
Do Redundant Mutants Affect the Effectiveness and Efficiency of Mutation Analysis?

René Just

Dept. of Applied Information Processing
Ulm University

rene.just@uni-ulm.de

Gregory M. Kapfhammer

Dept. of Computer Science
Allegheny College

gkapfham@allegheny.edu

Franz Schweiggert

Dept. of Applied Information Processing
Ulm University

franz.schweiggert@uni-ulm.de

Abstract—Mutation analysis is an unbiased and powerful
method for assessing input values and test oracles. However, in
comparison to other techniques, such as those that rely on code
coverage, it is a computationally-expensive and time-consuming
method, especially for large software systems. This high cost is
due, in part, to the fact that many mutation operators generate
redundant mutants that may both misrepresent the mutation
score and increase the runtime of the mutation analysis pro-
cess. After showing how the conditional operator replacement
(COR) mutation operator can be defined in a redundant-free
manner, this paper uses four real-world programs, ranging
in size from 3,000 to nearly 40,000 lines of code, to show
the prevalence of redundant mutants. Focusing on the con-
ditional operator replacement (COR) and relational operator
replacement (ROR) mutation operators that create 41% of
all mutants in the chosen programs, the case study reveals
that the removal of redundant mutants reduces the runtime of
mutation analysis by up to 34%. Additional empirical results
show that redundant mutants can lead to a mutation score that
is misleadingly overestimated by as much as 10%. Overall, this
paper convincingly demonstrates that it is possible to improve
the effectiveness and efficiency of a mutation analysis system
by identifying and removing redundant mutants.

I. INTRODUCTION

Mutation analysis is a well-known test adequacy criterion

that can assess input values and test oracles through the

seeding of artificial faults into a system under test. Even

though many prior studies have shown it to be a powerful

metric [5], mutation analysis may be prohibitively time

consuming and computationally expensive in comparison to

other methods, such as those that employ coverage criteria.

Previous studies revealed that a subset of all applicable

mutation operators is sufficient to achieve a meaningful

result [14], [16]. Regarding the operators to be atomic, these

studies focused on reducing the number of mutation opera-

tors without incurring a major loss in the accuracy of the mu-

tation score. This paper considers these operators at a fine-

grained level and shows that their original definition implies

redundancy in the resulting set of mutants. Additionally, the

paper demonstrates, by means of a case study, how prevalent

those redundancies are in real-world applications and how

the inclusion of redundant mutants leads to an inaccurate

mutation score, thus making this metric less meaningful. In

addition to focusing on effectiveness, the paper empirically

demonstrates how reducing the set of mutants decreases the

runtime of the mutation analysis process. In consideration of

the question raised about the effect of redundant mutants on

efficiency and effectiveness of mutation analysis, this paper

makes the following contributions:

• A demonstration that the COR operator for replacing

conditional binary operators with all valid alternatives

should only apply a subset of replacements to avoid the

creation of redundant or trivial mutants.

• A determination of the actual number of mutants gen-

erated by applying the COR and ROR operators. Using

a well-known subset of mutation operators, the case

study computes the ratio of the number of COR and

ROR mutants to the size of the entire set of mutants.

• A case study that investigates how redundant mutants

affect the effectiveness and efficiency of mutation anal-

ysis for four real-world programs that range in size

from 3,000 to nearly 40,000 lines of code.

Since the contribution of this paper concerns the effective-

ness and efficiency of mutation analysis, Section II discusses

the basics of this technique and examines the definitions

of the mutation operators. Next, Section III furnishes a

more detailed view of the mutation operators and proposes

a sufficient and minimal set of replacements for the COR

operator. Section IV describes the case study, reports on

the empirical results, and addresses the potential threats

to validity. Section V describes related work and finally,

Section VI concludes the paper and outlines future work.

II. BACKGROUND ON MUTATION ANALYSIS

Originally introduced by Budd and DeMillo [1], [2],

mutation analysis is a fault-based technique for assessing the

quality of input values or testing strategies. After methodi-

cally seeding faults into an application, a mutation analysis

technique runs the test suite to assess its ability to find

the injected faults. In contrast to the traditional method of

error seeding (cf. [11]), the mutation analyzer systemati-

cally injects the faults, thus ensuring that the process is

reproducible and unbiased. The application of a mutation

operator produces faulty versions of the program under test,

referred to as mutants. That is, a mutation operator is a

formal description of a program transformation that produces

one or more mutated versions of the program.

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.162

720

Table I
SUFFICIENT REPLACEMENTS FOR THE LOGICAL CONNECTOR AND

Literals Original clause Sufficient mutations Subsumed mutations Subsumed operator UOI

a b a && b false lhs rhs a==b a ‖ b a!=b true !(a && b) !a && b a && !b

0 0 0 0 0 0 1 0 0 1 1 0 0
0 1 0 0 0 1 0 1 1 1 1 1 0
1 0 0 0 1 0 0 1 1 1 1 0 1
1 1 1 0 1 1 1 1 0 1 0 0 0

Table II
SUFFICIENT REPLACEMENTS FOR THE LOGICAL CONNECTOR OR.

Literals Original clause Sufficient mutations Subsumed mutations Subsumed operator UOI

a b a ‖ b a != b rhs lhs true a && b a==b false !(a ‖ b) !a ‖ b a ‖ !b

0 0 0 0 0 0 1 0 1 0 1 1 1
0 1 1 1 1 0 1 0 0 0 0 1 0
1 0 1 1 0 1 1 0 0 0 0 0 1
1 1 1 0 1 1 1 1 1 0 0 1 1

A wide variety of mutation operators have been proposed

for different purposes and programming languages (cf. [5],

[9], [10]). However, applying all mutation operators results

in a substantial number of mutants, especially for large

software systems, and thus executing and analyzing all of the

mutants can be very expensive. Responding to this challenge,

Offutt et al. studied the effectiveness of a subset of mutation

operators, revealing that this smaller group of sufficient

mutation operators could be applied without a substantial

loss of information [14]. While the actual subset that can be

employed depends on the programming language, this paper

considers the following set of mutation operators which are

supported by an established mutation testing tool [6], [7]

and commonly used in previous experiments [15], [16]:

• Operator Replacement Binary (ORB): Replace all oc-

currences of binary operators with all valid alternatives.

Since ORB replaces arithmetic, logical, shift, condi-

tional, and relational operators, the ROR and COR

operators studied by this paper belong to this class.

• Operator Replacement Unary (ORU): Replace all oc-

currences of unary operators with all valid alternatives.

• Literal Value Replacement (LVR): Replace all literal

values with a positive value, a negative value, and zero.

Additionally, all variables with a reference type are

replaced by a reference to null.

III. A DETAILED VIEW OF THE COR OPERATOR

Previous studies on the reduction of mutation operators

(e.g., [14], [16]) did not take their definition into account

and considered the operators to be atomic. This means that,

for instance, a replacement operator was either applied with

all valid replacements or it was excluded. More recently,

Kaminski et al. investigated the relational operator replace-

ment and showed that only four replacements are necessary

to subsume all the others [8]. In this section, we focus on the

conditional operator replacement for the logical connectors

&& and ||. Generally, valid mutations for a conditional

expression such as a <op> b, where <op> denotes one

of the logical connectors, include the following:

• a && b: Apply the logical connector AND

• a || b: Apply the logical connector OR

• a == b: Apply the relational operator a == b
• a != b: Apply the relational operator a != b
• lhs: Return the value of the left hand side operand

• rhs: Return the value of the right hand side operand

• true: Always evaluate to the boolean value true
• false: Always evaluate to the boolean value false

To ensure that mutation analysis is effective, it is often

important for a mutant to have only a small impact on the

output, thus making it hard to detect. Trivial and redundant

mutants also should be avoided to reduce the runtime of

the mutation analysis process and to not misrepresent the

mutation score. This paper refers to mutants that result in a

wrong output for all possible input values as trivial mutants.

With respect to the COR operator and the given valid

replacements, Tables I and II show all possible mutations for

the logical connectors and their effect on the boolean result

of the corresponding conditional expression. Besides the

original expression, the tables show four sufficient mutations

for each expression where all mutants have the least possible

impact (i.e., they only change the result of one out of

four combinations). The actual changes are highlighted with

circles to show that the mutations are disjoint and that their

union forms a sufficient set. Since the depicted sufficient

mutations collectively cover all possible combinations, they

subsume all of the other mutations that have a higher impact,

as highlighted by the rectangles. For example, the lhs op-

erator produces the wrong output for a certain combination

721

Table III
INVESTIGATED CASE STUDY APPLICATIONS

Files LOC* Relational
Operators

Conditional
Operators Tests

com-math 408 39,991 3,577 428 2,169
com-lang 99 19,495 2,739 695 2,039
com-io 100 7,908 687 139 309
num4j 73 3,647 326 124 218

*Lines of code as reported by sloccount (non-comment and non-blank lines)

of the literals a and b and all subsumed mutations produce

the same wrong output for this combination. Thus, as shown

in Tables I and II, a test that can detect the lhs mutant also

detects all of the other subsumed mutations.

Moreover, the sufficient set of mutations not only sub-

sumes all of the other mutations but also another entire mu-

tation operator, namely the unary operator insertion (UOI).

The impact of the UOI operator is again highlighted with

rectangles in Tables I and II. It has to be pointed out that the

depicted subsumption hierarchy only holds for conditional

expressions with one logical connector. This paper does not

further investigate composed conditional expressions and

leaves this matter open for future research.

IV. CASE STUDY

To examine both the frequency and the effect of redun-

dant mutants, we conducted a case study with four open-

source applications. Table III summarizes the investigated

applications, showing how they differ in size, complexity,

and operation purpose. Since the study focuses on the

reduction of mutants associated with applying the COR and

ROR mutation operators, the table also gives the counts for

the occurrences of relational and conditional operators, in

addition to the number of files, tests, and lines of code.

The number of tests depicted in the last column of Table III

represents the quantity of existing unit tests that are provided

and released with the corresponding application.

Throughout the case study, we employed MAJOR, a

compiler-integrated tool for the mutation analysis of Java

programs, to mutate the applications and to perform the

mutation analysis process [6], [7]. MAJOR also provides all

relevant data about the number of generated mutants and the

necessary runtime for the mutation analysis, thus enabling

an investigation of the following four research questions:

Q1: What is the ratio of the number of mutants generated by

the COR and ROR operators to the number of mutants

generated by applying all operators?

Q2: Are conditional expressions with only one logical con-

nector, like those studied in Section III, predominant in

real-world applications?

Q3: What is the actual savings in the runtime of mutation

analysis due to the use of the reduced set of mutants?

Q4: How does the elimination of redundant mutants affect

the overall mutation score?

0 20,000 40,000 60,000 80,000

numerics4j

commons-io

commons-lang

commons-math

19.5%

14.5%

22.3%

5.1%

19.3%

26.9%

35.5%

24.3%

Number of generated mutants

All mutants

ROR mutants

COR mutants

Figure 1. Ratio of the number of COR and ROR mutants to the number
of all generated mutants for the investigated case study applications

A. The frequency of the COR and ROR mutants

To answer the first research question, we determined the

number of mutants generated by applying the COR and ROR

operators with all of the possible replacements defined by

Namin et al. [16]. We also ascertained the number of mutants

that can be generated by using all of the operators, including

COR and ROR. Figure 1 visualizes the ratio of mutants

associated with the COR and ROR operators (the dark gray

and black bars) to the number of mutants generated by

applying all mutation operators (light gray bar). Ranging

from 29.4% for commons-math to 57.8% for commons-

lang, the number of mutants generated by only applying the

COR and ROR operators is a substantial portion of all the

induced mutants. With a mean value of 41.8%, this range

suggests that there is a notable potential for effectiveness

and efficiency improvements through the removal of the

redundant mutants associated with COR and ROR.

B. The number of connectors in conditional expressions

As stated in Section III, we can only guarantee that the

reduced set of mutants generated by the COR operator is

sufficient and redundancy-free for conditional expressions

with one logical connector. Therefore, in order to ascertain

the benefit of this partial solution, we calculated the ratio of

conditional expressions with one connector to the remaining

number of conditional expressions. For each case study ap-

plication, Figure 2 illustrates the distribution of the number

of logical connections in the conditional expressions. With

a mean value of 78.2% across the four studied programs

and a range between 63.3% for numerics4j and 85.9% for

commons-math, the number of conditional expressions with

only one connector is predominant for all applications. Thus,

for almost 80% of the conditional expressions, the suggested

subset of replacements, as given in Section III, provides a

sufficient and redundancy-free set of mutants.

722

0 100 200 300 400 500

numerics4j

commons-io

commons-lang

commons-math

63.3%

82.9%

80.7%

85.9%

Number of conditional expressions

1 connector

2 connectors

≥3 connectors

Figure 2. Distribution of the number of logical connectors in conditional
expressions for the investigated case study applications

C. Decreasing the runtime of the mutation analysis

The smaller subset of replacements for the COR and ROR

operators means that fewer mutants have to be generated

and hence the number of necessary executions during the

mutation analysis process is also reduced. With regard to the

reduction of mutants and the decrease in runtime, we distin-

guish between generated and covered mutants, with covered

meaning that a mutant is reached and executed but not nec-

essarily killed. Hence, the mutation coverage is a necessary

but not sufficient condition to kill a mutant. Tables IV and V

show the decrease in the number of generated and covered

mutants according to the following sets of mutations:

SM1: All mutants generated by all mutation operators

with all valid replacements

SM2: Reduced set of mutants generated by all available

mutation operators but with sufficient replacements

for the COR and ROR operators

SM3: All mutants generated by using the COR and ROR

mutation operators with all valid replacements

SM4: Reduced set of mutants generated by only employ-

ing the COR and ROR mutation operators but with

sufficient replacements

The reduction of the mutations associated with the COR

and ROR operators significantly affects the number of gen-

erated mutants, even when applying all mutation operators.

Depending on the ratio of the COR and ROR mutants to

all other mutants, the decrease ranges between 16.9% for

commons-math and 32.3% for commons-lang, as shown in

Table IV. With respect to the covered mutants, the decrease

depicted in Table V is comparable to the decrease of the

generated mutants for all applications except commons-io.

The is due to the low mutation coverage rate of only 51.7%

achieved by the test suite for this application. Many COR

and ROR mutants are not covered and hence, a reduction of

these mutants does not affect the number of covered mutants.

In addition to calculating the reduction in the number

of generated and covered mutants, we also determined the

actual improvement in the runtime while exploiting two

runtime optimizations. On the one hand, we did not analyze

Table IV
DECREASE IN THE NUMBER OF GENERATED MUTANTS

SM1 SM2 SM3 SM4

com-math 80,372 66,787 (-16.9%) 23,620 10,035 (-57.5%)
com-lang 31,130 21,074 (-32.3%) 17,998 7,942 (-55.9%)
com-io 9,547 7,319 (-23.3%) 3,954 1,726 (-56.3%)
num4j 6,835 5,437 (-20.5%) 2,647 1,249 (-52.8%)

Table V
DECREASE IN THE NUMBER OF COVERED MUTANTS

SM1 SM2 SM3 SM4

com-math 72,203 59,195 (-18.0%) 22,620 9,806 (-56.6%)
com-lang 29,069 19,112 (-34.3%) 17,810 7,890 (-55.7%)
com-io 4,935 4,168 (-15.5%) 1,349 558 (-58.6%)
num4j 6,547 5,149 (-21.4%) 2,642 1,225 (-53.6%)

Table VI
DECREASE IN THE RUNTIME OF THE MUTATION ANALYSIS

SM1 SM2 SM3 SM4

com-math 300.77 271.10 (-09.9%) 51.52 39.27 (-23.8%)
com-lang 28.25 18.70 (-33.8%) 12.63 6.82 (-46.0%)
com-io 6.95 4.58 (-34.1%) 4.15 2.00 (-51.8%)
num4j 2.85 2.08 (-26.9%) 0.92 0.50 (-45.5%)

*Runtimes reported in minutes

mutants that are not covered since they cannot be killed and

on the other hand we did not further investigate a mutant

once it has been killed. Table VI furnishes the execution time

of a mutation analysis process that uses MAJOR to calculate

a mutation score for each application’s test suite [6], [7].

With a reduction in runtime of up to 34% for commons-

io and a minimum of 10% for commons-math, the results

demonstrate a significant speed-up for all of the applications.

Yet, the observed improvement in the runtime depends on

the distribution of the COR and ROR within the application

and the runtimes of the tests that do not cover these mutants.

For instance, the test suite for commons-math contains a few

long-running tests that cover many mutants but only a few

COR and ROR mutations. Since the runtime of these tests is

a considerable proportion of the total runtime, the removal of

the redundant COR and ROR mutants only yields a modest

decrease in the cost of mutation analysis for this application.

D. Increasing the precision of the mutation score

Since redundant mutants lead to an imprecision in the

mutation score, we used both the complete and reduced

set of mutants to calculate this value for all of the case

study applications. Table VII gives the mutation score for

the generated mutants, with SM1, SM2, SM3, and SM4

again denoting the mutation sets described in Section IV-C.

Considering only the COR and ROR mutants that are

represented by the sets SM3 and SM4, the mutation score

decreases by 19% on average. When applying all of the

723

Table VII
DIVERGENCE OF THE MUTATION SCORE WITH REGARD TO THE

GENERATED MUTANTS

SM1 SM2 SM3 SM4

com-math 0.77 0.73 (- 4.5%) 0.75 0.59 (-20.5%)
com-lang 0.76 0.67 (-10.7%) 0.81 0.67 (-17.4%)
com-io 0.41 0.44 (8.3%) 0.26 0.21 (-19.2%)
num4j 0.69 0.65 (- 5.9%) 0.74 0.59 (-19.3%)

Table VIII
DIVERGENCE OF THE MUTATION SCORE WITH REGARD TO THE

COVERED MUTANTS

SM1 SM2 SM3 SM4

com-math 0.85 0.83 (-3.2%) 0.78 0.61 (-22.1%)
com-lang 0.81 0.74 (-8.1%) 0.82 0.67 (-17.7%)
com-io 0.79 0.78 (-1.7%) 0.75 0.64 (-14.7%)
num4j 0.72 0.68 (-4.9%) 0.74 0.61 (-17.8%)

mutation operators, the reduced sets still result in a decrease

of up to 10% for programs like commons-lang. Unless

the redundant mutants are removed, the mutation score is

overestimated for all applications except commons-io. For

this application, the corresponding test suite only covers 33%

of the generated COR and ROR mutants. Thus, removing the

redundant mutants affects the number of generated mutants

more significantly than the number of killed mutants, leading

to an 8% increase in the mutation score.

Table VIII shows how the removal of the redundant

mutants affects the mutation score that is calculated for the

number of covered mutants. Once again, there is a notable

18% average decrease in the mutation score when applying

only the COR and ROR mutations. For the sets SM1

and SM2, the mutation score decreases between 2% for

commons-io and 8% for commons-lang. Overall, redundant

mutants tend to overestimate the mutation score for the case

study applications, thus causing this metric to become a less

accurate assessment of test suite quality.

E. Threats to Validity

It is important to examine the threats to the validity of this

paper’s case study. The chosen subset of sufficient mutation

operators could be a threat to internal validity. Different or

additional operators may affect both the number and the ratio

of the generated mutants. However, the operators employed

in the study are frequently used in the literature and therefore

provide comparable results [15], [16].

The representativeness of the selected case study applica-

tions might be a potential threat to external validity. Thus,

the presented results may be different for other programs.

The analyzed applications, nevertheless, vary in terms of

their size, complexity, and operation purpose. Therefore, we

judge that the reported results are meaningful.

Defects in the compiler-integrated mutation tool could be

a threat to construct validity. We controlled this threat by

employing several small example programs and manually

analyzing the resulting mutants and data. Moreover, we used

the same tool to conduct two previous empirical studies (i.e.,

[6], [7]) without encountering any problems. Overall, we

judge that the implementation worked correctly.

V. RELATED WORK

As previously mentioned in Section II, employing all

available mutation operators with all valid replacements

results in a significant number of mutants, especially for

large software systems. In addition to the runtime overhead

caused by the many mutants, there are also redundant and

trivial mutants that may misrepresent the mutation score.

In an attempt to reduce the computational costs, different

selective and sampling-based approaches have been pro-

posed in the literature (e.g., [5], [15]). These techniques re-

duce the quantity of mutants either by decreasing the number

of operators or by selecting only a subset of the generated

mutants. Yet, all of these approaches view the mutation

operators, in their originally defined form, as atomic. Hence,

there are still redundancies within the selected subset that

affect both the runtime and the mutation score.

Kaminski et al. investigated the ROR operator in detail

and showed that a subset of four out of eight valid replace-

ments was sufficient for this operator [8]. They additionally

claimed, without further investigation or evidence, that this

reduction would improve efficiency. Similar to our focus on

conditional and relational operators, Tai developed a theory

for testing the predicates in conditional logic statements [17].

In connection with our method that avoids redundant

mutants and minimizes the impact of mutations, higher order

mutation aims at generating fewer, but more subtle mutants

[4]. Mutants created by means of the combination of two

first order mutants are referred to as second order mutants.

Accordingly, higher order mutation generally denotes the

combination of two or more first order mutants. Jia and

Harman showed the existence of higher order mutants that

are harder to kill than the first order mutants out of which

they were created. Nevertheless, the computational costs for

higher order mutation are significantly greater because of the

combinatorial explosion. However, search-based techniques

seem to be an appropriate solution to this problem [4].

Apart from redundant mutants, the equivalent mutant

problem is another crucial consideration in mutation test-

ing. Equivalent mutants are harmful to the runtime of the

mutation analysis process since they cannot be detected

by any test. Additionally, employing a set of mutants that

includes equivalent mutants results in an underestimation

of the mutation score. Approaches that try to alleviate the

equivalent mutant problem can be divided into two cate-

gories. On the one hand, there are techniques focusing on the

detection of equivalent mutants (e.g., [3], [13]). On the other

hand, approaches exist for reducing the number of equivalent

mutants during the mutant generation process (e.g., [12]).

724

VI. CONCLUSION AND FUTURE WORK

This paper investigates how redundant mutants affect the

effectiveness and efficiency of mutation analysis. Focusing

on two well-known mutation operators, namely the rela-

tional operator replacement (ROR) and conditional operator

replacement (COR), the paper makes several contributions.

First, it develops a subsumption hierarchy and reveals a

sufficient set of replacements for the COR operator. Using

this sufficient set, in conjunction with the ROR operator’s

reduced set that was shown to be sufficient by Kaminski et

al. [8], this paper reports on a case study that empirically

demonstrates how redundant mutants affect both the muta-

tion score and the runtime of the mutation analysis process.
After determining how prevalent relational and condi-

tional operators are in real-world applications, this paper

examines the ratio of the number of mutants generated by

the COR and ROR mutation operators to the total number

of mutants. With a mean value of 41.8% and a range from

29.4% to 57.8%, the high percentage of COR and ROR

mutants clearly reveals the potential for improving mutation

analysis by focusing on the mutants produced by these

operators. The experiments also show that employing the

sufficient replacements for the COR and ROR operators

leads to a commensurate drop in the number of generated

mutants that ranges from 16.9 to 32.3%.
Moreover, reducing the number of generated mutants

leads to a decrease in the runtime of the mutation analysis

process that is between 9.9 and 34.1%. Finally, the empirical

results show that, depending on the application, improving

the precision of the mutation score can lead to a value that

is greater than or less than the score resulting from the use

of the original set of mutants. For three applications, using

the reduced set of mutants yields a reduction in the mutation

score ranging from 4.5 and 10.7%. Yet, when one program’s

test suite only covers a small percentage of the generated

mutants, the mutation score increases by 8.3%.
Because of the promising results of the case study re-

ported on in this paper, we plan as part of our future work

to determine a sufficient set of replacements for other muta-

tion operators, such as the arithmetic operator replacement

(AOR). Leveraging the theory of Tai [17], the generalization

of the results for the COR operator and the establishment

of a subsumption hierarchy for conditional expressions with

more than one logical connector are other areas for future

research. After completing these steps, we intend to replicate

the empirical study in this paper to better understand how

redundant mutants affect the effectiveness and efficiency of

mutation analysis. Our future empirical studies will also

incorporate additional case study applications, thus better

ensuring that our results are generalizable. Finally, to address

the equivalent mutant problem, another critical concern in

mutation testing, we will investigate whether mutants with

a minimized impact, like the ones described in this paper,

are more or less likely to be equivalent.

REFERENCES

[1] T. A. Budd. Mutation Analysis of Program Test Data. PhD
thesis, Yale University, 1980.

[2] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on
test data selection: Help for the practicing programmer. IEEE
Computer, 11(4):34–41, 1978.

[3] R. Hierons, M. Harman, and S. Danicic. Using program slic-
ing to assist in the detection of equivalent mutants. Software
Testing, Verification and Reliability, 9:233–262, 1999.

[4] Y. Jia and M. Harman. Higher order mutation testing.
Information and Software Technology, 51:1379–1393, 2009.

[5] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Transactions on
Software Engineering, 37(5):649–678, 2011.

[6] R. Just, G. M. Kapfhammer, and F. Schweiggert. Using
conditional mutation to increase the efficiency of mutation
analysis. In Proceedings of the 6th Workshop on Automation
of Software Test, AST ’11, pages 50–56, 2011.

[7] R. Just, F. Schweiggert, and G. M. Kapfhammer. MAJOR:
An efficient and extensible tool for mutation analysis in a Java
compiler. In Proceedings of the 26th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’11,
pages 612–615, 2011.

[8] G. Kaminski, P. Ammann, and J. Offutt. Better predicate
testing. In Proceedings of the 6th Workshop on Automation
of Software Test, AST ’11, pages 57–63, 2011.

[9] K. N. King and A. J. Offutt. A Fortran language system
for mutation-based software testing. Software: Practice and
Experience, 21(7):685–718, 1991.

[10] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava: A mutation
system for Java. In Proceedings of the 28th International
Conference on Software Engineering, ICSE ’06, pages 827–
830, 2006.

[11] H. Mills. On the Statistical Validation of Computer Programs.
Technical report, IBM FSD Report, 1970.

[12] A. J. Offutt. Investigations of the software testing coupling
effect. ACM Transactions on Software Engineering Method-
ology, 1(1):5–20, 1992.

[13] A. J. Offutt and W. M. Craft. Using compiler optimization
techniques to detect equivalent mutants. The Journal of
Software Testing, Verification, and Reliability, 4:131–154,
1994.

[14] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and
C. Zapf. An experimental determination of sufficient mutant
operators. ACM Transactions on Software Engineering and
Methodology, 5(2):99–118, 1996.

[15] J. Offutt and R. H. Untch. Mutation 2000: Uniting the
orthogonal. In Proceedings of Mutation 2000: Mutation
Testing in the Twentieth and the Twenty First Centuries, pages
45–55, 2000.

[16] A. Siami Namin, J. H. Andrews, and D. J. Murdoch. Suffi-
cient mutation operators for measuring test effectiveness. In
Proceedings of the 30th International Conference on Software
Engineering, ICSE ’08, pages 351–360, 2008.

[17] K.-C. Tai. Theory of fault-based predicate testing for com-
puter programs. IEEE Transactions on Software Engineering,
22(8), 1996.

725

