and engines of parent
and child networks. This mapping is performed at each virtual
network layer (i.e., routelet) down to the root of the tree.

The Genesis Kernel supports explicit virtual network demul-
tiplexing at the cost of an additional protocol field inserted in
the frame format. This is accomplished by inserting a virtual
network identifier between the internetworking and link and
layer headers. Virtual networks are thus allowed to manage

■ Figure 4. Nested routelets.

Input port Output port

Child routelet

Root/parent routelet

Virtual network traffic controlLocal traffic control
Local routing control

Output port

Forwarding
engine

Local traffic controlLocal routing control

Input port Forwarding
engine

Capacity
arbitrator

V
ir

tu
al

 n
et

w
or

k
cl

as
si

fie
r

V
ir

tu
al

 n
et

w
or

k
de

m
ul

ti
pl

ex
or

Packet

Packet

IEEE Network • July/August 199922

their own name space (e.g., addressing schemes) independent
of each other, utilizing different forwarding mechanisms. The
virtual network identifier is dynamically allocated and passed
into the routelets of a virtual network from the life cycle envi-
ronment of the parent kernel. The virtual network demultiplexer
maintains a database of virtual network identifiers which it uses
to map incoming packets to specific routelets. Genesis routers
can also be interconnected with legacy IP routers. Interoperabil-
ity is accomplished using encapsulation. During spawning, each
virtual network configures its own tunnels, which are supported
by Genesis routers at borders with legacy IP networks.

At each parent network, local routelet traffic is multiplexed
with child virtual network traffic. Multiplexing is managed by
a virtual network classifier and provisioned through virtual
link capacity class allocations. An arbitrator, located at the
parent’s output port, controls access to the parent’s link
capacity. Every packet is treated according to a virtual net-
work policy, which may be different at each routelet or virtual
network. Every packet traverses the nested hierarchy tree
until it is scheduled and exits onto the physical link.

The Programming Environment
Routelets interconnected by virtual links form spawned virtual
networks, providing a basis for making the data path pro-
grammable. Each network architecture consists of a pro-
grammable data path (i.e., the transport environment) and a
set of distributed controllers that realize communication algo-
rithms (e.g., routing, control, management), as discussed earli-
er. These distributed controllers use the programming
environment. We believe that IP network architectures can be
made programmable using open interfaces that allow access
to the routelet’s internal components (e.g., routelet state,
packet classifiers and schedulers). While the implementation
of routelet transport modules is platform-dependent, the pro-

gramming environment offers platform-independent access to
the router’s components, allowing a variety of protocols to be
dynamically programmed. The programming environment is
illustrated in Fig. 5 and discussed below.

The Metabus
A key architectural component for programmable virtual net-
works is the metabus, which dynamically partitions the dis-
tributed object space supported by the Genesis Kernel. At the
lowest level of the programming environment the metabus pro-
vides a foundation for the realization of distinct virtual network
architectures by enabling remote communications between dis-
tributed objects that form virtual network architectures.

Middleware technologies [7] hide the complexity of network
and operating system architectures from application develop-
ers, allowing distributed object components to communicate
over a uniform information/software bus. Middleware tech-
nologies typically support a single monolithic software bus per
distributed system for the interaction of all distributed objects
contained in the system. We argue that the concept of a single
monolithic software bus limits the rollout of new distributed
networked applications (e.g., virtual networking technologies)
that require secure, dedicated, and QoS-configurable commu-
nications. The metabus is the enabling technology for dynamic
provisioning of dedicated middleware support for networked
distributed applications. The concept of the metabus extends
the capabilities offered by the traditional software bus by sup-
porting networkwide spawning of multiple (possibly distinct)
metabuses that can serve as dedicated information buses for
spawned virtual network architectures.

Existing object request brokers (ORBs) [7] support a num-
ber of ad hoc solutions for realizing isolation between dis-
tributed object computing environments. For example, ORBs
can use different naming services to offer dedicated middle-
ware support to distributed objects. Naming services are con-

■ Figure 5. The programming environment.

Sp
aw

ni
ng

Architecting

Re
so

ur
ce

m
an

ag
em

en
t

Life cycle
server

Profiling

Routing

Transport

Virtual network
architecture

Life cycle
services

Spawner

Profiler

Architect

Maestro

QoS control

Management

VirtualRouteletState

VirtualDatapathController

VirtualSpawningController

Binding interface base

Metabus

VirtualCompositionController

VirtualAllocationController

IEEE Network • July/August 1999 23

figured manually by system administrators before distributed
applications can be launched. Isolation between applications
can be achieved through object classification supported by sys-
temwide naming or trading services. We believe that there are
scalability and performance issues when these techniques are
applied to spawning networks. We argue that in order to meet
requirements imposed by large-scale distributed systems (e.g.,
programmable virtual networks), distributed computing envi-
ronments need to dynamically provision dedicated middleware
support (i.e., dedicated software buses and object services on
a per-virtual-network basis). Thus, the network can be shared
and partitioned between diverse sets of distributed objects in
a secure, scalable, QoS-configurable manner.

Each virtual network supported by the Genesis Kernel has its
own metabus. The metabus is dynamically created as part of the
spawning process and operates on its associated virtual network
resource space. The spawning process instantiates a metabus for
each new virtual network, providing the necessary middleware
support for the interaction of all the architectural (e.g., routing)
and system (e.g., routelet) objects that characterize a new child
virtual network architecture. Routelets associated with the same
virtual network use their metabus to send and receive signaling
messages using remote method invocations. The metabus is a
general concept for programmable virtual networking. We have
chosen to realize the metabus abstraction as an orblet, a virtual
ORB derived from the Common ORB Architecture (CORBA)
[7] object programming paradigm. Both first-generation kernels
[8, 11] we have developed use CORBA technology for service
creation, signaling, and management.

The Binding Interface Base
Metabuses support a hierarchy of distributed objects that real-
ize a number of virtual-network-specific communication algo-
rithms, including routing, signaling, QoS control, and
management. At the lowest level of this hierarchy, binding inter-
face base [15] objects provide a set of handlers to the routelet
controllers and resources, allowing for the programmability of a
range of internetworking architectures using a programming
environment. The interfaces that constitute the binding inter-
face base are illustrated in Fig. 5. A VirtualRouteletState inter-
face allows access to the internal state of a routelet (e.g.,
architectural specification, routing tables). The VirtualSpawn-
ingController, VirtualCompositionController, and VirtualAllo-
cationController interfaces are abstractions of a routelet’s
spawning, composition, and allocation controllers, respectively.
The VirtualDatapathController is a container interface to a set
of objects that control a routelet’s transport modules. When the
transport environment (e.g., output port) is modified, the bind-
ing interface base is dynamically updated to include new mod-
ule interfaces in the VirtualDatapathController.

Every routelet is controlled through a number of imple-
mentation-dependent system calls. Binding interface base
objects wrap these system calls with open programmable
interfaces that facilitate the interoperability between routelets
which are possibly implemented with different technologies.
Routing services can be programmed on top of a Virtual-
RouteletState interface that allows access to the routing tables
of a virtual network. Similarly, resource reservation protocols
can be deployed on top of a VirtualDatapathController inter-
face that controls the classifiers and packet schedulers of a
routelet’s programmable data path.

The Life Cycle Environment
The life cycle environment provides support for the profiling,
spawning, and management of virtual networks. Profiling,
spawning, and management are composed of a set of services

and mechanisms that are common to all virtual networks. The
virtual network life cycle is realized through the interaction of
the transport, programming, and life cycle environments.

Profiling
The Profi l ing Process — Before a virtual network can be
spawned, the network architecture must be specified and pro-
filed in terms of a set of software and hardware building
blocks, annotating their interaction. These software building
blocks include the complete definition of the communication
services and protocols that characterize a network architecture
as outlined earlier. The process of profiling captures address-
ing, routing, signaling, control, and management requirements
in an executable profiling script that is used to automate the
deployment of programmable virtual networks. During this
phase, a virtual network architecture is specified in terms of a
topology graph (e.g., routers, base stations, hosts, and links),
resource requirements (e.g., link capacities and computational
requirements), user membership (e.g., privileges, confidential-
ity, and connectivity graphs), and security specifications. Pro-
grammability enables the architect to include addressing,
routing, signaling, control, and management mechanisms in
the profiling script. The output from this phase of the life
cycle is a comprehensive profiling script.

Topology Requirements — The first step in profiling a target
virtual network is the selection of nodes and links from a par-
ent provider network and the composition of a customized
topology graph. The details of the parent network are stored,
managed, and presented in a profile database maintained by
the parent virtual network kernel. The topology may span
wireline and wireless subnetworks and cover a wide area inter-
connecting a number of intranets, or be restricted to a few
local subnetworks. When profiling large-scale networks the
architect has the flexibility to provide an outline of the topolo-
gy graph, specifying strategic subnetworks or backbone routers
that should be included in the topology. In this case a profil-
ing tool completes the specification. Once the topology is
specified it is augmented with a user connectivity model and
membership assignments.

Architectural Components — The Genesis profiling system
allows the network designer to dynamically select architectural
components and instantiate them as part of a spawned net-
work architecture. For example, a number of routing proto-
cols for intra- and interdomain routing can be made available
using the component storage of the parent network (e.g., RIP,
OSPF, BGP). Similarly, QoS architectures based on well-
founded models (e.g., integrated [18] and differentiated ser-
vices [16]) can be dynamically selected and used for the
provisioning of QoS in virtual networks. Transport protocols,
such as TCP, Real-Time Transport Protocol (RTP), and User
Datagram Protocol (UDP), and network management compo-
nents, such as Simple Network Management Protocol
(SNMP), made available as software building blocks can be
instantiated on demand.

A number of important characteristics of a virtual network
are realized as component parts to routelets, including for-
warding algorithms, addressing schemes, QoS provisioning
capability, encryption, tunneling, and multicast support. These
features can be explicitly specified in the virtual network pro-
file, selected from a database of existing architectural compo-
nents, or inherited from a parent. Routelets can be explicitly
specified in the virtual network profile, or network designers
can select routelets from a library to realize a certain service.
An important part of profiling is the description of the
routelets and virtual links that connect and form a network-

IEEE Network • July/August 199924

wide topology. Ports and forwarding engines are composed to
meet the specific architectural requirements of the virtual net-
work architecture in terms of the characteristics of a pro-
grammable low-level data path.

Resource Requirements — Resource requirements for virtual
links are specified in terms of required bandwidth and capaci-
ty classes. Virtual links support capacity classes where child
network traffic classes are mapped and multiplexed. Capacity
classes represent general-purpose resource pipes allowing par-
ent networks to manage child traffic in an aggregated manner.
The following capacity classes are considered:
• A constant capacity class, which statically allocates band-

width to a virtual link based on a peak rate specification
• A controlled capacity class, which allocates capacity based

on an average rate specification
• A best-effort capacity class, which provides no explicit ser-

vice assurances

The Profiling System — The Genesis profiling system is illus-
trated in Fig. 6. Network architects utilize a graphical utility
profiling tool to generate the virtual network profile. The pro-
filing system interacts with a parent virtual network kernel
through a life cycle server, as illustrated. A profiler service
queries information about the parent network from a profile
database. The profile database provides information about the
topology and architecture of the parent network. The first
level of information exposes a coarse presentation of the net-
work topology, while the second level presents details on
intermediate nodes and links. The database provides quantita-
tive and qualitative characteristics of virtual networks.

Once the profiling script is generated the profiler service
distributes the script to a set of verifiers in order to apply a
number of validity checks. Verifiers interact with policy
servers to determine the validity of the specification of pro-

filed network architectures. The result of this interaction
determines whether the architecture can be safely spawned
by the parent network or not. The policy server maintains a
set of guidelines that are used to determine whether a pro-
filed child architecture can be spawned on top of a parent
network, and rules for architecting routelets and QoS provi-
sioning based on the resource management capability of par-
ent networks. Successful verification allows the life cycle
process to move to the spawning phase. Profiling script verifi-
cation is analogous to the compilation of a program from a
source code file.

Spawning
The Spawning Process — Once the network architecture has
been fully specified in terms of a profiling script it can be
dynamically created. The process of spawning a network
architecture relies on the dynamic composition of the com-
munication services and protocols that characterize it and the
injection of these algorithms into the nodes of the physical
network infrastructure constituting a virtual network topolo-
gy. The spawning process systematically sets up the topology
and address space, allocates resources, and binds transport,
routing, and network management objects to the physical net-
work infrastructure. Throughout this process a virtual net-
work admission test is in operation. The spawning phase
allocates resources to the newly created virtual network
through the process of virtualization. The virtualization pro-
cess realizes resource partitioning and isolation by creating
the illusion that each virtual network is the only system mak-
ing use of the underlying physical networking infrastructure
and resources. Based on the profiling script and available
network resources, network objects are created and dis-
patched to network nodes, thereby dynamically creating a
new virtual network architecture. Once this phase is com-
plete, the virtual network architecture begins executing on
the network infrastructure.

Spawning Services — Spawning child virtual network archi-
tectures includes creating child transport and programming
environments and then instantiating the transport, control,
and management objects that characterize network architec-
tures. Life cycle services are common services supported by
the Genesis Kernel. Spawning services include:
• A spawner service, which applies centralized control over

the spawning process interacting with the profiling and
management services

• Component storage, which is a distributed database of virtu-
al network software building blocks

• A set of constructor objects, which run on all the nodes of a
parent topology and interact with the spawner to create a
child network
Constructors realize the creation of routelets, the instantia-

tion of a new metabus, and the deployment of a child network
architecture on a single network node. The spawner is a dis-
tributed system, which directs the spawning process, executing
a profiling script. The component storage is a database of
transport modules and network objects which realize pro-
grammable control and management. The spawner
“announces” the child network’s bandwidth requirements to
the maestro service of the parent network. The maestro is a
distributed controller which performs admission testing on the
link capacity requirements of the child network. If the test is
successful, the network is spawned.

Spawning a Virtual Network — The creation process associat-
ed with spawning a child transport environment centers
around:■ Figure 6. Profiling.

Sp
aw

ni
ng

Architecting

Re
so

ur
ce

m
an

ag
em

en
t

GUI

Life cycle
server

Profiling

Profiler

Verifiers

Policy
server

Profile
database

Component
storage

IEEE Network • July/August 1999 25

• The creation and composition of routelets and data paths,
respectively

• The bootstrapping of routelets into physical routers based
on the child network topology

• The binding of virtual links to routelets, culminating in the
instantiation of a child transport environment over the par-
ent network
The nesting property allows a child network to inherit life

cycle support from its parent. A child routelet is bootstrapped
by a parent spawning controller, as illustrated in Fig. 7. The
spawning controller interacts with the allocation controller to
reserve a portion of the parent routelet’s computational
resources for the execution of the child routelet. Next, the
child routelet’s state is initialized. During this phase a spawner
acquires all the required transport modules unavailable in the
parent network. When the initialization of the routelet’s state
is complete, the child control unit is spawned. During this
phase the standard controllers are created, specifically the
spawning, composition, and allocation controllers. When the
bootstrapping process is complete, the child routelet is capa-
ble of undertaking all the remaining spawning tasks. The com-
position of a routelet’s ports and engines is carried out by the
child routelet’s composition controller. Finally, the child net-
work’s data path controller is composed, and its queues are
configured to forward traffic to parent network queues. The

last phase of spawning the child transport system is the bind-
ing of virtual links to a set of distributed routelets forming a
virtual network topology.

Following transport environment creation, the spawning
process creates a programming environment and launches the
child virtual network architecture. This process is managed by
the parent’s spawner and constructor services. A metabus is
dynamically created to support the child network’s distributed
object environment. Next, the metabus is initialized to support
binding interfaces. The spawner and constructors load net-
work objects from component storage, and instantiate and
bind them to the child network’s metabus. These distributed
objects represent communication protocols and algorithms
selected by the network architect to realize routing, signaling,
and management services of the virtual network architecture.

An Illustrated Example: Spawning Cellular IP — In what follows
we present a simple illustrative example of spawning a child
Cellular IP [2] access network and discuss the parent-child rela-
tionship illustrated in Fig. 7. The example focuses on a specific
node in the spawning process and does not illustrate the bind-
ing of routelets with virtual links to form the complete child
network. In our example scenario, the child network “over-
writes” the standard IP forwarding engine of its parent and
instantiates Cellular IP [2], a new IP protocol for supporting

■ Figure 7. Spawning architecture.

Pr
of

ili
ng

Architecting

Re
so

ur
ce

m
an

ag
em

en
t

Spawning

Life cycle
server

GUI

Spawner

Constructor Services

Programming
environment

Transport
environment

BIB

Arbitrator

C
la

ss
ifi

er

Packets

Packets

Child
CPU

Output port

Queue

Metabus

Child network
architecture

BIB

Control
unit

Routelet
state

Metabus

Control
unit

Routelet
state

Output
port

Parent

CPU

IEEE Network • July/August 199926

mobile hosts. The Cellular IP architecture is optimized to sup-
port fast local handoff control in access networks. Cellular IP
supports per-mobile host state, paging, routing, and handoff
control in a set of access networks that are interconnected to
the Internet through gateways. In Cellular IP, packets sent
from mobile hosts create routing caches pointing to the down-
link path so that packets destined to a mobile device can be
routed using these caches. Mobile IP is used to support mobil-
ity between gateways. Cellular IP transport modules loaded
into the parent network include a Cellular IP forwarder, soft-
state management, and handoff control modules.

This example shows how a parent wireline and access net-
work is dynamically extended to support the Cellular IP
architecture, services, and protocol. In addition, the child net-
work uses a very simple differentiated service approach to the
provisioning of QoS. The child network’s output ports con-
tain a low-priority packet discard transport module to
respond to congestion. Network traffic which exits via the
child output ports enters the output ports of the parent net-
work. While child network flows are treated according to
their traffic conditioning agreement by the differentiated ser-
vice network, their aggregated traffic is scheduled at a finer
granularity by the parent network according to the amount of
resources that have been assigned to it. Uplink control and
data packets received from a mobile device at a routelet’s
forwarder are used to set up per-mobile soft-state paging and
routing information which is used for any subsequent down-
link packet data delivery. A base station represents a special
case of a routelet with a number of additional transport mod-
ules instantiated to deal with the air interface. These wireless
transport modules (e.g., priority packet drop) are used to
respond to congestion that may be experienced over longer
timescales at the wireless link. As illustrated, a parent
routelet schedules the packets of a child Cellular IP virtual
network using a virtual network capacity scheduler called the
arbitrator, discussed in the next section.

Management
The Management Process — Once a profiled architecture
has been successfully spawned, the virtual network needs to
be controlled, managed, and possibly refined. The manage-
ment phase supports virtual network resource management
based on per-virtual-network policy which is used to exert
control over multiple spawned network architectures. The
resource management system can dynamically influence the
behavior of a set of virtual network resource controllers
through a slow timescale allocation and renegotiation pro-
cess. The management phase also subsumes the process of
refinement of spawned network architectures by observing
and controlling the dynamic behavior of virtual networks.
Through the process of architecting, a network designer uses
visualization and management tools to analyze the pros and
cons of the virtual network design space and, through refine-
ment, modify network objects that characterize the spawned
network architecture. For example, Cellular IP can be
refined to optimally operate in picocellular, campus, and
metropolitan-area environments through the process of
architecting and refinement.

Architecting Virtual Networks — During the management
phase, spawned virtual networks can be selected and visual-
ized. Once selected, networks can be observed, reprovi-
sioned, managed, and architecturally refined on the fly.
Management services include the ability to modify existing
architectural features using dynamic plugins (e.g., replacing
Cellular IP routing, paging, and handoff services) or recon-
figuring existing network services (e.g., modifying Cellular IP

system timers for better performance and scalability associat-
ed with the operating environment). Architecting represents
a methodology for automating the creation, refinement, and
provisioning of novel network services, protocol architec-
tures, and technologies, allowing the network designer to
add, modify, or delete network services as required. This
includes the addition or removal of complete spawned child
virtual networks. By tuning distributed network objects that
characterize network architectures, the network architect can
refine programmable virtual networks. The network architect
uses visualization tools to interact with target virtual network
kernels in order to exert control over multiple executing vir-
tual networks and their objects. The network architect can
modify or replace transport modules (e.g., input ports, out-
put ports, forwarding engines), install new network con-
trollers on top of virtual network programming
environments, and override or extend the life cycle environ-
ments of virtual network kernels.

Virtual Network Resource Management — The Genesis virtual
network resource management system [17] leverages the ben-
efits of the kernel hierarchical model of inheritance and nest-
ing, delivering scalable virtual network resource management.
It is governed by four basic design goals:
• Dynamic provisioning of virtual network resources based on

per-virtual-network policy and slow timescale resource
renegotiation

• Capacity classes, which provide general-purpose resource
pipes, allowing the underlying parent controller architecture
to manage child traffic in an aggregated and scalable manner

• Inheritance, which allows child networks to inherit the
resource management facilities and provisioning character-
istics of their parents

• Autonomous control, which allows child virtual networks to
manage user-level QoS independent of their
parent/provider network

Architectural Components — The Genesis virtual network
resource management architectural model comprises a num-
ber of distributed architectural elements, as illustrated in Fig.
8. With the exception of the delegate, arbitrator, and monitor

■ Figure 8. Virtual network management.

Maestro

Admission control
interfaces

Resource
management

interfaces

Spawner

Delegate Monitor

Auctioneer

Arbitrator

BIB

VirtualDatapathController

Metabus

IEEE Network • July/August 1999 27

elements, which operate on every routelet of a virtual net-
work, all other architectural elements (e.g., auctioneer, mae-
stro) can operate either locally with each routelet or remotely
as servers. A routelet object has a maestro and delegate, and
one arbitrator and monitor per virtual link.

The maestro is the central controller responsible for man-
aging the global resource policy within the virtual network or
virtual network domain. It operates on the virtual network
management timescale and is driven by current resource
availability and per-virtual network policy. Maestros set pric-
ing and rate strategies across managed resources and influ-
ence child virtual networks in a manner to promote the
efficient use of resources. A delegate, serving as a decentral-
ized proxy agent for a maestro, manages all local resource
interactions and control mechanisms on a routelet. An auc-
tioneer implements an economic auctioning model for
resource allocation supporting various strategies between vir-
tual network providers and subscribers. The auctioneer ser-
vices bids from child virtual networks over slow provisioning
timescales, promoting a highly competitive system among
subscribers. A monitor performs policing and monitoring on
individual parent resources. Policing ensures that child virtual
networks do not consume parent resources above and beyond
an agreed allocation of the virtual link capacity. An arbitrator
is a transport module and represents an abstract virtual net-
work capacity scheduler controlling access to each parent
resource. The arbitrator receives a virtual network policy
(capacity classes and weights) from the maestro over slow
timescale provisioning intervals upon completion of a
resource allocation process. The virtual link arbitrator man-
ages the access and control of the parent link capacity, based
on the virtual network policy. A hierarchical link sharing sys-
tem is composed of capacity arbitrators executing on distinct
virtual network routelets. Arbitrators support isolation and
transparency of operation between parent and child network
architectures.

Timescales — Virtual network resources are controlled on
slow performance management timescales (e.g., possibly in
the order of tens of minutes). We argue that this is a suitable
timescale for the resource management system to operate
over while allowing virtual networks to perform dynamic pro-
visioning as needed. We believe that it is unlikely that spawn-
ing networks would operate in a stable manner on faster
timescales. Network architecting takes place over much slower
configuration management timescales. Network architects
analyze the network design space and modify or replace net-
work objects that characterize distributed network architec-
tures. Profiling and spawning of virtual networks takes place
at the slowest timescales when new collaborative environ-
ments are created to satisfy communication needs of distinct
communities. We believe that the combination of slow
timescale, dynamic provisioning, and inheritance characteris-
tics make the design of the Genesis Kernel efficient, flexible,
and scalable. For full details on the Genesis virtual network
resource management system see [17].

Implementation Considerations
Spawning network architectures appears to be an exceedingly
difficult task. To achieve our goal of building spawning net-
works we plan (via a three-phase approach):
1. to deploy programmable foundation services, network con-

trollers (objects), and application programming interfaces
(APIs) required to program and support a set of well under-
stood baseline architectures over a spawning networks
testbed. The baseline architectures include a Cellular IP net-

work architecture [2], a differentiated services IP network
architecture [16], and a mobile ad hoc network architecture
[19].

2. to implement the life cycle environment that will allow us
to profile, spawn, and manage network architectures.

3. to architect new virtual network architectures from the
baseline set through spawning, visualization, and manage-
ment.
We plan to build a testbed based on our implementation

strategy and study its behavior. We believe that we need to
take a hands-on approach coupled with analysis of the Gene-
sis Kernel framework.

If phase three proves to be as easy as the life cycle process
suggests, discovering new, more useful architectures may
become vastly simpler than it is today. The three-phase imple-
mentation approach appears to be straightforward; however, it
raises a number of challenging issues. Phase two assumes that
it will be simpler to profile an architecture and determine the
location for the deployment of network objects than it is
presently. But, can this be done efficiently? How will manage-
ment become easier? One of the goals of our work is to build
more powerful tools to help with this architecting process,
allowing for a more systematic study of the design space
under operational conditions. The development of visualiza-
tion tools is a key contribution to phase three of the imple-
mentation strategy. However, the effective use of this depends
on more than a visualization tool. It depends on a well found-
ed understanding of what should be achieved vs. what may be
achieved, and how to modify a prototype network architecture
accordingly. Exploration of the network design space is a chal-
lenging issue that we will investigate during the implementa-
tion and evaluation of spawning networks.

Another challenging issue is related to the computational
efficiency and performance of spawning networks. Currently,
transmission rates are increasing more rapidly than the com-
putational power needed for routing and congestion control.
Programmable networks require more computational
resources than existing networks in order to support the intro-
duction and architecting of spawned virtual networks. Spawn-
ing network technology does not reduce the requirements of
programmable networks in terms of processing power and
storage capacity; however, spawning networks do not increase
these requirements either.

Transport modules should be capable of forwarding packets
as fast as handcrafted optimized code executing on routers
today. Results from extensible router architectures [20] indicate
that software-based packet scheduling and forwarding is viable.
Spawning networks may impact the performance of packet for-
warding due to hierarchical link sharing design that underpins
routelet nesting and virtual network isolation. However, fast-
track and cut-through techniques will be deployed during the
implementation phase to offset any potential performance costs
that may be associated with nested virtual networks.

Another question is related to the complexity associated
with profiling network architectures. To address this com-
plexity, the Genesis Kernel framework introduces the concept
of inheritance of architectural components and provisioning
characteristics to programmable networks. Inheritance allows
the network designer to leverage existing network objects
when constructing new child networks. The network designer
may also select architectural components from libraries to
realize certain architectural subsystems and network services.
In this manner complex virtual network kernel architectural
subsystems and services can be hidden from the network
designer, whereas other subsystems and services may be
accessible for customization. Currently, the Genesis Kernel
framework does not support the notion of multiple inheri-

IEEE Network • July/August 199928

tance. Child networks described in this article have a single
parent. This design decision allows investigation of the
spawning, nesting, and inheritance capabilities of the Genesis
Kernel, without burdening the architecture with the addition-
al complexity of supporting multiple inheritance. Future work
will consider extending the Genesis architecture to support
multiple inheritance of architectural components and provi-
sioning characteristics.

Related Work
The Tempest project has investigated the deployment of mul-
tiple coexisting control architectures in broadband ATM
environments [9]. Tempest supports programmability at two
levels of granularity. First, switchlets are logical network ele-
ments that result from the partitioning of ATM switch
resources supporting the introduction of alternative control
architectures in the network. Second, services can be refined
by dynamically loading programs into the network that cus-
tomize existing control architectures. Resources in an ATM
network can be divided by using a switch control interface
called a resource divider. In Genesis the divider mechanism is
integrated into the routelet rather than externally supported
as in the case of switchlets. This capability allows a child
routelet to spawn its own child networks, supporting the nest-
ing principle that underpins programmable virtual network
architectures.

Virtual private network services in broadband ATM net-
works have been the subject of a substantial amount of
research. In [21] the concept of a virtual path group is intro-
duced as a virtual network building block to simplify virtual
path dynamic routing. In [22] the concept of nested virtual
networks is introduced and an architecture that supports
resource management of broadband virtual networks present-
ed. The Genesis Kernel framework also uses the concept of
nesting in pursuit of the programmability and automated
deployment of network architectures spanning transport, con-
trol, and management planes at level three and above. Typi-
cally, spawned network architectures support alternative
signaling protocols, communications services, QoS control,
and network management from those of parent architectures.
A related project called Virtual Network Service (VNS) [23]
is investigating the provisioning of QoS in IP virtual networks.
The project proposes the partitioning and allocation of net-
work resources such as link bandwidth and router buffer
space to virtual networks according to some predetermined
policy. Genesis is investigating the use of an auctioning mech-
anism to perform virtual network resource management. We
argue that auctions can capture a diverse set of incentives
between various virtual network service subscribers over mul-
tiple timescales.

The X-Bone [24] project aims to automate the process of
establishing IP overlay networks. Currently, overlays (e.g.,
MBone, 6-Bone, A-Bone) are deployed manually by system
administrators, and the configuration of tunneled connectivity
between routers and hosts that characterize overlay networks
is handcrafted. X-Bone constitutes the natural evolution of
the MBone and uses a two-layer multicast IP system to facili-
tate the dynamic deployment of different overlays over the
Internet. X-Bone overlays are not programmable, however.
The Supranet [25] project considers a networkless society
where networks and service creation are facilitated and tai-
lored to group collaborative needs. A supranet is a virtual net-
work that requires definition of the characteristics of the
collaborative environment which benefits from the services it
provides. Group membership, network topology, resource
capacity, security mechanisms, controlled connectivity, and

secure multicast represent the requirements for a specific vir-
tual network service to any group.

The active networking community has investigated the
deployment of multiple coexisting execution environments
through appropriate operating system support [10] and an
active network encapsulation protocol. In [12] the use of
active networking technology is studied for the deployment of
IP-based virtual networks. In most current research in active
networks the dynamic deployment of software at runtime is
being accomplished within the confines of a given network
architecture and node operating system. By contrast, we inves-
tigate ways to construct network architectures that are funda-
mentally different from their underlying infrastructures.

A traditional challenge in the deployment of virtual private
networks has been the separation of traffic and service differ-
entiation between communities of users that share a common
infrastructure. Methods for creating virtual and secure private
network services include controlled route leaking, Generic
Routing Encapsulation, network-layer encryption, or link-
layer methodologies for virtualization. These techniques have
been used in a variety of commercial products. Finally, a num-
ber of recent Internet Engineering Task Force (IETF) pro-
posals have discussed IP virtual private networks [26]. Others
have addressed issues of performance [27].

Conclusion
We believe that the design, creation, and deployment of new
network architectures should be automated and built on spawn-
ing networks. We argue that this will result in better network
customization, resource control, and time to deployment for
new network architectures, services, protocols, and technologies.
In this article we present the design of the Genesis Kernel; a vir-
tual network operating system capable of spawning network
architectures on demand. The Genesis Kernel framework pre-
sents a new approach to the deployment of network architec-
tures through the automation of the virtual network life cycle. In
the next phase of our work we plan to implement [28] the
framework on a spawning testbed, taking into account the
implementation considerations discussed in the previous section.

Acknowledgments
This work is supported in part by the National Science Foun-
dation (NSF) under CAREER Award ANI-9876299 and with
the support of COMET Group industrial sponsors. In particu-
lar, we would like to thank Intel Corporation, Hitachi Limit-
ed, and Nortel Networks for supporting the Genesis Project.
John B. Vicente (Intel) would like to thank the Intel Research
Council for their support during his visit with the Center for
Telecommunications Research, Columbia University. Miki
Kazuho (Hitachi) would like to express his thanks to Hitachi
Ltd. for their support of his work on programmable networks
at Columbia University. Hermann G. De Meer is grateful to
Deutsche Forschungsgemeinschaft (DFG) for providing his
fellowship and research grant Me 1703/2-1. Daniel A. Villela
would like to thank the National Council for Scientific and
Technological Development (CNPq-Brazil) for sponsoring his
scholarship at Columbia University (ref. 200168/98-3). The
authors would like to thank the anonymous reviewers for
helping to improve this article. Finally, we would like to thank
Aurel A. Lazar (xbind Inc. and Columbia University) for his
contribution to the concepts of spawning networks.

References
[1] A. A. Lazar and A. T. Campbell, “Spawning Network Architectures,” White

Paper, Ctr. for Telecommun. Res., Columbia Univ., comet.columbia.edu/genesis,
Jan. 1998.

IEEE Network • July/August 1999 29

[2] A. G. Valko, A. T. Campbell, and J. Gomez, “Cellular IP,” draft-valko-cellu-
larip-00.txt, internet-draft, Nov. 1998, work in progress.

[3] A. T. Campbell et al., “A Survey of Programmable Networks,” ACM SIG-
COMM Comp. Commun. Rev., Apr. 1999.

[4] OPENSIG Working Group comet.columbia.edu/opensig
[5] DARPA Active Network Program, www.darpa.mil/ito/research/anets/pro-

jects.html
[6] D. Wetherall, J. Guttag, and D. Tennenhouse, “ANTS: A Toolkit for Building

and Dynamically Deploying Network Protocols,” Proc. 1st Int’l. Conf. Open
Architectures and Network Programming, San Francisco, CA, Apr. 1998.

[7] OMG, “The Common Object Request Broker: Architecture and Specification,”
Rev. 2.3, Nov. 1998.

[8] A. A. Lazar, K. S. Lim, and F. Marconcini, “Realizing a Foundation for Pro-
grammability of ATM Networks with the Binding Architecture,” IEEE JSAC,
Special Issue on Distributed Multimedia Systems, Sept. 1996.

[9] J. E. Van der Merwe et al., “Tempest: A Practical Framework for Network
Programmability,” IEEE Network, May 1998.

[10] K. Calvert, “Architectural Framework for Active Networks,” AN WG draft,
Aug. 1998.

[11] A. T. Campbell, M. E. Kounavis, and R. R.-F. Liao, “Programmable Mobile
Networks,” Comp. Networks and ISDN Sys., Apr. 1999.

[12] S. da Silva, D. Florissi, and Y. Yemini “NetScript: A Language-Based
Approach to Active Networks,” Tech. rep., Comp. Sci. Dept., Columbia
Univ., Jan. 27, 1998.

[13] E. Amir, S. McCanne, and R. Katz, “An Active Service Framework and Its
Application to Real-Time Multimedia Transcoding,” Proc. ACM SIGCOMM
’98, Vancouver, Canada, Aug. 1998.

[14] B. Schwartz et al., “Smart Packets for Active Networks,” Proc. 2nd Int’l.
Conf. Open Architectures and Network Programming, New York, 1999.

[15] A. A. Lazar, “Programming Telecommunication Networks,” IEEE Network,
vol. 11, no. 5, Sept./Oct. 1997.

[16] Y. Bernet et al., “A Framework for Differentiated Services,” draft-ietf-diff-
serv-framework-01.txt, internet-draft, Feb. 1999, work in progress.

[17] A. T. Campbell, J. Vicente, and D. A. M Villela, “Virtuosity: Performing Vir-
tual Network Resource Management,” Proc. 7th Int’l. Wksp. QoS, London,
U.K., May 1999.

[18] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet
Architecture: an Overview,” RFC 1633, June 1994.

[19] S-B. Lee and A. T. Campbell, “INSIGNIA: In-band Signaling Support for
QoS in Mobile Ad Hoc Networks,” Proc. 5th Int’l. Wksp. Mobile Multimedia
Commun., Berlin, Germany, Oct. 1998.

[20] D. Decasper et al., “Router Plugins: A Software Architecture for Next Gen-
eration Routers,” Proc. ACM SIGCOMM ’98, Vancouver Canada, 1998.

[21] M. C. Chan, A. A. Lazar, and R. Stadler, “Costumer Management and
Control of Broadband VPN Services,” Proc. 5th IFIP/IEEE Int’l. Symp. Inte-
grated Network Mgmt., San Diego, CA, May 1997.

[22] A. Yun, A. Leon-Garcia, and M. Jaseemuddin, “Virtual Networks: A Divide-
and-Conquer Approach to Network Resource Management,” Proc. OPENSIG
Wksp., New York, Oct. 1997.

[23] “Implementing Quality of Service Virtual Network Service (VNS) on
CAIRN,” www.cs.cmu.edu/~hzhang/VNS

[24] J. Touch and S. Hotz, “The X-Bone,” 3rd Global Internet Mini-Conf. in con-
junction with GLOBECOM ’98, Sydney, Australia, Nov. 1998.

[25] L. Delgrossi and D. Ferrari, “A Virtual Network Service for Integrated-Ser-
vices Internetworks,” Proc. 7th Int’l. Wksp. Network and Op. Syst. Support
for Digital Audio and Video, St. Louis, MO, May 1997.

[26] B. Gleeson, A. Lin, J. Heinanen, “A Framework for IP Based Virtual Private
Networks,” draft-gleeson-vpn-framework-00.txt, internet-draft, Feb. 1999,
work in progress.

[27] N. Duffield et al., “A Performance Oriented Service Interface for Virtual Pri-
vate Networks,” draft-duffield-vpn-qos-framework-01.txt, internet-draft, Nov.
1998, work in progress.

[28] The Genesis Project: Spawning Networks, comet.columbia.edu/genesis,
1998.

[29] A. T. Campbell et al., “The Genesis Kernel: A Virtual Network Operating
System for Spawning Network Architectures,” Proc. 2nd Int’l. Conf. Open
Architectures and Network Programming, New York, Mar. 1999.

[30] D. Tennenhouse and D. Wetherall, “Towards an Active Network Architec-
ture,” Proc. Multimedia Comp. and Networking, San Jose, CA, 1996.

Biographies
ANDREW T. CAMPBELL (campbell@comet.columbia.edu) is an assistant professor in
the Department of Electrical Engineering and member of the COMET Group at the
Center for Telecommunications Research, Columbia University, New York. His
areas of interest encompass programmable networks, mobile networking, distribut-
ed systems, and QoS research. He is a past co-chair of the 5th IFIP/IEEE Interna-
tional Workshop on Quality of Service (IWQOS ’97) and is currently co-chair of
the 6th IEEE International Workshop on Mobile Multimedia Communications
(MOMUC ’99). He received his Ph.D. in computer science in 1996 and the NSF
CAREER Award for his research in programmable mobile networking in 1999.

MICHAEL E. KOUNAVIS [StM] (mk@comet.columbia.edu) is a Ph.D. candidate and
graduate research assistant in the COMET Group at the Center for Telecommuni-
cations Research, Columbia University, New York. He received a Diploma in
electrical and computer engineering from the National Technical University of
Athens, Greece, in 1996, and an M.Sc. degree from Columbia in 1998. His
main area of research is the development of spawning networks. Over the past
two years he has been actively involved in mobile network programmability and
active transport over wireless networks.

DANIEL VILLELA [StM] (dvillela@comet.columbia.edu) received a degree in electri-
cal engineering in 1997 and an M.Sc. degree in electrical engineering in 1998
from the Federal University of Rio de Janeiro (UFRJ/COPPE), Brazil. In 1998 he
was awarded a scholarship from the Brazilian Government, through the Nation-
al Council for Scientific and Technological Development (CNPq - Brazil, ref.
number 200168/98-3), for pursuing his graduate study toward a Ph.D. degree
at Columbia University. Since 1998 he has been a Ph.D. student in the COMET
Group at the Center for Telecommunications Research, Columbia University, New
York. His current research focuses on programmable virtual networking and
resource management for virtual networks. He is a student member of the Brazil-
ian Computer Society (SBC).

JOHN VICENTE (john.vicente@intel.com) was a visiting researcher in the COMET
Group at the Center for Telecommunications Research, Columbia University, New
York during which time he contributed to the Genesis Project. He is also actively
engaged in the IEEE P1520 initiative for programmable interfaces for networks. He
is a member of Intel’s Information Technology organization, where he is involved
with strategy and technology in the areas of Internet QoS, policy-based network-
ing, and multimedia and programmable networks. He received his M.S. in electri-
cal engineering from the University of Southern California, Los Angeles, and his
B.S. in computer engineering from Northeastern University, Boston, Massachusetts.

HERMANN G. DE MEER [M] (hdm@comet.columbia.edu) received his Ph.D. from
the University of Erlangen-Nuremberg. He has been a postdoctoral fellow at
Duke University and the University of Texas at Austin. He was appointed an
assistant professor at the University of Hamburg in 1993. In 1998 he joined the
Department of Electrical Engineering, Columbia University, New York, as visiting
professor, having been awarded a research fellowship from the Deutsche
Forschungsgemeinschaft (DFG). His research interests cover distributed computer
and communication systems, QoS, and multimedia communications and perfor-
mance modeling.

KAZUHO MIKI [M] (kazuho@crl.hitachi.co.jp) received his B.E. and M.E. degrees
in electronics and communications from Waseda University, Tokyo, Japan, in
1990 and 1992, respectively. He joined the Central Research Laboratory of
Hitachi Ltd. in 1992, where he is engaged in research and development of ATM
switching and IP routing systems. Since 1998 he has been a visiting researcher
in the COMET Group at the Center for Telecommunications Research, Columbia
University. He is a member of IEICE of Japan.

KALAI S. KALAICHELVAN (kalai@nortelnetworks.com) is currently the director and
general manager in Nortel Networks responsible for next-generation routing ser-
vices software. In this role, his team will address architectural changes for IP net-
works and provide software solutions to meet fast time-to-market demands. He
has been with Nortel Networks over ten years in various areas of software
research and development and has been awarded the Nortel President’s Award
of Excellence on two occasions. He completed his Ph.D. in 1987 at the University
of Toronto.

