
MESSI: Mutant Evaluation by Static Semantic Interpretation

Matthew Patrick∗, Manuel Oriol∗† and John A. Clark∗
∗University of York †Industrial Software Systems
Heslington, York ABB Corporate Research
United Kingdom Baden-Dättwil, Switzerland

{mtp, manuel, jac}@york.ac.uk manuel.oriol@ch.abb.com

Abstract—Mutation testing is effective at measuring the
adequacy of a test suite, but it can be computationally expensive
to apply all the test cases to each mutant. Previous research
has investigated the effect of reducing the number of mutants
by selecting certain operators, sampling mutants at random,
or combining them to form new higher-order mutants. In this
paper, we propose a new approach to the mutant reduction
problem using static analysis. Symbolic representations are
generated for the output along the paths through each mutant
and these are compared with the original program. By calcu-
lating the range of their output expressions, it is possible to
determine the effect of each mutation on the program output.
Mutants with little effect on the output are harder to kill.
We confirm this using random testing and an established test
suite. Competent programmers are likely to only make small
mistakes in their programming code. We argue therefore that
test suites should be evaluated against those mutants that are
harder to kill without being equivalent to the original program.

Keywords-mutation testing; sampling; static analysis;

I. INTRODUCTION

Mutation testing uses artificial faults to determine the fault

finding capability of a test suite. For this to be effective,

the artificial faults must be representative of actual faults

in the software. As there are potentially an infinite number

of artificial faults, techniques have been devised to select

subsets from those that are available. The coupling and

competent programmer hypotheses suggest that experienced

programmers make small mistakes and that complex fail-

ures are linked to simple failures [1] [2]. Offutt [3] uses

these hypotheses to claim that simple mutation operators

are sufficient to detect complex faults. Yet, just because a

mutation is small syntactically does not mean it is useful at

representing simple failures. A small change in syntax can

have a large effect on semantics [4]. This paper introduces

a new technique for Mutant Evaluation by Static Semantic

Interpretation (MESSI).

Unlike previous approaches to mutation testing, MESSI

determines the usefulness of each mutant using static anal-

ysis, without reference to any particular test suite. MESSI

can be used to select mutants according to their semantic

similarity with the original program. If the symbolic execu-

tion of a mutant shows its output to have a similar range

to the original program, we predict it to be close to the

original program in semantics. The mutants most similar to

the original program are selected for mutation testing. In

our experiments, the average mutant in the top quarter is

less than half as likely to be killed by a random test case

than the average mutant in the remaining three quarters.

The new technique provides an independent selection of

semantically small mutations and forgoes the expense of

evaluating mutants against a test suite.

The paper is organised as follows. Section II explores the

background motivation behind the MESSI technique and

Section III describes its general principles. Section IV gives

further implementation details and section V explains the

experimental setting. The results are evaluated in Section

VI. Section VII discusses the related work to this research

and section VIII presents our conclusions.

II. BACKGROUND

A. Mutation testing

Software testing provides confidence in the correctness

of software. A good test suite should aim to find errors

in the software [5]. Mutation testing evaluates test suites

against a set of artificial faults. Faults exist as incorrect

steps, processes or data definitions somewhere within the

programming code [6]. A test suite will reveal a fault if it has

an effect on one of the local variables and then propagates

that effect through to the output [7].

Artificial faults are mutations of the original programming

code, typically with one small change in syntax. When

test data has been found that causes a mutant to behave

differently to the original program, we say the mutant has

been killed. The proportion of mutants killed by a test suite

is known as its mutation score (see Equation 1). A test

suite with a high mutation score can be expected to perform

well at finding actual faults in the software. Experimental

research has shown mutation testing to be more stringent

than other testing techniques and a good predictor of the

real fault finding capability of a test suite [8][9].

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.161

711

Mutation score =
number of mutants killed

total number of mutants∗
(1)

Cost reduction = 1− number of mutants in sample

total number of mutants∗
(2)

*non-equivalent mutants

B. The semantics of mutation

One of the greatest challenges to the validity of mutation

testing is the number of mutants that are semantically equiv-

alent to the original program. Equivalent mutants can skew

the assessment of a test suite because they produce the same

output as the original program for every possible input. For

seven large Java programs, 45% of the mutants not detected

by the test suite were shown to be equivalent [13]. Equivalent

mutants occur when the mutation can never be exercised,

its effect is later cancelled out or it is corroded away by

other operations in the program [7]. Techniques have been

devised to identify equivalent mutants using program slicing

[10], compiler optimisation [11], constraint solving [12] and,

more recently, impact assessment [13]. Equivalent mutants

are still however difficult to remove completely.

It seems paradoxical therefore that the most useful mu-

tants are those similar to the original program in semantics.

The competent programmer hypothesis explains why most

programs are either correct or very close to being correct.

Competent programmers can make mistakes that have a large

semantic effect, but they notice and remove them quickly

without need for further testing. More subtle faults are harder

to find. The semantic size of a mutation can be measured

according to the number of times it is killed by a large

random test suite. Mutations with a small semantic size are

useful at representing actual faults. Ideally mutants should be

semantically similar without being equivalent to the original

program.

Algorithm 1 performs the remainder operation on vari-

ables x and y. It is presented along with three mutations

of its programming code. Mutant M3 is equivalent to the

original program because it post-increments variable mod,

which is no longer used after the print statement. Mutant

M1 will affect the output of every input, except if x and y
are both 1, or if x is 0 and y is not. Mutant M2 only affects

the output if div is less than zero. It is tempting to conclude

that M2 is semantically smaller than M1, but further analysis

is required to determine their exact semantic size.

Algorithm 1 Remainder operation

1: div ← x/y†

2: if div < 0 then
3: mod← (div ∗ y)−x
4: else
5: mod← x− (div ∗ y)
6: end if
7: print(mod)

M1: div ← x ∗ y

M2: mod← (div ∗ y) + x

M3: print(mod++)

†Integer division

C. Subset selection

Typically it is not feasible to use every possible mutant of

the program under test, even after all the equivalent mutants

have been removed. It is therefore necessary to select a

subset of mutants that allow the test suite to be evaluated

within a reasonable period of time. Once the equivalent

mutants have been removed, the reduction in cost achieved

by a subset can be calculated as the proportion of non-

equivalent mutants that are excluded (see Equation 2).

Mutants can be selected either for their semantic similarity

to the original program, or their ability to represent the

effectiveness of the original set. Both of these goals can

be achieved through the use of random test suites. The first

goal considers subsets effective if the test suite gives a low

mutation score because mutants are difficult to kill if they

are semantically similar to the original program. The second

goal seeks subsets that give as high a mutation score as

possible, relative to the original set of mutants. In other

words, a test suite capable of killing all the mutants in an

effective subset should also kill most of the mutants in the

original set. Although the second goal has been popular in

research, the competent programmer hypothesis suggests the

first goal selects more useful mutants.

A subset of mutants can be selected either by reducing the

number of mutation operators or by sampling mutants once

they have been produced. It saves computation time to select

the most efficient operators in advance. In experiments with

Fortran, one mutation operator produced over half of the

equivalent mutants and removing all but two of the operators

gave a mutation score of 97.18% on the original set [11][14].

Sampling allows a greater variety of mutants to be selected.

A 10% random sample gave on average 97.56% mutation

score on the original set [14]. It is also possible to use

syntactic and semantic analysis to optimise sampling for the

program under test. Semantic analysis is more expensive,

but provides a better evaluation of the effect of a mutation

on the program’s behaviour.

712

D. Symbolic execution

Symbolic execution allows the abstract exploration of a

program’s semantics. Instead of executing the program with

a concrete instance of the value of each variable, it represents

the input variables symbolically. As the program is executed,

a path condition and symbolic output expression is produced

for each path. Figure 1 shows an example of this technique

applied to Algorithm 1. The input variables x and y are

represented symbolically to reveal that if X/Y is less than

zero, the output will be ((X/Y)*Y)-X, otherwise it will be

X-((X/Y)*Y). As this is a simple example, the semantics

are immediately apparent. Both paths produce output with

the same magnitude, but one is the negative of the other.

Complications arise when the program includes loops or data

structures such as objects, arrays and pointers.

Figure 1. Symbolic Execution

III. MESSI PRINCIPLES

MESSI evaluates mutants according to their semantic

similarity with the original program. Semantic similarity

(S) is calculated as the sum of differences between the

minimum and maximum output values for each path (p)

through a mutant (m) and the original program (o). A mutant

is semantically similar to the original program if it has a

low value for semantic similarity. Algorithm 2 outlines the

process of using MESSI to select mutants. The minimum

and maximum output value is determined for each path

by processing its symbolic output expression. Mutants are

selected if they are similar but not equivalent to the original

program.

MESSI calculates minimum and maximum values pro-

gressively. Input variables have a prescribed range and

constants have the same minimum and maximum value. The

minimum and maximum values for arithmetic operations

are given in Table II. The calculations for addition and

subtraction are the same regardless of the sign of the in-

puts. Multiplication and division are more complicated. The

minimum result of division is Min(L)/Max(R) when all the

input values are positive, but Max(L)/Min(R) when all the

Algorithm 2 Using MESSI to select mutants

1) Calculate the minimum and maximum output values

for each mutant

2) Sum up the differences into values for semantic sim-

ilarity,

Sm =
∑

p∈Paths

|Min(m)−Min(o)|
+

|Max(m)−Max(o)|

3) Remove all the equivalent mutants using random test-

ing and inspection

4) Order the mutants according to their similarity value

5) Select the mutants most similar to the original method

input values are negative. Arithmetic operations eventually

combine through sub-expressions to form the range of every

path through a program.

Table I shows the application of these calculations to

Algorithm 1 with input values in the range 1 to 100. It

is important to note that because MESSI computes values

conservatively, the resulting range contains some values that

are not possible. For example, MESSI uses the minimum

value of y in line 1, but its maximum value in line 5 to

calculate the maximum output along the second branch.

Nevertheless, the similarity values confirm that mutant M3

is likely to be equivalent and that M2 is semantically more

similar to the original program than M1.

Table I
SYMBOLIC EXECUTION FOR SELECTIVE MUTATION ON ALGORITHM 1

Path Output Min Max Similarity
Original Left ((X/Y)*Y)-X -99.99 9900 -

Right X-((X/Y)*Y) -9900 99.99 -
M1 Left ((X*Y)*Y)-X -99 999999 990099.99

Right X-((X*Y)*Y) -999999 99 990099.99
M2 Left ((X/Y)*Y)+X 1.01 10100 301

Right X-((X/Y)*Y) -9900 99.99 0
M3 Left ((X/Y)*Y)-X -99.99 9900 0

Right X-((X/Y)*Y) -9900 99.99 0

IV. IMPLEMENTATION

MESSI should work well with most tools for symbolic

execution and mutation testing. The experiments in this

paper use JPF-symbc and muJava because they offer flex-

ibility for customisation and produce each mutant as a

separate program. muJava has twelve method-level mutation

operators, selected to modify arithmetic, relational, logical

and conditional expressions in the programming code [15].

Java Pathfinder (JPF) is an open source model checker and

Java virtual machine, developed by NASA to find bugs in

concurrency [16]. JPF-symbc performs symbolic execution

by storing symbolic attributes along with each variable on

the stack [17]. It is capable of processing both integer and

real numeric values and includes constraint solving packages

713

Table II
THE MINIMUM AND MAXIMUM RESULTS OF EACH OPERATION

Min(D) Max(D)
L + R Min(L) + Min(R) Max(L) + Max(R)
L - R Min(L) − Max(R) Max(L) − Min(R)

L * R

if((Min(L) ≥ 0) && (Min(R) ≥ 0)) if((Min(L) ≥ 0) && (Max(R) ≤ 0))
return Min(L) ∗ Min(R) return Min(L) ∗ Max(R)

else if ((Max(L) ≤ 0) && (Max(R) ≤ 0)) else if ((Max(L) ≤ 0) && (Min(R) ≥ 0))
return Max(L) ∗ Max(R) return Max(L) ∗ Min(R)

else return Smallest(Min(L) ∗ Max(R), else return Biggest(Max(L) ∗ Max(R),
Max(L) ∗ Min(R)) Min(L) ∗ Min(R))

L / R

if((Min(L) ≥ 0) && (Min(R) ≥ 0)) if((Min(L) ≥ 0) && (Max(R) ≤ 0))
return Min(L) / Max(R) return Min(L) / Min(R)

else if ((Max(L) ≤ 0) && (Max(R) ≤ 0)) else if ((Max(L) ≤ 0) && (Min(R) ≥ 0))
return Max(L) / Min(R) return Max(L) / Max(R)

else return Smallest(Max(L) / Smallest(Max(R), -1)), else return Biggest(Max(L) / Biggest(Min(R), 1)),
Min(L) / Biggest(Min(R), 1)) Min(L) / Smallest(Max(R), -1))

L % R if(Min(R) ≥ 0) return 0 if(Max(R) ≤ 0) return 0
else return Max(-Max(L), Min(R) + 1) else return Min(Max(L), Max(R) - 1)

-L -Max(L) -Min(L)

for finding input values to exercise each path. muJava is

mostly a tool for research, but JPF-symbc found a serious

bug in the Onboard Abort Executive for the NASA Crew

Exploration Vehicle [17].

Pre-processing transforms the software under test into

a form that is suitable for use with JPF-symbc. Methods

should have straightforward numerical inputs and outputs

and not employ any side effects. The pre-processing pro-

cedure extracts methods to be tested from the classes in

which they are contained, along with any methods on which

they depend. It then introduces local constants to replace all

calls to retrieve data from outside of the class and removes

any calls to output data via a side effect. To avoid path

explosion problems, each loop is only allowed to run once. It

should be noted that these preprocessing transformations are

not semantically preserving. The pre-processing procedure

could be made more sophisticated by including appropriate

coding strategies for non-numerical or side effect input and

output, but this would make the process slower and more

complicated.

Once the semantic similarity values have been calculated,

it is necessary to remove the equivalent mutants before selec-

tion is performed. If the similarity value is zero, the mutant is

highly similar but not necessarily equivalent, because it may

still have different branch conditions. Therefore mutant with

zero similarity value are executed with one million random

input values to determine whether they are equivalent. When

none of the input values produce a difference, the mutant

is checked manually for equivalence. Mutants can then be

selected in the order of their similarity value, resolving any

ties at random. The selected mutants represent faults that are

difficult for a programmer to detect because they only affect

program behaviour under certain circumstances.

V. EXPERIMENTS

Experiments were set up to answer three main research

questions about our new mutant selection technique:

1) How difficult is it to kill mutants selected by
MESSI?

2) Does MESSI highlight mutants not killed by exist-
ing test suites?

3) What is the ideal size of subset to use when
selecting mutants with MESSI?

The first research question is addressed by applying

random testing to nineteen methods from six classes of the

Java standard library (see Table III). We selected methods

according to the following criteria: Their return type must

be numeric, they must take at least one parameter, all their

parameters must be numeric and they must occupy over

1KB in memory. Numerical software is used because of

limitations of the technique and large methods are chosen

to avoid trivial results. Each mutant is assessed according to

whether it is killed and the number of times it is killed by a

large suite of random test cases. If MESSI is successful, we

would expect it to select mutants that are killed infrequently

by the test suite.

We address the second research question using TCAS,

the Traffic Collision Avoidance System developed by re-

searchers at Siemens [19]. TCAS was created to investigate

the effectiveness of coverage criteria in testing, so it has a

large test suite of black-box and white-box test cases. TCAS

consists of 173 lines of code and 9 methods. Although,

the original program is written in C, we translated it into

Java maintaining as many of the original characteristics

as possible. For example, logical values are represented

as integers in the same way there are in C. If MESSI is

successful, it should reveal many potential faults not covered

by the existing test cases.

714

Table III
SUBJECT METHODS FROM THE JAVA STANDARD LIBRARY [18]

LOC Mutants Equivalent Mutants
java.math.BigDecimal
1 int checkScale(long) 16 60 15
2 int longCompareMagnitude(long, long) 18 44 15
3 long longMultiplyPowerTen(long, int) 18 98 28
java.math.BigInteger
4 int getInt(int) 18 46 0
javax.swing.JTable
5 int limit(int, int, int) 5 36 1
javax.swing.plaf.basic.BasicTabbedPanelUI
6 int calculateMaxTabHeight(int) 8 42 2
7 int calculateMaxTabWidth(int) 8 42 2
8 int calculateTabAreaHeight(int, int, int) 8 51 1
9 int calculateTabAreaWidth(int, int, int) 8 51 1
10 int getNextTabIndex(int) 4 17 0
11 int getNextTabIndexInRun(int, int) 12 63 18
12 int getPreviousTabIndex(int) 4 50 18
13 int getPreviousTabIndexInRun(int, int) 12 91 24
14 int getRunForTab(int, int) 9 43 6
15 int lastTabInRun(int, int) 11 81 11
javax.swing.plaf.basic.BasicTreeUI
16 int findCenteredX(int, int) 5 49 49
17 int getRowX(int, int) 3 25 0
javax.swing.text.AsyncBoxView
18 float getInsetSpan(int) 5 27 1
19 float getSpanOnAxis(int) 7 17 1

The final research question is addressed for 10%, 25%,

50% and 100% samples of mutants from the Java standard

library. We determine the difficulty of killing each mutant

as the proportion of random test cases that produce a

different output. The experiment uses thirty test suites

of one million test cases, each with random input values

between -1000 and 1000 inclusive. Samples are taken

thirty times to achieve a fair average, using the same seeds

to resolve ties in similarity. If MESSI is successful, the

smaller the sample the harder the mutants should be to kill.

VI. RESULTS AND ANALYSIS

A. How difficult is it to kill mutants selected by MESSI?

In general MESSI selects mutants that are more difficult

to kill. Table V shows the average mutation score of samples

made from 19 methods in the Java standard library. Of the

first ten percent of mutants selected, 42.6% of them were

killed, compared to 69.4% of the complete set. Table VI

shows the probability that an arbitrary test case will kill an

arbitrary mutant. The probability of killing a mutant in the

first quarter is 20.4%, compared to 38.4% in the complete

set. This implies that the average mutant in the top quarter

is less than half as likely to be killed by a random test case

than the average mutant in the remaining three quarters.

There are however exceptions where MESSI is shown

to be less effective. As the random test suite kills all the

non-equivalent mutants of int calculateMaxTabHeight(int),
selecting a subset has no effect on the mutation score. The

probability of killing a mutant in the first ten percent is also

higher on average than in the first quarter. In particular, the

probability of killing mutants of int lastTabInRun(int,int) is

higher in all of the subsets than in the complete set. The

Wilcoxon and student T-tests in Table IV show that although

the top quarter of mutants is less likely to be killed than

the remaining three quarters, there is insufficient statistical

evidence that it is less than half as likely.

Table IV
STATISTICAL ANALYSIS FOR QUESTION A

remainder-25% remainder/2-25%
Mean 22.4 0.100
Variance 491 153
T-Value 4.40 0.040
Critical 2.552 (reject) 2.552 (accept)
Wilcoxon 181+ 9- 98+ 92-
Critical 37 (reject) 37 (accept)

B. Does MESSI highlight mutants not killed by test suites?

The results of the experiment with TCAS show MESSI

to have little effect on the mutation score of the existing test

suite. The first ten percent of mutants have a mutation score

of 0.104, the first twenty-five percent 0.093, the first fifty

percent 0.154 and the complete set 0.096. The probability of

an arbitrary test case killing an arbitrary mutant is 20.6% for

the first ten percent, 19.2% for the first twenty-five percent,

715

19.4% for the first fifty percent and 64.6% for the complete

set. MESSI selects mutants less frequently killed, but is

unable to highlight mutants not killed by the test suite.

The mixed results confirm the weaknesses and strengths

of using MESSI to select mutants. As the test suite was

specifically designed for TCAS, it contains test cases to

detect faults difficult to kill by random testing. MESSI is

not effective enough to find faults missed by well-designed

test suites, but it does still offer some insight into the

construction of a new test suite.

C. What is the ideal size of subset to use when selecting
mutants with MESSI?

The results of Table V and VI are illustrated graphically

in Figures 2 and 3. It is clear that the greatest difference in

mutation score and probability is made between the fifty and

one-hundred percent sample sizes. There is a smaller differ-

ence between twenty-five and fifty percent and the difference

between ten and twenty-five percent appears negligible. The

first twenty-five percent of mutants are slightly more difficult

to kill, but selecting the top fifty percent may allow for more

faults to be revealed.

The Wilcoxon and student T-tests in Table VII show a

significant mutation score between fifty and one-hundred

percent and twenty-five and fifty percent. For mutant-killing

probability, only the difference between fifty and one-

hundred percent is significant. The ideal sample size is

therefore either fifty or twenty-five percent of the complete

set. Ultimately, the choice is between computational time

and fault-finding effectiveness.

Table V
MUTATION SCORE FOR 19 METHODS FROM THE JAVA STANDARD

LIBRARY

10% 25% 50% 100%
1 0.725 0.739 0.752 0.822
2 0.817 0.829 0.812 0.828
3 0.267 0.239 0.404 0.671
4 0.500 0.527 0.500 0.609
5 0.522 0.504 0.647 0.829
6 1.000 1.000 1.000 1.000
7 0.442 0.433 0.550 0.775
8 0.447 0.456 0.720 0.860
9 0.493 0.486 0.720 0.863
10 0.733 0.658 0.658 0.765
11 0.175 0.200 0.227 0.444
12 0.211 0.229 0.563 0.788
13 0.033 0.031 0.023 0.162
14 0.500 0.489 0.500 0.514
15 0.644 0.618 0.599 0.710
16 0.000 0.000 0.208 0.612
17 0.333 0.378 0.500 0.760
18 0.633 0.611 0.641 0.615
19 0.267 0.225 0.250 0.563
Mean: 0.426 0.455 0.541 0.694

Table VI
PROBABILITY TO KILL MUTANT FOR 19 METHODS FROM THE

STANDARD JAVA LIBRARY

10% 25% 50% 100%
1 22.7% 24.7% 22.9% 29.2%
2 12.5% 13.3% 11.9% 13.8%
3 5.95% 6.07% 4.29% 8.57%
4 13.8% 14.2% 13.0% 13.7%
5 26.3% 28.7% 24.5% 32.5%
6 59.1% 60.1% 69.4% 84.1%
7 26.1% 26.1% 38.2% 65.2%
8 37.9% 37.3% 67.3% 82.3%
9 41.2% 40.6% 67.3% 82.7%
10 73.3% 65.8% 65.8% 72.1%
11 4.79% 5.45% 5.72% 13.9%
12 14.4% 17.1% 26.3% 45.5%
13 0.00% 0.00% 0.00% 3.68%
14 7.22% 9.6% 9.45% 12.2%
15 11.9% 14.3% 13.8% 10.2%
16 0.00% 0.00% 7.85% 28.3%
17 33.3% 37.8% 50.0% 75.5%
18 25.0% 19.7% 22.6% 34.6%
19 0.00% 0.00% 0.00% 31.3%
Mean: 21.9% 21.4% 26.7% 38.4%

VII. RELATED WORK

Most research into selective mutation focuses on selecting

a subset of mutants that perform well compared to the

original set. Barbosa et al. [20] compared the effectiveness

of four random sampling strategies against three operator

selection techniques for 32 small C programs. Their results

show how significant cost reduction can be achieved and it

still be possible to generate test data to kill most of the

mutants in the original set. Hussain [21] improved upon

these results further by clustering mutants according to the

syntactic similarity and selecting mutants from each cluster

to promote variety. The problem with these techniques is that

they treat all mutants as being equally useful. MESSI im-

proves upon this by favouring mutants that are semantically

similar to the original program.

Recent research attempts to optimise the selection of

mutants through search-based techniques. Adamopoulos et

al. [22] co-evolved the selection of mutants and test cases

to find mutants that are hard to kill and test cases capable

of killing them. Jia and Harman [23] search for higher

order mutants as combinations of multiple mutations that

are syntactically complex but semantically similar to the

original program. Both approaches evaluate mutants using a

test suite. Mutants not killed by any test case are considered

equivalent, even if they are really just difficult to kill. In

this way, these approaches ignore mutants the competent

programmer hypothesis considers most useful for mutation

testing. MESSI evaluates mutants independently from their

test suite and provides an absolute rather than relative

assessment of their usefulness.

716

Figure 2. Experiment Results - Mutation Score

Figure 3. Experiment Results - Probability

717

There are other techniques for comparing mutant se-

mantics without the use of a test suite. Ellims et al. [24]

suggested measuring memory usage or execution time, but

unpredictable factors involving cache and underlying system

software can affect these results. Schuler and Zeller [13]

compared the number of statements exercised and the values

returned by each procedure. They were able to remove most

of the equivalent mutants using this technique, but this also

removed a considerable number of non-equivalent mutants.

MESSI provides a more definite evaluation of semantics. A

mutant cannot be equivalent if it has a different symbolic

output. This still does not remove the necessity of manual

investigation, but at least it reduces the number of mutants

that require inspection.

Table VII
STATISTICAL ANALYSIS FOR QUESTION C

Mutation score:
100%-50% 50%-25% 25%-10%

Mean 0.153 0.085 -0.005
Variance 0.95 0.012 0.001
T-Value 5.853 3.355 -0.751
Critical 2.552 (reject) 2.552 (reject) 2.552 (accept)
Wilcoxon 168+ 3- 135.5+ 17.5- 66+ 87-
Critical 32 (reject) 27 (reject) 27 (accept)

Probability:
100%-50% 50%-25% 25%-10%

Mean 11.5% 5.23% 2.86%
Variance 97.5% 95.8% 27.2%
T-Value 5.149 2.378 0.458
Critical 2.552 (reject) 2.552 (accept) 2.552 (accept)
Wilcoxon 185+ 5- 130+ 60- 117+ 53-
Critical 37 (reject) 37 (accept) 32 (accept)

VIII. CONCLUSIONS

MESSI was shown to select mutants that are difficult to

kill. It achieves this by comparing their symbolic output

through static analysis. The competent programmer hypoth-

esis claims faulty programs are typically similar to the

correct program in semantics, so MESSI should select useful

mutants. MESSI does not however always select the most

difficult to kill mutants. Although removing half the mutants

has a significant effect on the mutation score and probability

of killing each mutant, there is little difference between

the twenty-five and fifty percent samples. In the case of

TCAS, MESSI has little effect on the mutation score at all.

Therefore, MESSI is a useful approach, but effort should be

made to improve its reliability.

The current version of MESSI calculates semantic differ-

ence without taking path conditions into account. Mutated

path conditions can leave the symbolic output unchanged.

This may explain why the top ten percent of mutants are

often easier to kill than the top twenty-five percent. In

addition, our experimental evaluation of MESSI is based

on random testing with thirty trials of a million test cases.

As the input range was limited from -1000 to 1000, there is

a lot of redundancy for programs that only have one input.

The goal with the next version of MESSI will be to increase

the sophistication of its semantic interpretation and evaluate

its performance using larger and more complex programs.

MESSI will be rewritten as a new plug-in for JPF that

does not rely on JPF-symbc. Every numerical value will

be represented at run-time with a minimum and maximum

value. Research ideas will be incorporated regarding com-

plex objects and non-numerical types. Objects for example,

can be compared be expanding their sub-classes and inspect-

ing their data fields. Boolean types can be treated as integers

that have a very limited range. Other ideas to be considered

include taking into account the distribution rather than just

the range of the output and recording dynamic information

in the form of program traces to better direct the approach.

The next version of MESSI should be more effective and

evaluate paths more quickly.

718

REFERENCES

[1] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on
test data selection: help for the practicing programmer,” IEEE
Computer, vol. 11, no. 4, pp. 34-41, 1978.

[2] T. A. Budd, “Mutation analysis of program test data,” Ph.D
dissertation, Dept, Comp. Sci., Yale Univ., New Haven, CT,
1980.

[3] A. J. Offutt, “Investigations of the software testing coupling
effect,” in ACM Trans. Softw. Eng. Meth., vol. 1, no. 1, pp.
5-20, Jan. 1992.

[4] A. J. Offutt, “A semantic model of program faults,” in Proc.
ISSTA, 1996, pp. 195-200.

[5] G. J. Myers, T. Badgett and C. Sandler, The art of software
testing 3rd ed. Hoboken, NJ: Wiley, 2011, ch. 2, pp. 5.

[6] IEEE standard glossary of software engineering terminology,
IEEE Standard 610.12, 1990.

[7] J. M. Voas, and K. W. Miller, “Software testability: the new
verification,” in IEEE Softw., vol. 12, no. 3, pp. 17-28, May
1995.

[8] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses versus mutation
testing: an experimental comparison of effectiveness,” in J.
Syst. Softw., vol. 38, no. 3, pp. 235-253, Sept. 1997.

[9] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation
an appropriate tool for testing experiments?,” in Proc. ICSE,
2005, pp. 402-411.

[10] R. Hierons, M. Harman, S. Danicic, “Using program slicing
to assist in the detection of equivalent mutants,” in Softw. Test.
Verif. Rel., vol. 9, no. 4, pp. 233-262, Dec. 1999.

[11] A. J. Offutt, and W. M. Craft, “Using compiler optimization
techniques to detect equivalent mutants, in Softw. Test. Verif.
Rel., vol. 4, no. 3, pp. 131-154, Dec. 1994.

[12] A. J. Offutt, and J. Pan, “Automatically detecting equivalent
mutants and infeasible paths,” in Softw. Test. Verif. Rel., vol.
7, no. 3, pp. 165-192, Sep. 1997.

[13] D. Schuler, and A. Zeller, “(Un-)covering equivalent mu-
tants,” in Proc. ICST, 2010, pp. 45-54.

[14] A. P. Mathur, and W. E. Wong, “Reducing the cost of mutation
testing: an empirical study,” in J. Syst. Softw., vol. 31, no. 3,
pp. 185-196, Dec. 1995.

[15] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava : an automated
class mutation system,” in Softw. Test. Verif. Rel., vol. 15, no.
2, Jun. 2005, pp. 97-133.

[16] W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda. “Model
checking programs,” in J. Aut. Softw. Eng., vol. 10, no. 2, Apr.
2003, pp. 3-12.

[17] C. S. Păsăreanu, and N. Rungta. “Symbolic PathFinder:
symbolic execution of Java bytecode,” in Proc. ASE, Sep. 2010,
pp. 179-180.

[18] Oracle. “JavaTMPlatform, Standard Edition 7 API Speci-
fication,” http://docs.oracle.com/javase/7/docs/api/, 1993-2011
[Jan. 17, 2012].

[19] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. “Experi-
ments on the effectiveness of dataflow- and controlflow-based
test adequacy criteria,” in Proc. ICSE, May 1994, pp. 191-200.

[20] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi,
“Toward the determination of sufficient mutant operators for
C,” in Softw. Test. Verif. Rel., vol. 11, no. 2, pp. 113-136, May
2001.

[21] S. Hussain, “Mutation clustering,” MSc dissertation, Dept.
Comp. Sci., KCL, London, UK, Sep. 2008.

[22] K. Adamopoulos, M. Harman, and R. M. Hierons, “How to
overcome the equivalent mutant problem and achieve tailored
selective mutation using co-evolution,” in Proc. GECCO, June
2004, pp. 1338-1349.

[23] Y. Jia, and M. Harman, “Higher order mutation testing,” in
J. Inf. Softw. Tech., vol. 51, no. 10, Oct. 2009, pp. 1379-1393.

[24] M. Ellims, D. Ince, and M. Petre, “The csaw c mutation tool:
initial results,” in Proc. TAICPART, 2007, pp. 185-192.

719

