
Mutant Execution Cost Reduction 
Through MUSIC (MUtant Schema Improved with extra Code) 

 

Pedro Reales Mateo and Macario Polo Usaola 
Instituto de Tecnologías y Sistemas de Información 

University of Castilla-La Mancha 
Ciudad Real, Spain 

{pedro.reales, macario.polo}@uclm.es 

 
 

Abstract—Mutation testing is a very effective testing technique 
that creates mutants (copies of the original system with small 
syntactic changes) in order to design test cases that kill the 
mutants (identifying the syntactic changes). The main 
disadvantage of mutation testing is its high costs: creating 
mutants, executing mutants and calculating the mutation score. 
This paper describes the MUSIC technique, an improvement of 
the cost reduction technique Mutant Schema, which is meant to 
reduce the number of required executions and identify infinite 
loops at a reduced cost. Besides, an experiment was performed to 
evaluate the advantages and disadvantages of MUSIC and 
identify possible ways to improved it. As a result, we conclude 
that MUSIC reduces the execution cost of mutation testing and 
its application is therefore recommended. 

Keywords-Mutation testing, mutant schema, music, execution 
cost reduction, infinite loops. 

I. INTRODUCTION 
Software testing is an important task to develop systems, 

and sometimes is one of the most costly tasks. In order to 
increase the effectiveness of software testing, the scientific 
community has designed many techniques to improve testing 
tasks. One effective technique is mutation testing which was 
proposed by DeMillo[1] in 1978.  

To apply this technique, a tester basically has to create 
copies of the system under test (SUT) and introduce small 
syntactic changes in each copy (these copies are called 
mutants). The syntactic changes are introduced through 
mutation operators, which are well formed rules to transform 
the code. Then, the tester has to create tests that must be able to 
find all the syntactic changes introduced by the mutation 
operators. When a test finds the change introduced into a 
mutant, the mutant is considered as killed. Sometimes, a 
syntactic change supposes the same behavior than the original 
system (as an optimization or a des-optimization) and thus 
these mutants cannot be killed by any test case. These mutants 
are named equivalent mutants, and usually must be manually 
identified. Finally, when the test cases are created, the mutation 
score () is calculated to determine the quality of the designed 
tests.  

MS(P,TS) = K / (T – EQ)    …where: 

P = program under test 
TS = test suite 
K = killed mutants 
T = total mutants 
EQ = number of test cases 

Figure 1. Mutation score formula. 

Therefore, to perform a mutation analysis (for quality 
assessment of a test suite) we have to undertake three tasks: 1) 
mutants creation, 2) execution of our test cases against the 
original system and the mutants, and 3) calculation of the 
mutation score. The two first tasks are automatic, while the 
third is semi-automatic, mainly due to the presence of 
equivalent mutants, which usually are manually identified 
(although there are some semi-automatic strategies [2, 3]). This 
paper is focused in the improvement of the second task, the 
execution of test cases against the original system and the 
mutants.  

Although the execution of tests is an automatic task, the 
execution time can be very high: let us imagine a system under 
test from which 1000 mutants are generated and a test suite 
with 200 test cases (a relatively small system). If each test 
requires 0.5 seconds to be executed, to execute all the test cases 
against the original system and the mutants will require a 
maximum of  200*0.5 + 1000*200*0.5 = 100 + 100000 = 
100100 seconds = 151.66 minutes = 2.52 hours, which is too 
much time just to get the execution results. 

Therefore, there is a need to develop techniques that reduce 
the execution time. This paper is focused on this issue. An 
improvement of an existing cost reduction technique (mutant 
schema [4]) is proposed. The improved technique has been 
called MUtant Schema improved with extra Code (MUSIC). 
This technique is able to reduce the execution requirements, 
thus reducing the cost of mutation analysis.  

Furthermore, this paper presents an empirical validation of 
the proposed technique. It demonstrates that the proposed 
improvement has significant advantages. 

The paper is organized as follows. The next section 
describes the strategies proposed in the literature to reduce 
execution costs of mutation testing. Section III describes 
mutant schema in depth. Section IV shows the proposed 
improvement of mutant schema (MUSIC). Section V describes 
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the experiment performed to validate the proposed technique. 
Section VI shows the results of the experiment. And Section 
VII presents some conclusions and future work. 

II. STATE OF THE ART 
Some authors have proposed different strategies to reduce 

the execution cost of mutation testing. The next paragraphs 
briefly describe the most important ones. More detailed 
information can be found in the survey of Jia and Harman [5]. 

Weak mutation strategies [6-9] reduce the execution costs 
by stopping the execution of mutants just after the execution of 
the mutated statement. There are some versions of this 
technique but all of them have in common the same advantages 
and disadvantages: on the one hand, they are effective in the 
reduction of the execution requirements because the complete 
execution of the tests is not necessary; but, on the other hand, 
weak strategies reduce the effectiveness of mutation testing 
because mutant are killed easier than with strong mutation, so 
they must be carefully used, taking into account their 
drawbacks. 

Another strategy is to use advanced execution environment 
like clusters or grids [10, 11] in order to execute some mutants 
in parallel. These techniques reduce the total time of execution 
without reducing the effectiveness of mutation testing. 
However, it is necessary to have advanced environments and 
appropriated mutation tools for them, which is not always 
possible. 

The third strategy proposed in the literature is related to the 
reduction of the generated mutants. Some techniques, like 
selective mutation [12], mutant sampling [13] or high order 
mutation [14], reduce the number of generated mutants, thus 
the execution requirements are also reduced. However, like 
with weak mutation strategies, the reduction of the generated 
mutants also reduces the effectiveness of mutation testing; 
therefore these techniques must also be used carefully. 

Finally, there is another strategy based in the execution 
type. The first mutation tools were interpreted based [15]. 
These tools interpret the mutated code of each mutant in order 
to determine killed mutants. This technique was very costly, so 
in order to reduce the execution cost, a compiler based 
technique was proposed by Delamaro et al. [16]. This 
technique consists in compiling each mutant and executing test 
cases directly, instead of interpreting them. This is the 
technique that current mutation tools usually use. 

III. MUTANT SCHEMA 
Another technique used to reduce execution costs is mutant 

schema [4], which is based in program schema technique [17]. 
The program schema technique was proposed by Baruch et 
al.[17]. This technique allows the designer to compose some 
different programs in the same source code: thus, only one 
compilation is required to obtain the executable of each 
program. As all programs are included in a single file, it is 
necessary to include a mechanism to determine which program 
included in the schema must be executed, such as a 
configuration parameter. An example of a program schema is 
show in Figure 2, where two programs (“add” and “sub”) are 

composed into a schema and the parameter op is used to 
determine which program must be executed. 

Programs Program schema 

int add(int a, int b){
      return a+b; 
} 

intaddsub (int op, int a, int b){
    if(op == 0){ 
        return  a+b; 
    }else if(op == 1){ 
        return a-b; 
    } 
} 

intsub(int a, int b){
     return a-b; 
}  

Figure 2. A program schema example. 

In the context of mutation testing, program schema is 
known as mutant schema [4]. The use of program schema to 
represent mutants was proposed in 1992 by Untch et al. [4] in 
order to reduce the compilation time of mutants. 

 

Original Mutant 1 
1 class ClassA{
2 public intinc (int a, int b){ 
3        for(b<10){ 
4            a++; 
5            b = b+2; 
6        } 
7        return a; 
8}} 

1 class ClassA{
2 public intinc (int a, int b){ 
3        for(b<10){ 
4            a++; 
5            b = b-2; 
6        } 
7        return a; 
8}} 

Mutant 2 Mutant 3 
1 class ClassA{
2  public intinc (int a, int b){ 
3        for(b<10){ 
4            a++; 
5            b = b*2; 
6        } 
7        return a; 
8}}

1 class ClassA{
2 public intinc (int a, int b){ 
3        for(b<10){ 
4            a++; 
5            b = b/2; 
6        } 
7        return a; 
8}} 

Mutant Schema
1 class ClassA{
2    public intinc(int a, int b){ 
3        for(b<10){ 
5            a++; 
6            if(exec(m1)){ 
7                b = b-2; 
8            }else if(exec(m2)){ 
9                b = b*2; 
10          }else if(exec(m3)){ 
11              b = b/2; 
12           }else { 
13              b = b+2;//original statement 
14           } 
15      }    
16       return a; 
17}} 

Figure 3. A mutant schema example. 

In a mutation analysis, each mutant is a copy of the original 
system, but with a small syntactic change in one statement. 
Therefore, we can consider each mutant as a new program that 
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only differs from the original in the mutated statement. Thus, a 
mutant and the original system can be composed into a schema 
(a “mutant schema”). For the running of tests against the 
original system or against the mutants, the execution 
environment only needs to properly set the configuration to run 
the correct “program” included in the schema. 

Figure 3 shows an example of a mutant schema. The 
mutation operator AOR (Arithmetic Operator Replacement) 
was applied to the “inc” method (in order to make the example 
clear, the AOR operator was only applied to the statement 5 of 
the original system) and three mutants were created replacing 
the arithmetic operator “+” by “-”, “*” and “/”.  Then the three 
mutants and the original program were combined into a single 
mutant schema. In the schema, all the mutated statements and 
the original statement are included and can be selected with an 
“if-else” statement. Also, the execution environment must 
provide an “execute()” operation to determine if a mutant must 
or must not be executed (Figure 3 shows a specific 
implementation of mutant schema, but more implementations 
are possible). 

As Untch et al. [4] demonstrated in 1993, mutant schema 
reduces the compilation time (in the example of Figure 3 the 
compilation time will be reduced approximately four times, 
because only one program has to be compiled  instead of four, 
although the program  of the schema is bigger than each  
mutant). However, the technology is currently more efficient 
that in 1993. So, building a tool that implements mutant 
schema can be more expensive than the advantages of the 
technique. 

Nevertheless, with the emergence of object-oriented 
technologies, the mutant schema technique does not only 
reduce the compilation time, but also the time of execution.  

The example in Figure 3 is implemented in Java. Let us 
suppose that we do not use the mutant schema and the 
execution of test cases against each mutant and the original 
system is directly made. For each mutant, the execution 
environment has to load the ClassA class in memory (because 
ClassA is different in each mutant) and then, the test cases are 
executed (note that class loading is a costly task). 

With mutant schema, the execution environment has to set 
the configuration properly to run the correct mutant and then, 
the test cases are executed. Thus the class loading task has to 
be performed just once in the first execution. This is the reason 
why some Java mutation tools like Mujava[18], Javalanche[19] 
or Bacterio[8] implement mutant schema for mutants 
generation. 

IV. MUSIC (MUTANT SCHEMA IMPROVED WITH EXTRA 
CODE) 

Mutant schema can be used to improve the execution of 
mutants, but not only reducing the class loading tasks. We 
propose to use mutant schema (keeping their advantages) and 
include some extra code with two goals:1) identify situations 
where a mutant is not necessary to be executed and 2) identify 
when a mutation supposes an infinite loop and stop the 
execution. We have called this improvement of mutant schema 
technique MUSIC (MUtant Schema Improved with extra 
Code). 

A. Reducing executions through mutant schema 
During a mutation analysis, it is possible that a test case is 

executed against a mutant, but the mutated statement is not 
executed because the execution path does not visit it. In this 
case, the mutant cannot be killed by the test and the execution 
of the pair “test case-mutant” is not necessary and supposes a 
waste of time. Although some mutation tools, like Javalanche 
[19], identify these situations, there is not a formal proposal to 
do that and no studies to evaluate its advantages have been 
done. 

In order to identify these situations, we propose to 
introduce some extra code in the mutant schema. This code 
will be included before original statements and will identify the 
mutants generated from those statements.  

Thus, when a test case is executed against the original 
system and a statement is reached, all the mutants generated 
from that statement are identified. This allows the execution 
environment to determine which mutated statements will not be 
reached by the test case. With this information it is possible to 
determine which test cases must not be executed against a 
particular mutant that will not be killed because its mutated 
statements will not be reached. 

Figure 4 shows the mutant schema of Figure 3, but with 
extra code that identifies the mutants generated from the 
original statement (note that the execution environment must 
provide the method “mutantGenerated()”). 

1 class ClassA{
2    public intinc(int a, int b){ 
3        for(b<10){ 
5            a++; 
6            if(exec(m1)){ 
7                b = b-2; 
8            }else if(exec(m2)){ 
9                b = b*2; 
10          }else if(exec(m3)){ 
11              b = b/2; 
12           }else { 
13               mutantGenerated(m1, m2, m3); 
14               b = b+2; //original statement 
15           } 
16      }    
17       return a; 
18}} 

Figure 4. Mutant schema with extra code to reduce executions. 

Therefore, when we execute a test case against the original 
system and the statement 14 of Figure 4 is reached, we will 
know that m1, m2 and m3 mutants must be executed with the 
test case. In the same way, if we execute a test case against the 
original system and the statement 14 of Figure 4 is not reached, 
we will now that the test case must not be executed against m1, 
m2 and m3 mutants. 

Test Case 1 Test Case 2 

a = 10, b = 20 a = 1, b = 9 

Figure 5. Tests case for the example. 
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Figure 5 shows an example of two test cases for the original 
system of Figure 3. Let us suppose that we decided that the 
order of execution is the design order, first TC1 and second 
TC2. 

If we execute the test cases against the mutant schema of 
Figure 3, first we will execute TC1 and TC2 against the 
original system. Then, we will execute TC1 against all the 
mutants (m1, m2 and m3) and, as any mutant will be killed, we 
will execute TC2 against all the mutants. Thus, we will 
perform 8 executions. 

However, if we execute the test case against the mutant 
scheme of Figure 4, first we will execute TC1 and TC2 against 
the original system and we will see that TC1 must not be 
executed against m1, m2 and m3 mutants because their 
mutated statements will be never reached; therefore we will 
execute only TC2 against m1, m2 and m3 mutants. Thus, we 
will perform 5 executions.  

B. Identifying infinite loops through mutant schema 
Another problem in a mutation analysis is related to infinite 

loops created as a result of a mutation. This problem produces 
that test case executions never end with those mutants. 
Typically, mutation tools implement a “time-out” configuration 
parameter that determines the maximum time that can be spent 
by a test case. Thus, when a test case spends more time against 
a mutant, we can consider that the mutant contains an infinite 
loop, so the execution is stopped and the mutant is considered 
killed. 

Sometimes this configuration parameter can be problematic 
and must be set carefully. It is possible that the execution of a 
test case against some mutants require more time that the 
configured time-out time. Some reasons can be small time-out 
configuration, processor too busy with a lot of processes, 
readings from disks too slow, network access, etc. Thus, some 
mutants can be considered killed but in fact, they should not. 
One solution to that problem is to set the time-out parameter to 
be long enough. However, a very long time-out can produce 
that to execute “infinite loop” mutants takes a lot of time. Thus, 
mutation analyses become more costly.  

This problem was not treated in the literature but it can 
introduce small perturbations in the calculated mutation scores 
and increases the cost of a mutation analysis. 

In order to solve this problem we propose to include some 
extra code in mutant schemas to identify infinite loops. The 
extra code is simply a loop counter. This “loop counter” will 
increase a configuration parameter of the execution 
environment so that the execution environment can determine 
how many iterations are executed in the original system, and 
discover soon if a mutant contains an infinite loop because it is 
executing too many iterations, independently of the time spent 
in the execution. This approach removes false deaths of 
mutants, and can reduce the execution of infinite loops.  

Figure 6 shows the mutant schema of Figure 4, this time 
with the extra code to count iterations. In the m1 and m3 
mutants, the parameter b will never increase up to 10, thus the 
loop will never end, thus, m1 and m3 contain an infinite loop. 
Also m2 contains an infinite loop if b is 0 or lower. 

If we execute the test case TC2 of Figure 5 against the 
mutant schema of Figure 4, we will need to set up a time-out 
because m1 and m3 mutants will have infinite loops. Let us 
suppose that we setup the time-out as 1 second. Thus, we will 
spend 2 seconds to execute test case 2 against m1 and m3 
mutants. 

1 class ClassA{
2    public intinc(int a, int b){ 
3        for(b<10){ 
5            a++; 
6            if(exec(m1)){ 
7                b = b-2; 
8            }else if(exec(m2)){ 
9                b = b*2; 
10          }else if(exec(m3)){ 
11              b = b/2; 
12           }else { 
13               mutantsGenerated(m1,m2,m3); 
14               b = b+2;//original statement 
15           } 
16           increaseLoop(); 
17      }    
18       return a; 
19}}

Figure 6. Mutant schema with iteration conunter extra code. 

Now let us suppose that we set up the time-out to 2 
milliseconds once we have checked that the execution of TC2 
against the original system spends 1.5 milliseconds. And now, 
let us suppose that we execute TC2 against m2, but before the 
statement 17 of Figure 4, the process scheduler suspends the 
execution of the test and other process is activated; and after 3 
milliseconds, the process of TC1 is activated again. At this 
point the execution environment will detect that the execution 
has spent more than 2 milliseconds; the execution will thus be 
stopped and m2 will be considered as killed. TC2 is not able to 
kill m2 though.  

However, if we execute the test case TC2 of Figure 5 
against the mutant schema of Figure 6, after the execution of 
the original system we will know that the test iterates 1 time, so 
when the execution of TC2 against m1 or m3 iterates 5 times, 
the infinite loop is identified and the execution is stopped. 
Depending on how fast the hardware is, the execution of TC2 
against m1 and m3 can spend some milliseconds, which is 
lower than 2 seconds. On the other hand, TC2 will never kill 
m2 because it will always iterate once and the result will 
always be 2 like the original. 

C. Limitations of MUSIC 
Although the proposed approach to reduce the number of 

executions and identify infinite loops can reduce the execution 
time including extra code, it has some limitations. 

The main limitations of MUSIC are derived from the 
limitations of the mutant schema technique. Some object-
oriented mutation operators produce mutants that cannot be 
composed into a mutant schema with the original system. 
These mutants have syntactic changes that suppose a change in 
the structure of a class. Figure 7 shows a mutant generated with 
the AMC (Access Modifier Change) mutation operator [20]. 
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In this case, it is necessary to create a new class and 
therefore, the advantages of mutant schema are not applicable 
to this kind of mutants. Fortunately, most of the object-oriented 
mutant operators generate mutants that can be composed into a 
mutant schema. 

Original Mutant 
 class  ClassB{ 
private int a; 
    …. 
} 

class  ClassB{ 
public inta; 
    …. 
} 

Figure 7. Mutant with a structural change. 

Another limitation of MUSIC is related with the execution 
of the original system. With our proposal, extra code is 
included in mutant schemes that must be executed when the 
original system is executed. As a result, the execution of the 
original system becomes more costly. Besides, the execution 
cost savings of the proposed technique depend on the execution 
order of the test cases. Thus, there can be situations where the 
additional cost of the original system execution is bigger than 
the cost savings during the mutant executions. 

The last limitation is related with the identification of 
infinite loops. Sometimes, a mutant can execute more iterations 
than the original system and it must not be killed. There are 
two possibilities: 1) the mutant is equivalent and the mutation 
supposes a de-optimization of the code; or 2) the mutant 
executes more iterations than the original system but the output 
is similar to the original output because the test data is not good 
enough to produce a different output. This implies that the 
number of iterations observed during the original system must 
be increased to avoid killing these kinds of mutants. 

This means that MUSIC has similar problems to the “time-
out” approaches, but the influence of the problems is lower. 
Increasing the number of iterations increases the execution cost 
less than allowing a longer time-out; thus, it is possible to 
increase the number of iterations too much in order to avoid 
killing mutants when they must not be killed.  

V. EMPIRICAL VALIDATION 
This section presents an experiment that evaluates MUSIC. 

We performed an experiment with two different applications. 
The experimental design of the experiment is presented in this 
section. 

A. Research goal 
The research goal of the experiment is to investigate if 

MUSIC improves the mutant execution task through the 
identification of infinite loops and situations when a mutant 
must not be executed. 

B. Application under tests 
The experiment was run on two applications. Both of them 

are written in Java technology and have a test suite in JUnit[21] 
format. The applications were: Monopoly, a monopoly game 
simulator and Cinema: a cinema management system. A 
quantitative description of the applications and their test suites 
is showed in Table I. 

Table I shows, for each application, the number of classes, 
the number of lines of code and the number of test cases that 
composes each test suite. Also, Table I shows the mutation 
score achieved by each test suite. To calculate the mutation 
scores, the equivalent mutants were not identified. 

TABLE I. QUANTITATIVE DESCRIPTION OF THE APPLICATIONS. 

App. Classes LOC Number of 
tests 

Mutation 
score 

Cinema 10 678 197 80.05
Monopoly 40 641 211 83.32

 

C. Tools and hardware 
To manage the applications and the test suites we used the 

Eclipse platform [22]. To perform the mutation analysis and 
the mutant execution tasks, we used Bacterio tool [8], where 
MUSIC was implemented. To analyze the collected data, we 
used Microsoft Excel. 

The computer used to perform the experiments has a 
processor Intel Core 2 Duo P7450, 4GB of RAM memory and 
Windows 7 operative system. 

D. Variable description 
In the experiment, we manage seven different variables. 

There are two independent variables and four dependent 
variables.  

The first independent variable is related with the 
application of the technique presented in section IV. This 
variable will have two values: use only mutant schema (MS) or 
use mutant schema improved with extra code (MUSIC). The 
second independent variable is the executions order. As is 
commented in section IV.C, the order of the test has a big 
influence in the advantages of the proposed technique, so it is 
important to evaluate the effect of different orders. Therefore, 
the test execution order will have five values: design order, 
design reverse order and three different random orders. 

The first dependent variable is the total number of 
executions. It will show how many pairs “test-mutant” will be 
executed. The second dependent variable is the original 
execution time, measured in seconds. This variable will show 
MUSIC increases the original execution time relative to mutant 
schema. The third dependent variable is the mutant execution 
time. This variable will show if MUSIC was able to decrease 
the cost in the mutant executions. The fourth dependent 
variable is the number of mutants killed when an infinite loop 
is detected and the fifth dependent variable is the execution 
time when a mutant executes an infinite loop. These two 
variables will show the total time spent in mutants with infinite 
loops. 

E. Experimental procedure 
The next paragraph shows the experimental procedure 

carried out for the experiment. Note that we have to create 
three different execution orders randomly for each application 
before performing the procedure. 

There are 2 parameters to identify infinite loops: the “time-
out” when mutant schema technique is used and the “iterations 
increases” when MUSIC is used (see section IV.C). For the 
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time-out, we established 0.5 seconds, which is long enough not 
to show the problems addressed in section IV.B (also a second 
value, 0.1 seconds, for the time-out was established in order to 
show the problems described in section IV.B. The data 
collected when the time out is 0.1 seconds is only discussed in 
section VI.B). For the parameter of iterations increases we 
fixed it = *10, this configuration allows mutants with infinite 
loops to execute 10 times more iterations than the original 
system.  

The procedure is composed by 9 steps and was executed 
several times, one for each combination of “application-order-
technique”. The experimental procedure has four input 
parameters: application, test suite, execution test order, and the 
technique to apply. 

1- Create mutants of the application. 

2- Set up Bacterio tool to apply the technique. 

3- Set up Bacterio tool to run the test cases in the selected 
order. 

4- Execute the test suite against the original system. 

5- Annotate the time spent in the execution and the 
number of executions. 

6- Execute the test suite against the generated mutants. 

7- Annotate the time spent in the execution and the 
number of executions. 

8- Annotate the number of killed mutants by time-out and 
time spent to kill them. 

9- If the mutants were executed less than three times, go 
to step 4. 

Finally, all collected data must be joined and analyzed. 
Note that all the information to be annotated is calculated and 
showed by the tool Bacterio, thus we only need to collect the 
data to analyze it. 

At the end of the process, we will have executed three times 
the mutants and the original system, so we will have three 
repetitions for each combination “application-order-technique”. 
Then the mean of the three repetitions is calculated. These 
three repetitions are necessary in order to remove possible 
random effects (such as processor scheduler or java garbage 
collector) that can influence in the execution time, and in order 
to observe the effect of the time-out (see section IV.B). 

VI. RESULTS AND DISCUSSION 
This section shows the experimental results. We analyzed 

three effects. 1) The effect of MUSIC in the execution tasks 
(number of executions and total time), 2) the effect of MUSIC 
in the identification of infinite loops, and 3) the effect of the 
test execution order when MUSIC is applied. 

A. Effect of MUSIC in the execution task 
Figure 8 shows the number of executions, Figure 9 shows 

the execution time of the original system and Figure 10 shows 
the execution time of the mutants, all the tables for each 
application with each execution order and each technique (MS 
with the time-out = 0.5 seconds and MUSIC). The data is the 

mean of the three repetitions performed (see section V.E). The 
mean of three repetitions is calculated in order to remove 
possible randomness in the collected times. 

Figure 9 shows that, when MUSIC is used, the original 
execution time is increased around four times in the worst case. 
This shows the problem described in section IV.C, the extra 
code that must be executed in the original execution increases 
the cost of the original execution. 

However, Figure 10 shows that MUSIC is able to 
drastically reduce the mutant execution time. In the chart, we 
can see that the mutant execution time is reduced at least to a 
quarter when music is used. This reduction is due to the 
reduction in the number of executions (Figure 8), which are 
also reduced to a quarter. 

This indicates that MUSIC increases four times the original 
execution time but it also decreases four times the mutant 
execution time. And, as the mutant execution time is some 
orders of magnitude bigger than the original execution time (10 
seconds vs. 1000 seconds), the advantage of MUSIC is clearly 
stated. 

We can conclude that the number of situations when a test 
case must not be executed because the mutated statements of 
mutants will not be executed is really high and suppose up to 
75% of the total executions. Thus, a technique as MUSIC, 
which is able to identify these situations before the execution 
of mutants, can drastically reduce the execution requirements 
(around 75%); we strongly recommend its use, even if it 
supposes an increase of the original execution.  

B. Effect of MUSIC in the identification of infinite loops 
This section shows the effect of MUSIC in the 

identification of infinite loops. Figure 11 shows the number of 
infinite loops detected (note that in some cases, when a 
“timeout” is used, the number of infinite loops is not an integer 
value. This indicates that, even executing the same mutants and 
test cases in the same order, infinite loops are identified only in 
one or two of the three repetitions) and Figure 12 shows the 
time spent in the execution of infinite loops, both tables for 
each application with each execution order and each technique 
(MS and MUSIC). This section also includes the data collected 
when the time-out parameter was 0.1 seconds. 

Figure 11 shows the problem described in section IV.B 
concerning time approaches to identify infinite loops. When 
the time-out is too small some mutants may be killed by time-
out when they should not. When the time-out was set up to 0.1 
seconds, the number of infinite loops identified was higher than 
the infinite loops identified when the time-out is 0.5 seconds or 
when the MUSIC technique is used. This indicates that some 
mutants may be killed by time-out but they should not.  

Table II shows the mutation scores achieved. We can see 
that, in fact, the mutation score achieved when the time-out is 
0.1 seconds is higher that when the time-out is 0.5 or when 
MUSIC technique is used. This shows that when the 
configured time-out is too small, some mutants may be killed 
by time-out when they should not, therefore small time-out 
should not be used. 
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In addition, when a big time-out is used, the time expended 
to identify infinite loops can be very long. Figure 12 shows the 
time spent in the identification of infinite loops. It shows that 
when the time-out is 0.5 seconds, the spent time is much bigger 
than when the time-out is 0.1. In the experiment, the spent time 
is relatively small, but with larger tests this time can be much 
longer. Also, Figure 12 shows that MUSIC technique 
significantly reduces the time to identify infinite loops (around 
15%). Moreover, Figure 11 and Table II show that MUSIC 
technique does not find more infinite loops than the time-based 
techniques and does not kill mutants when they should not be 
killed. Thus, these results induce to think that MUSIC is a 
more reliable technique than time-based approaches.  

C. Influence of the execution order in MUSIC 
Finally, we analyze the influence of the test execution order 

in MUSIC technique. Figure 8 shows that the number of 
execution is different when the test execution order is different. 
When MUSIC is not used, the influence of the test execution 
order is obvious. For example, in the cinema application, we 
can find a difference of 80000 executions between direct and 
reverse orders, which is around 40%. 

However, when MUSIC is used, the differences are small, 
because the number of executions is also small. For example 
the biggest difference is between reverse and random 2 test 
execution orders of cinema applications, which is around 25%.  

Although the differences in the number of executions are 
lower when MUSIC technique is used, there are still some 
differences. Thus, it would be interesting to design test 
ordering strategies to improve the mutants execution and 
reduce the number of executions. 

D. Threats to validity 
There are some threats to validity in this experiment that 

must be considered when we assume the conclusions.  

Construct validity is the degree to which independent and 
dependent variables are accurately measured [23]. In the 
experiments, the independent variables are nominal and cannot 
be measured, and the dependent variables are measured 
objectively by tools. Times are not deterministic, so we 
perform three repetitions of each execution in order to reduce 
the threat. Besides, tools used in the experiment can have bugs, 
which is another threat. 

Internal validity is the degree of confidence in a cause-
effect relationship between factor of interest and the observed 
results [23]. All the variables were controlled during the 
experiments by tools in order to minimize threats to internal 
validity. 

External validity is the extent to which the research results 
can be generalized to the population under study and other 
research settings[23]. In order to minimize threats to external 

validity, we used two applications with different nature, and 
each application with several classes. However, some threats 
exist because it is not possible to state that size and nature of 
the used applications is enough. 

VII. CONCLUSIONS AND FUTURE WORK 
This paper proposes an improvement of an existing 

mutation cost reduction technique, mutant schema. This 
improvement, called MUSIC (mutant schema improved with 
extra code), is able to identify situations where a mutant must 
not be executed, therefore reducing the number of total 
required executions in a mutation analysis. In addition, MUSIC 
is able to identify infinite loops faster and more reliably than 
other approaches based in time. 

In this paper, an empirical validation of MUSIC is 
presented. This validation shows that MUSIC significantly 
reduces the number of executions (around 77%) and thus also 
the mutant execution time, to the detriment of the original 
execution time, which increases around 56%. The empirical 
validation also shows that the identification of infinite loops is 
faster and more reliable than other techniques based in time-
outs. These conclusions suggest that MUSIC technique is 
convenient to reduce the execution time (although the 
execution of the original system increases significantly). 

Another interesting conclusion of the experiment is related 
with the execution order. The experiments shows that the 
execution order of the tests has an influence the number of 
executions, and therefore the execution order influences the 
efficiency of MUSIC. 

Taking all this into account, we plan future work to design 
strategies in order to determine good execution orders to 
maximize the efficiency of MUSIC technique. 

TABLE II. MUTATION SCORES 

App 
Test execution order 

MS (0.5 
seconds) 

MS (0.1 
seconds) MUSIC 

monopoly 
direct 83.32 83.4 83.32

reverse 83.32 83.43 83.32

random1 83.32 83.43 83.32

random2 83.32 83.35 83.32

random3 83.32 83.37 83.32
cine 

direct 80.05 80.6 80.05

reverse 80.05 80.08 80.05

random1 80.05 80.05 80.05

random2 80.05 80.05 80.05

random3 80.05 80.07 80.05
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Figure 8. Number of executions (pairs test-mutant executed). 

 
Figure 9. Original execution time. 

 
Figure 10. Mutants execution time. 

 
Figure 11. Infinite loops identified. 
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Figure 12. Time spent in the infinited loops. 
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