
Mutant Execution Cost Reduction
Through MUSIC (MUtant Schema Improved with extra Code)

Pedro Reales Mateo and Macario Polo Usaola
Instituto de Tecnologías y Sistemas de Información

University of Castilla-La Mancha
Ciudad Real, Spain

{pedro.reales, macario.polo}@uclm.es

Abstract—Mutation testing is a very effective testing technique
that creates mutants (copies of the original system with small
syntactic changes) in order to design test cases that kill the
mutants (identifying the syntactic changes). The main
disadvantage of mutation testing is its high costs: creating
mutants, executing mutants and calculating the mutation score.
This paper describes the MUSIC technique, an improvement of
the cost reduction technique Mutant Schema, which is meant to
reduce the number of required executions and identify infinite
loops at a reduced cost. Besides, an experiment was performed to
evaluate the advantages and disadvantages of MUSIC and
identify possible ways to improved it. As a result, we conclude
that MUSIC reduces the execution cost of mutation testing and
its application is therefore recommended.

Keywords-Mutation testing, mutant schema, music, execution
cost reduction, infinite loops.

I. INTRODUCTION
Software testing is an important task to develop systems,

and sometimes is one of the most costly tasks. In order to
increase the effectiveness of software testing, the scientific
community has designed many techniques to improve testing
tasks. One effective technique is mutation testing which was
proposed by DeMillo[1] in 1978.

To apply this technique, a tester basically has to create
copies of the system under test (SUT) and introduce small
syntactic changes in each copy (these copies are called
mutants). The syntactic changes are introduced through
mutation operators, which are well formed rules to transform
the code. Then, the tester has to create tests that must be able to
find all the syntactic changes introduced by the mutation
operators. When a test finds the change introduced into a
mutant, the mutant is considered as killed. Sometimes, a
syntactic change supposes the same behavior than the original
system (as an optimization or a des-optimization) and thus
these mutants cannot be killed by any test case. These mutants
are named equivalent mutants, and usually must be manually
identified. Finally, when the test cases are created, the mutation
score () is calculated to determine the quality of the designed
tests.

MS(P,TS) = K / (T – EQ) …where:

P = program under test
TS = test suite
K = killed mutants
T = total mutants
EQ = number of test cases

Figure 1. Mutation score formula.

Therefore, to perform a mutation analysis (for quality
assessment of a test suite) we have to undertake three tasks: 1)
mutants creation, 2) execution of our test cases against the
original system and the mutants, and 3) calculation of the
mutation score. The two first tasks are automatic, while the
third is semi-automatic, mainly due to the presence of
equivalent mutants, which usually are manually identified
(although there are some semi-automatic strategies [2, 3]). This
paper is focused in the improvement of the second task, the
execution of test cases against the original system and the
mutants.

Although the execution of tests is an automatic task, the
execution time can be very high: let us imagine a system under
test from which 1000 mutants are generated and a test suite
with 200 test cases (a relatively small system). If each test
requires 0.5 seconds to be executed, to execute all the test cases
against the original system and the mutants will require a
maximum of 200*0.5 + 1000*200*0.5 = 100 + 100000 =
100100 seconds = 151.66 minutes = 2.52 hours, which is too
much time just to get the execution results.

Therefore, there is a need to develop techniques that reduce
the execution time. This paper is focused on this issue. An
improvement of an existing cost reduction technique (mutant
schema [4]) is proposed. The improved technique has been
called MUtant Schema improved with extra Code (MUSIC).
This technique is able to reduce the execution requirements,
thus reducing the cost of mutation analysis.

Furthermore, this paper presents an empirical validation of
the proposed technique. It demonstrates that the proposed
improvement has significant advantages.

The paper is organized as follows. The next section
describes the strategies proposed in the literature to reduce
execution costs of mutation testing. Section III describes
mutant schema in depth. Section IV shows the proposed
improvement of mutant schema (MUSIC). Section V describes

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.156

664

the experiment performed to validate the proposed technique.
Section VI shows the results of the experiment. And Section
VII presents some conclusions and future work.

II. STATE OF THE ART
Some authors have proposed different strategies to reduce

the execution cost of mutation testing. The next paragraphs
briefly describe the most important ones. More detailed
information can be found in the survey of Jia and Harman [5].

Weak mutation strategies [6-9] reduce the execution costs
by stopping the execution of mutants just after the execution of
the mutated statement. There are some versions of this
technique but all of them have in common the same advantages
and disadvantages: on the one hand, they are effective in the
reduction of the execution requirements because the complete
execution of the tests is not necessary; but, on the other hand,
weak strategies reduce the effectiveness of mutation testing
because mutant are killed easier than with strong mutation, so
they must be carefully used, taking into account their
drawbacks.

Another strategy is to use advanced execution environment
like clusters or grids [10, 11] in order to execute some mutants
in parallel. These techniques reduce the total time of execution
without reducing the effectiveness of mutation testing.
However, it is necessary to have advanced environments and
appropriated mutation tools for them, which is not always
possible.

The third strategy proposed in the literature is related to the
reduction of the generated mutants. Some techniques, like
selective mutation [12], mutant sampling [13] or high order
mutation [14], reduce the number of generated mutants, thus
the execution requirements are also reduced. However, like
with weak mutation strategies, the reduction of the generated
mutants also reduces the effectiveness of mutation testing;
therefore these techniques must also be used carefully.

Finally, there is another strategy based in the execution
type. The first mutation tools were interpreted based [15].
These tools interpret the mutated code of each mutant in order
to determine killed mutants. This technique was very costly, so
in order to reduce the execution cost, a compiler based
technique was proposed by Delamaro et al. [16]. This
technique consists in compiling each mutant and executing test
cases directly, instead of interpreting them. This is the
technique that current mutation tools usually use.

III. MUTANT SCHEMA
Another technique used to reduce execution costs is mutant

schema [4], which is based in program schema technique [17].
The program schema technique was proposed by Baruch et
al.[17]. This technique allows the designer to compose some
different programs in the same source code: thus, only one
compilation is required to obtain the executable of each
program. As all programs are included in a single file, it is
necessary to include a mechanism to determine which program
included in the schema must be executed, such as a
configuration parameter. An example of a program schema is
show in Figure 2, where two programs (“add” and “sub”) are

composed into a schema and the parameter op is used to
determine which program must be executed.

Programs Program schema

int add(int a, int b){
 return a+b;
}

intaddsub (int op, int a, int b){
 if(op == 0){
 return a+b;
 }else if(op == 1){
 return a-b;
 }
}

intsub(int a, int b){
 return a-b;
}

Figure 2. A program schema example.

In the context of mutation testing, program schema is
known as mutant schema [4]. The use of program schema to
represent mutants was proposed in 1992 by Untch et al. [4] in
order to reduce the compilation time of mutants.

Original Mutant 1
1 class ClassA{
2 public intinc (int a, int b){
3 for(b<10){
4 a++;
5 b = b+2;
6 }
7 return a;
8}}

1 class ClassA{
2 public intinc (int a, int b){
3 for(b<10){
4 a++;
5 b = b-2;
6 }
7 return a;
8}}

Mutant 2 Mutant 3
1 class ClassA{
2 public intinc (int a, int b){
3 for(b<10){
4 a++;
5 b = b*2;
6 }
7 return a;
8}}

1 class ClassA{
2 public intinc (int a, int b){
3 for(b<10){
4 a++;
5 b = b/2;
6 }
7 return a;
8}}

Mutant Schema
1 class ClassA{
2 public intinc(int a, int b){
3 for(b<10){
5 a++;
6 if(exec(m1)){
7 b = b-2;
8 }else if(exec(m2)){
9 b = b*2;
10 }else if(exec(m3)){
11 b = b/2;
12 }else {
13 b = b+2;//original statement
14 }
15 }
16 return a;
17}}

Figure 3. A mutant schema example.

In a mutation analysis, each mutant is a copy of the original
system, but with a small syntactic change in one statement.
Therefore, we can consider each mutant as a new program that

665

only differs from the original in the mutated statement. Thus, a
mutant and the original system can be composed into a schema
(a “mutant schema”). For the running of tests against the
original system or against the mutants, the execution
environment only needs to properly set the configuration to run
the correct “program” included in the schema.

Figure 3 shows an example of a mutant schema. The
mutation operator AOR (Arithmetic Operator Replacement)
was applied to the “inc” method (in order to make the example
clear, the AOR operator was only applied to the statement 5 of
the original system) and three mutants were created replacing
the arithmetic operator “+” by “-”, “*” and “/”. Then the three
mutants and the original program were combined into a single
mutant schema. In the schema, all the mutated statements and
the original statement are included and can be selected with an
“if-else” statement. Also, the execution environment must
provide an “execute()” operation to determine if a mutant must
or must not be executed (Figure 3 shows a specific
implementation of mutant schema, but more implementations
are possible).

As Untch et al. [4] demonstrated in 1993, mutant schema
reduces the compilation time (in the example of Figure 3 the
compilation time will be reduced approximately four times,
because only one program has to be compiled instead of four,
although the program of the schema is bigger than each
mutant). However, the technology is currently more efficient
that in 1993. So, building a tool that implements mutant
schema can be more expensive than the advantages of the
technique.

Nevertheless, with the emergence of object-oriented
technologies, the mutant schema technique does not only
reduce the compilation time, but also the time of execution.

The example in Figure 3 is implemented in Java. Let us
suppose that we do not use the mutant schema and the
execution of test cases against each mutant and the original
system is directly made. For each mutant, the execution
environment has to load the ClassA class in memory (because
ClassA is different in each mutant) and then, the test cases are
executed (note that class loading is a costly task).

With mutant schema, the execution environment has to set
the configuration properly to run the correct mutant and then,
the test cases are executed. Thus the class loading task has to
be performed just once in the first execution. This is the reason
why some Java mutation tools like Mujava[18], Javalanche[19]
or Bacterio[8] implement mutant schema for mutants
generation.

IV. MUSIC (MUTANT SCHEMA IMPROVED WITH EXTRA
CODE)

Mutant schema can be used to improve the execution of
mutants, but not only reducing the class loading tasks. We
propose to use mutant schema (keeping their advantages) and
include some extra code with two goals:1) identify situations
where a mutant is not necessary to be executed and 2) identify
when a mutation supposes an infinite loop and stop the
execution. We have called this improvement of mutant schema
technique MUSIC (MUtant Schema Improved with extra
Code).

A. Reducing executions through mutant schema
During a mutation analysis, it is possible that a test case is

executed against a mutant, but the mutated statement is not
executed because the execution path does not visit it. In this
case, the mutant cannot be killed by the test and the execution
of the pair “test case-mutant” is not necessary and supposes a
waste of time. Although some mutation tools, like Javalanche
[19], identify these situations, there is not a formal proposal to
do that and no studies to evaluate its advantages have been
done.

In order to identify these situations, we propose to
introduce some extra code in the mutant schema. This code
will be included before original statements and will identify the
mutants generated from those statements.

Thus, when a test case is executed against the original
system and a statement is reached, all the mutants generated
from that statement are identified. This allows the execution
environment to determine which mutated statements will not be
reached by the test case. With this information it is possible to
determine which test cases must not be executed against a
particular mutant that will not be killed because its mutated
statements will not be reached.

Figure 4 shows the mutant schema of Figure 3, but with
extra code that identifies the mutants generated from the
original statement (note that the execution environment must
provide the method “mutantGenerated()”).

1 class ClassA{
2 public intinc(int a, int b){
3 for(b<10){
5 a++;
6 if(exec(m1)){
7 b = b-2;
8 }else if(exec(m2)){
9 b = b*2;
10 }else if(exec(m3)){
11 b = b/2;
12 }else {
13 mutantGenerated(m1, m2, m3);
14 b = b+2; //original statement
15 }
16 }
17 return a;
18}}

Figure 4. Mutant schema with extra code to reduce executions.

Therefore, when we execute a test case against the original
system and the statement 14 of Figure 4 is reached, we will
know that m1, m2 and m3 mutants must be executed with the
test case. In the same way, if we execute a test case against the
original system and the statement 14 of Figure 4 is not reached,
we will now that the test case must not be executed against m1,
m2 and m3 mutants.

Test Case 1 Test Case 2

a = 10, b = 20 a = 1, b = 9

Figure 5. Tests case for the example.

666

Figure 5 shows an example of two test cases for the original
system of Figure 3. Let us suppose that we decided that the
order of execution is the design order, first TC1 and second
TC2.

If we execute the test cases against the mutant schema of
Figure 3, first we will execute TC1 and TC2 against the
original system. Then, we will execute TC1 against all the
mutants (m1, m2 and m3) and, as any mutant will be killed, we
will execute TC2 against all the mutants. Thus, we will
perform 8 executions.

However, if we execute the test case against the mutant
scheme of Figure 4, first we will execute TC1 and TC2 against
the original system and we will see that TC1 must not be
executed against m1, m2 and m3 mutants because their
mutated statements will be never reached; therefore we will
execute only TC2 against m1, m2 and m3 mutants. Thus, we
will perform 5 executions.

B. Identifying infinite loops through mutant schema
Another problem in a mutation analysis is related to infinite

loops created as a result of a mutation. This problem produces
that test case executions never end with those mutants.
Typically, mutation tools implement a “time-out” configuration
parameter that determines the maximum time that can be spent
by a test case. Thus, when a test case spends more time against
a mutant, we can consider that the mutant contains an infinite
loop, so the execution is stopped and the mutant is considered
killed.

Sometimes this configuration parameter can be problematic
and must be set carefully. It is possible that the execution of a
test case against some mutants require more time that the
configured time-out time. Some reasons can be small time-out
configuration, processor too busy with a lot of processes,
readings from disks too slow, network access, etc. Thus, some
mutants can be considered killed but in fact, they should not.
One solution to that problem is to set the time-out parameter to
be long enough. However, a very long time-out can produce
that to execute “infinite loop” mutants takes a lot of time. Thus,
mutation analyses become more costly.

This problem was not treated in the literature but it can
introduce small perturbations in the calculated mutation scores
and increases the cost of a mutation analysis.

In order to solve this problem we propose to include some
extra code in mutant schemas to identify infinite loops. The
extra code is simply a loop counter. This “loop counter” will
increase a configuration parameter of the execution
environment so that the execution environment can determine
how many iterations are executed in the original system, and
discover soon if a mutant contains an infinite loop because it is
executing too many iterations, independently of the time spent
in the execution. This approach removes false deaths of
mutants, and can reduce the execution of infinite loops.

Figure 6 shows the mutant schema of Figure 4, this time
with the extra code to count iterations. In the m1 and m3
mutants, the parameter b will never increase up to 10, thus the
loop will never end, thus, m1 and m3 contain an infinite loop.
Also m2 contains an infinite loop if b is 0 or lower.

If we execute the test case TC2 of Figure 5 against the
mutant schema of Figure 4, we will need to set up a time-out
because m1 and m3 mutants will have infinite loops. Let us
suppose that we setup the time-out as 1 second. Thus, we will
spend 2 seconds to execute test case 2 against m1 and m3
mutants.

1 class ClassA{
2 public intinc(int a, int b){
3 for(b<10){
5 a++;
6 if(exec(m1)){
7 b = b-2;
8 }else if(exec(m2)){
9 b = b*2;
10 }else if(exec(m3)){
11 b = b/2;
12 }else {
13 mutantsGenerated(m1,m2,m3);
14 b = b+2;//original statement
15 }
16 increaseLoop();
17 }
18 return a;
19}}

Figure 6. Mutant schema with iteration conunter extra code.

Now let us suppose that we set up the time-out to 2
milliseconds once we have checked that the execution of TC2
against the original system spends 1.5 milliseconds. And now,
let us suppose that we execute TC2 against m2, but before the
statement 17 of Figure 4, the process scheduler suspends the
execution of the test and other process is activated; and after 3
milliseconds, the process of TC1 is activated again. At this
point the execution environment will detect that the execution
has spent more than 2 milliseconds; the execution will thus be
stopped and m2 will be considered as killed. TC2 is not able to
kill m2 though.

However, if we execute the test case TC2 of Figure 5
against the mutant schema of Figure 6, after the execution of
the original system we will know that the test iterates 1 time, so
when the execution of TC2 against m1 or m3 iterates 5 times,
the infinite loop is identified and the execution is stopped.
Depending on how fast the hardware is, the execution of TC2
against m1 and m3 can spend some milliseconds, which is
lower than 2 seconds. On the other hand, TC2 will never kill
m2 because it will always iterate once and the result will
always be 2 like the original.

C. Limitations of MUSIC
Although the proposed approach to reduce the number of

executions and identify infinite loops can reduce the execution
time including extra code, it has some limitations.

The main limitations of MUSIC are derived from the
limitations of the mutant schema technique. Some object-
oriented mutation operators produce mutants that cannot be
composed into a mutant schema with the original system.
These mutants have syntactic changes that suppose a change in
the structure of a class. Figure 7 shows a mutant generated with
the AMC (Access Modifier Change) mutation operator [20].

667

In this case, it is necessary to create a new class and
therefore, the advantages of mutant schema are not applicable
to this kind of mutants. Fortunately, most of the object-oriented
mutant operators generate mutants that can be composed into a
mutant schema.

Original Mutant
 class ClassB{
private int a;
 ….
}

class ClassB{
public inta;
 ….
}

Figure 7. Mutant with a structural change.

Another limitation of MUSIC is related with the execution
of the original system. With our proposal, extra code is
included in mutant schemes that must be executed when the
original system is executed. As a result, the execution of the
original system becomes more costly. Besides, the execution
cost savings of the proposed technique depend on the execution
order of the test cases. Thus, there can be situations where the
additional cost of the original system execution is bigger than
the cost savings during the mutant executions.

The last limitation is related with the identification of
infinite loops. Sometimes, a mutant can execute more iterations
than the original system and it must not be killed. There are
two possibilities: 1) the mutant is equivalent and the mutation
supposes a de-optimization of the code; or 2) the mutant
executes more iterations than the original system but the output
is similar to the original output because the test data is not good
enough to produce a different output. This implies that the
number of iterations observed during the original system must
be increased to avoid killing these kinds of mutants.

This means that MUSIC has similar problems to the “time-
out” approaches, but the influence of the problems is lower.
Increasing the number of iterations increases the execution cost
less than allowing a longer time-out; thus, it is possible to
increase the number of iterations too much in order to avoid
killing mutants when they must not be killed.

V. EMPIRICAL VALIDATION
This section presents an experiment that evaluates MUSIC.

We performed an experiment with two different applications.
The experimental design of the experiment is presented in this
section.

A. Research goal
The research goal of the experiment is to investigate if

MUSIC improves the mutant execution task through the
identification of infinite loops and situations when a mutant
must not be executed.

B. Application under tests
The experiment was run on two applications. Both of them

are written in Java technology and have a test suite in JUnit[21]
format. The applications were: Monopoly, a monopoly game
simulator and Cinema: a cinema management system. A
quantitative description of the applications and their test suites
is showed in Table I.

Table I shows, for each application, the number of classes,
the number of lines of code and the number of test cases that
composes each test suite. Also, Table I shows the mutation
score achieved by each test suite. To calculate the mutation
scores, the equivalent mutants were not identified.

TABLE I. QUANTITATIVE DESCRIPTION OF THE APPLICATIONS.

App. Classes LOC Number of
tests

Mutation
score

Cinema 10 678 197 80.05
Monopoly 40 641 211 83.32

C. Tools and hardware
To manage the applications and the test suites we used the

Eclipse platform [22]. To perform the mutation analysis and
the mutant execution tasks, we used Bacterio tool [8], where
MUSIC was implemented. To analyze the collected data, we
used Microsoft Excel.

The computer used to perform the experiments has a
processor Intel Core 2 Duo P7450, 4GB of RAM memory and
Windows 7 operative system.

D. Variable description
In the experiment, we manage seven different variables.

There are two independent variables and four dependent
variables.

The first independent variable is related with the
application of the technique presented in section IV. This
variable will have two values: use only mutant schema (MS) or
use mutant schema improved with extra code (MUSIC). The
second independent variable is the executions order. As is
commented in section IV.C, the order of the test has a big
influence in the advantages of the proposed technique, so it is
important to evaluate the effect of different orders. Therefore,
the test execution order will have five values: design order,
design reverse order and three different random orders.

The first dependent variable is the total number of
executions. It will show how many pairs “test-mutant” will be
executed. The second dependent variable is the original
execution time, measured in seconds. This variable will show
MUSIC increases the original execution time relative to mutant
schema. The third dependent variable is the mutant execution
time. This variable will show if MUSIC was able to decrease
the cost in the mutant executions. The fourth dependent
variable is the number of mutants killed when an infinite loop
is detected and the fifth dependent variable is the execution
time when a mutant executes an infinite loop. These two
variables will show the total time spent in mutants with infinite
loops.

E. Experimental procedure
The next paragraph shows the experimental procedure

carried out for the experiment. Note that we have to create
three different execution orders randomly for each application
before performing the procedure.

There are 2 parameters to identify infinite loops: the “time-
out” when mutant schema technique is used and the “iterations
increases” when MUSIC is used (see section IV.C). For the

668

time-out, we established 0.5 seconds, which is long enough not
to show the problems addressed in section IV.B (also a second
value, 0.1 seconds, for the time-out was established in order to
show the problems described in section IV.B. The data
collected when the time out is 0.1 seconds is only discussed in
section VI.B). For the parameter of iterations increases we
fixed it = *10, this configuration allows mutants with infinite
loops to execute 10 times more iterations than the original
system.

The procedure is composed by 9 steps and was executed
several times, one for each combination of “application-order-
technique”. The experimental procedure has four input
parameters: application, test suite, execution test order, and the
technique to apply.

1- Create mutants of the application.

2- Set up Bacterio tool to apply the technique.

3- Set up Bacterio tool to run the test cases in the selected
order.

4- Execute the test suite against the original system.

5- Annotate the time spent in the execution and the
number of executions.

6- Execute the test suite against the generated mutants.

7- Annotate the time spent in the execution and the
number of executions.

8- Annotate the number of killed mutants by time-out and
time spent to kill them.

9- If the mutants were executed less than three times, go
to step 4.

Finally, all collected data must be joined and analyzed.
Note that all the information to be annotated is calculated and
showed by the tool Bacterio, thus we only need to collect the
data to analyze it.

At the end of the process, we will have executed three times
the mutants and the original system, so we will have three
repetitions for each combination “application-order-technique”.
Then the mean of the three repetitions is calculated. These
three repetitions are necessary in order to remove possible
random effects (such as processor scheduler or java garbage
collector) that can influence in the execution time, and in order
to observe the effect of the time-out (see section IV.B).

VI. RESULTS AND DISCUSSION
This section shows the experimental results. We analyzed

three effects. 1) The effect of MUSIC in the execution tasks
(number of executions and total time), 2) the effect of MUSIC
in the identification of infinite loops, and 3) the effect of the
test execution order when MUSIC is applied.

A. Effect of MUSIC in the execution task
Figure 8 shows the number of executions, Figure 9 shows

the execution time of the original system and Figure 10 shows
the execution time of the mutants, all the tables for each
application with each execution order and each technique (MS
with the time-out = 0.5 seconds and MUSIC). The data is the

mean of the three repetitions performed (see section V.E). The
mean of three repetitions is calculated in order to remove
possible randomness in the collected times.

Figure 9 shows that, when MUSIC is used, the original
execution time is increased around four times in the worst case.
This shows the problem described in section IV.C, the extra
code that must be executed in the original execution increases
the cost of the original execution.

However, Figure 10 shows that MUSIC is able to
drastically reduce the mutant execution time. In the chart, we
can see that the mutant execution time is reduced at least to a
quarter when music is used. This reduction is due to the
reduction in the number of executions (Figure 8), which are
also reduced to a quarter.

This indicates that MUSIC increases four times the original
execution time but it also decreases four times the mutant
execution time. And, as the mutant execution time is some
orders of magnitude bigger than the original execution time (10
seconds vs. 1000 seconds), the advantage of MUSIC is clearly
stated.

We can conclude that the number of situations when a test
case must not be executed because the mutated statements of
mutants will not be executed is really high and suppose up to
75% of the total executions. Thus, a technique as MUSIC,
which is able to identify these situations before the execution
of mutants, can drastically reduce the execution requirements
(around 75%); we strongly recommend its use, even if it
supposes an increase of the original execution.

B. Effect of MUSIC in the identification of infinite loops
This section shows the effect of MUSIC in the

identification of infinite loops. Figure 11 shows the number of
infinite loops detected (note that in some cases, when a
“timeout” is used, the number of infinite loops is not an integer
value. This indicates that, even executing the same mutants and
test cases in the same order, infinite loops are identified only in
one or two of the three repetitions) and Figure 12 shows the
time spent in the execution of infinite loops, both tables for
each application with each execution order and each technique
(MS and MUSIC). This section also includes the data collected
when the time-out parameter was 0.1 seconds.

Figure 11 shows the problem described in section IV.B
concerning time approaches to identify infinite loops. When
the time-out is too small some mutants may be killed by time-
out when they should not. When the time-out was set up to 0.1
seconds, the number of infinite loops identified was higher than
the infinite loops identified when the time-out is 0.5 seconds or
when the MUSIC technique is used. This indicates that some
mutants may be killed by time-out but they should not.

Table II shows the mutation scores achieved. We can see
that, in fact, the mutation score achieved when the time-out is
0.1 seconds is higher that when the time-out is 0.5 or when
MUSIC technique is used. This shows that when the
configured time-out is too small, some mutants may be killed
by time-out when they should not, therefore small time-out
should not be used.

669

In addition, when a big time-out is used, the time expended
to identify infinite loops can be very long. Figure 12 shows the
time spent in the identification of infinite loops. It shows that
when the time-out is 0.5 seconds, the spent time is much bigger
than when the time-out is 0.1. In the experiment, the spent time
is relatively small, but with larger tests this time can be much
longer. Also, Figure 12 shows that MUSIC technique
significantly reduces the time to identify infinite loops (around
15%). Moreover, Figure 11 and Table II show that MUSIC
technique does not find more infinite loops than the time-based
techniques and does not kill mutants when they should not be
killed. Thus, these results induce to think that MUSIC is a
more reliable technique than time-based approaches.

C. Influence of the execution order in MUSIC
Finally, we analyze the influence of the test execution order

in MUSIC technique. Figure 8 shows that the number of
execution is different when the test execution order is different.
When MUSIC is not used, the influence of the test execution
order is obvious. For example, in the cinema application, we
can find a difference of 80000 executions between direct and
reverse orders, which is around 40%.

However, when MUSIC is used, the differences are small,
because the number of executions is also small. For example
the biggest difference is between reverse and random 2 test
execution orders of cinema applications, which is around 25%.

Although the differences in the number of executions are
lower when MUSIC technique is used, there are still some
differences. Thus, it would be interesting to design test
ordering strategies to improve the mutants execution and
reduce the number of executions.

D. Threats to validity
There are some threats to validity in this experiment that

must be considered when we assume the conclusions.

Construct validity is the degree to which independent and
dependent variables are accurately measured [23]. In the
experiments, the independent variables are nominal and cannot
be measured, and the dependent variables are measured
objectively by tools. Times are not deterministic, so we
perform three repetitions of each execution in order to reduce
the threat. Besides, tools used in the experiment can have bugs,
which is another threat.

Internal validity is the degree of confidence in a cause-
effect relationship between factor of interest and the observed
results [23]. All the variables were controlled during the
experiments by tools in order to minimize threats to internal
validity.

External validity is the extent to which the research results
can be generalized to the population under study and other
research settings[23]. In order to minimize threats to external

validity, we used two applications with different nature, and
each application with several classes. However, some threats
exist because it is not possible to state that size and nature of
the used applications is enough.

VII. CONCLUSIONS AND FUTURE WORK
This paper proposes an improvement of an existing

mutation cost reduction technique, mutant schema. This
improvement, called MUSIC (mutant schema improved with
extra code), is able to identify situations where a mutant must
not be executed, therefore reducing the number of total
required executions in a mutation analysis. In addition, MUSIC
is able to identify infinite loops faster and more reliably than
other approaches based in time.

In this paper, an empirical validation of MUSIC is
presented. This validation shows that MUSIC significantly
reduces the number of executions (around 77%) and thus also
the mutant execution time, to the detriment of the original
execution time, which increases around 56%. The empirical
validation also shows that the identification of infinite loops is
faster and more reliable than other techniques based in time-
outs. These conclusions suggest that MUSIC technique is
convenient to reduce the execution time (although the
execution of the original system increases significantly).

Another interesting conclusion of the experiment is related
with the execution order. The experiments shows that the
execution order of the tests has an influence the number of
executions, and therefore the execution order influences the
efficiency of MUSIC.

Taking all this into account, we plan future work to design
strategies in order to determine good execution orders to
maximize the efficiency of MUSIC technique.

TABLE II. MUTATION SCORES

App
Test execution order

MS (0.5
seconds)

MS (0.1
seconds) MUSIC

monopoly
direct 83.32 83.4 83.32

reverse 83.32 83.43 83.32

random1 83.32 83.43 83.32

random2 83.32 83.35 83.32

random3 83.32 83.37 83.32
cine

direct 80.05 80.6 80.05

reverse 80.05 80.08 80.05

random1 80.05 80.05 80.05

random2 80.05 80.05 80.05

random3 80.05 80.07 80.05

670

Figure 8. Number of executions (pairs test-mutant executed).

Figure 9. Original execution time.

Figure 10. Mutants execution time.

Figure 11. Infinite loops identified.

671

Figure 12. Time spent in the infinited loops.

ACKNOWLEDGMENT
This work was supported by the projects DIMITRI

(TRA2009_0131) and the project PEGASO/MAGO
(TIN2009-13718-C02-01) from MICINN. Pedro Reales has
a doctoral grant (AP2009-3058) from the Ministerio de
Educación.

REFERENCES

[1] R. DeMillo, R.J. Lipton and F.G. Sayward. Hints on test data

selection: Help for the practicing programmer. IEEE Computer.
11(4): p. 34-41, 1978.

[2] A. Offutt and J. Pan. Detecting Equivalent Mutants and the Feasible
Path Problem. Wiley's Software Testing, Verification, and
Reliability. 7(3): p. 165-192, September 1997, 1997.

[3] D. Schuler and A. Zeller. (Un-)Covering Equivalent Mutants In
Proceedings of the 3rd International Conference on Software Testing
Verification and Validation (ICST'10). Paris, France, 6 April, 2010,
2010.

[4] R. Untch, A. Offutt and M. Harrold. Mutation analysis using
program schemata. In International Symposium on Software Testing,
and Analysis. 139-148, Cambridge, Massachusetts, June 28-30, 1993.

[5] Y. Jia and M. Harman. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering.
37(5): p. 649-678, September 2011, 2011.

[6] A.J. Offutt and S.D. Lee. An Empirical Evaluation of Weak Mutation.
IEEE Transactions on Software Engineering. 20(5): p. 337-344, 1994.

[7] B. Marick. The weak mutation hypothesis. In 4th Symposium on
Testing, analysis, and verification. 190-199, Victoria, British
Columbia, Canada, October, 1991, 1991.

[8] P. Reales, M. Polo and J. Offutt. Mutation at System and Functional
Levels. In Third International Conference on Software Testing,
Verification, and Validation Workshops. 110-119, Paris, France,
April, 2010.

[9] M. Woodward and K. Halewood. From weak to strong, dead or
alive? An analysis of some mutation testing issues. In Second
Workshop on Software Testing, Verification, and Analysis. 152-158,
Banff, Canada, July 1988, 1988.

[10] E.W. Krauser, A.P. Mathur and V.J. Rego. High performance
software testing on SIMD machine. IEEE Transactions on Software
Engineering. 17(5): p. 403-423, 1991.

[11] A.J. Offutt, R.P. Pargas, S.V. Fichter and P.K. Khambekar. Mutation
Testing of Software Using a MIMD Computer. In International
Conference on Parallel Processing. 1992.

[12] L.B. E. S. Mresa. Efficiency of Mutation Operators and Selective
Mutation Strategies: An Empirical Study. Software Testing,
Verification and Reliability. 9: p. 205-232, 1999.

[13] K.N. King and A.J. Offutt. A Fortran language system for mutation
based software testing. Software: Practice and Experience. 21(7): p.
685-718, 1991.

[14] M. Polo, M. Piattini and I. García-Rodríguez. Decreasing the cost of
mutation testing with 2-order mutants. Software Testing, Verification
and Reliability. 19(2): p. 111-131, 2008.

[15] J. Offutt and K.N. King. A Fortran 77 interpreter for mutation
analysis. In Programming Language Design and Implementation.
177-188, St. Paul, Minnesota, United States, 1987, 1987.

[16] M.E. Delamaro and J.C. Maldonado. Proteum-A Tool for the
Assessment of Test Adequacy for C Programs. In Proceedings of the
Conference on Performability in Computing Systems (PCS’96). 79–
95, New Brunswick, New Jersey, July, 1996.

[17] O. Baruch and S. Katz. Partially interpreted schemas for CSP
programming. Science of Computer Programming. 10(1), February,
1988.

[18] Y.-S. Ma, J. Offutt and Y.R. Kwon. MuJava: an automated class
mutation system. Software Testing, Verification and Reliability.
15(2): p. 97-133, 2005.

[19] D. Schuler and A. Zeller. Javalanche: efficient mutation testing for
Java. In European Software Engineering Conference
(ESEC)/Foundations of Software Enginering (FSE). 297-298,
Amsterdam, 2009.

[20] Y.S. Ma, Y.R. Kwon and J. Offutt. Inter-class mutation operators for
Java. In 13th International Symposium on Software Reliability
Engineering. 352-363, Annapolis, MD, 2002.

[21] JUnit. JUnit, Testing Resources for Extreme Programming. 2003
[Access January 5, 2003]; Available from: http://www.junit.org.

[22] Eclipse Framework. [Access date: 2011 10th February]; Available
from: http://www.eclipse.org/.

[23] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell and A.
Wesslén, Experimentation in Software Engineering: An Introduction.
2000, Norwell, MA: Kluwer Academic.

672

