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Abstract 
 
A hard (or exponential-time) computational problem is a problem where the time 
needed to obtain a solution increases at least exponentially with the size of the input 
(number of input parameters). Similarly, we can define a hard inverse problem as a 
problem whose solution time increases more than exponentially with the dimension of 
the model (parameter) space. 
 
Being an exponential-time problem is (as suggested by the terminology) a property 
that is independent of the algorithm used for the analysis. In fact, we follow the 
convention used in the theory of algorithmic complexity, and say that a problem is 
'exponential-time' (or hard) when a best conceivable algorithm used on the 'worst 
case' version of the problem is exponential-time. 
 
Full probabilistic (Bayesian) analysis of an inverse problem, using Monte Carlo 
sampling or any other conceivable method, requires that we can collect sufficient 
information about the posterior probability density to ensure that an approximate 
reconstruction of the density is possible. If it is known a priori that we are sampling, 
e.g., a Gaussian posterior, an efficient sampling scheme can be designed. In fact, this 
sampling problem is not hard (it is a 'polynomial-time' problem). However, if for 
instance the structure of the posterior is only known to be smooth in some sense, 
sampling can be a huge computational task, and sometimes hard. 
 
The difficulty of solving highly nonlinear inverse problems is illustrated by specific 
examples. For certain problems, a `brick wall effect' is observed, namely that the 
problem is practically solvable up to a certain number of unknown model parameters, 
but requires excessive computer resources if only a few more model parameters were 
added. In some cases, it is likely that the brick wall effect can be attributed to an 
exponential increase in the number of secondary maxima for the posterior probability 
density, when the number of model parameters increases. Some inverse problems in 
seismology are likely to suffer from this difficulty. 
 
Intuitively, one would expect that problems with none or few local maxima are 
comparatively easy to solve. That this statement is not necessarily true follows from a 
result concerning determination of the volume of an (unknown) n-gon shaped region. 
This problem, which is similar to the problem of characterizing a probability density 
which is constant over an n-gon shaped region, has been shown to be a hard problem 
(Khachiyan, 1989). 
 
The existence of hard inverse problems of relevance for physical applications can be 
demonstrated. The consequence of this is that certain physical model reconstruction 
problems with many unknown parameters may be practically unsolvable by any 
conceivable method based on digital computing. 


